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Abstract. A model suitable for describing time-correlated arrivals and traffic 
forwarding at time-slotted output-buffered switching nodes is thoroughly 
investigated regarding marginal distribution, correlation structure, load 
spatial partition, and traffic aggregation. Straightforward, though exact, 
analytical tools are developed and validated against numerical simulations. 
Results show that realistic outcomes can still be obtained from appropriate 
low-complexity analytical models since strictly correlated forwarding and hot-
spot do not significantly influence most important traffic features which the 
investigated model is able to represent. Moreover, long-range dependence 
may not be an issue when evaluating performance of nodes with limited buffer 
space (e.g. photonic packet switching).  

1. Introduction 
Traffic models hold an important role in packet-switched networks performance 
evaluation. They are fundamental in producing trustworthy representation for the 
dynamics of packet arrivals, forwarding, and buffering within switching nodes. Time-
correlation among packets is a very demanding feature to be dealt with by buffers; 
mainly if low packet loss probability is required. As a result, many authors argue 
against traffic model with Short-Range Dependence (SRD) as it seems an obsolete 
practice in face of the fact that modern traffic sources actually possess long-range 
dependence (LRD) (self-similarity) in their correlation structure [8]. However, the way 
packets are distributed across output ports, the statistics of this convergence of 
incoming packets over outlets, and the buffer limited memory for past events are issues 
usually neglected by such critics. This paper investigates forwarding characteristics of a 
simple analytical model able to represent SRD and shows that it may even evaluate 
node performance under more strict conditions than its self-similar counter part.  

1.1. Model complexity issues 

The primary function of switching nodes is to sort out incoming packets onto output 
ports according to packets’ header destination field. This process is here called 
forwarding. Packet arrival patterns strongly influence node performance. Fig.1(a) 
illustrates bursty arrivals, hot-spot, and temporal/spatial correlation in time-slotted 
nodes. The speed-up factor is four, i.e. it is an internally non-blocking switch and 



  

therefore even four packets can be simultaneously forwarded to a given outlet. The 
numbers inside the packets represent the output destination port. Assuming that links 
serving outlets of the node shown in Fig.1(a) are able to forward just one packet per 
output in a time-slot, forwarded arrivals beyond this limit have to be either discarded or 
treated by a technique of contention resolution (e.g. output buffering). For instance, 
there is contention for the packets arriving in the sixth time-slot on inputs 1 and 4. In 
addition, notice that packets on inlet 4 arrive in a cluster of three packets all destined to 
output 3 while the burst on input 1 has packets headed for different outlets. Time-
correlation may be present in case packets are arriving in such clusters on a regular 
basis. This correlation may last for few time-slots or even go through very long periods 
of time. The latter is the cause of the so-called self-similarity (or fractal) behaviour 
observed in Ethernet [8] and multimedia traffic [4][13]. Temporal correlation has a major 
influence on degrading buffer efficiency as a means for contention resolution. By 
receiving such bursty arrivals, it is likely that buffers will soon be completely taken 
resulting in some packet being lost.      

Not only temporal effects are present in a switching node, traffic spatial distribution is 
also an aspect to be considered. A given port (or a group of them) may receive, on 
average, more packets than the remainder ports. In the illustrative example given in Fig. 
1(a), traffic loads on inlets 1 and 4 are higher than on inputs ports 2 and 3 while outlets 
3 and 4 are destinations for most of the arrivals. These traffic imbalances (also known 
as hot-spots) certainly pose more complex challenges to the mechanisms of contention 
resolution but this may also bring the opportunity to do asymmetrical node design as 
discussed in [1]. A considerable spatial (negative) correlation effect takes place at output 
of nodes with hot-spots as the “population” of packets to be forwarded in a time-slot is 
finite. The more packets go to a given output the fewer are destined to the remnants.  
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Fig. 1 -. Traffic features. (a) Arrival patterns. (b) Model complexity. 



  

Figure 1(b) presents a classification system in which a vertical scale indicates 
complexity for modelling traffic features and packet forwarding. It is intuitive that the 
more complex is the model, the closest to the real behaviour it becomes. Therefore, 
bound approaches can be devised, named here simplest and complete. For the former, 
one may develop a model to evaluate node performance considering the incoming 
traffic as totally uncorrelated (random) and packets evenly distributed among outlets 
(independent forwarding). On the other extreme, there is a complete model that would 
include long-range temporal correlation in the incoming traffic representation. This kind 
of traffic often produces bursts that are composed of packets going to the same output. 
Therefore, correlated forwarding must be implemented in order to model those bursts 
crossing switching nodes accordingly. Independent forwarding, in this case, would alter 
traffic correlation structure resulting in unrealistic outcomes for performance 
evaluation. Finally, this complete model should be also able to represent the load 
imbalances and consequent spatial correlation that is present in real networks. 

The analytical effort that must be put into the development of the complete model can 
be prohibitive while the simplest model might produce results of little practical interest. 
Nonetheless, this dilemma may be avoided when one considers that there is a whole 
range of options in between these two extreme models that could well produce 
reasonable results. A solution balancing performance and model complexity might be 
achieved by choosing, beforehand, only relevant aspects for implementing a model. For 
instance, for a node equipped with shallow buffers, which is often the case for photonic 
nodes where buffering is implemented with fibre-delay lines [1][12], the description of 
incoming traffic with LRD is not relevant given that buffers cannot realise such long 
correlation due to the lack memory concerning events happened long ago. Moreover, 
how contention resolution is implemented also counts. Having an incoming correlated 
and non-balanced traffic (such as the burst on inlet 1 in Fig. 1(a)) is important for input-
buffered nodes but it is a completely irrelevant feature for output-buffered architectures, 
unless packets are to be forwarded to the same output (e.g. burst on input 4 in Fig. 1(a)). 
In conclusion, a fairly simple analytical model accounting for SRD with correlated 
forwarding and balanced loads (input and output) may produce acceptable traffic 
characterisation for output-buffered nodes. This paper evaluates if this option for 
simplicity may jeopardise accuracy in representing traffic relevant features for assessing 
buffering efficiency in dealing with switch external blocking (contention). 

Another important aspect regarding performance evaluation is whether to use analytical 
or numerical methods for assessing node functioning. Analytical models bring forth 
elegant solutions but they are time-consuming to develop. Furthermore, assumptions 
and simplifications have to be made in order to keep its complexity within acceptable 
levels. Numerical models, on the other hand, can significantly reduce analytical effort 
besides allowing a more realistic representation of tasks performed within a switching 
node. However, its downside lies in the prohibitively long time taken to assess 
performance indicators such as low packet loss probability levels (e.g. 10-7 and below) 
required from nodes sitting in the of core transport networks. This paper makes use of 
both analytical and numerical techniques to investigate traffic features of the model 
under analysis. Numerical models are applied to validate the proposed analytical tools 
but they are also used to go beyond the limits imposed by analytical complexity, so that 
inaccuracies arising from assumptions and simplifications can be established.   



  

1.2 Related work and contributions 

The study presented in this paper is focused on source representation and traffic 
forwarding developed in [5]. Regardless of being a widely used model, little is known 
about traffic features produced by this method and the relevance of various factors that 
compose traffic statistics reaching output buffers. Investigations into traffic 
superposition of correlated sources can also be found in [7][10][14] and buffer 
performance under such traffic is carried out in [5][9][12]. The validity of this approach 
needs to be assessed when traffic crossing the switch is actually LRD instead of SRD. 
The role played by both marginal distribution and correlation structure on buffer 
performance is yet to be clarified. The remainder of this paper is organized as follows. 
The traffic model itself is described in Section 2 alongside with proposed 
methodologies to analysing its marginal distribution, correlation structure, and traffic 
aggregation features. Section 3 compares traffic of the investigated model against SRD 
numerical models and self-similar features. Section 4 addresses how traffic reaching 
output buffers behave against incoming traffic characteristics and node size in order to 
support interpretation of buffer performance outcomes. Furthermore, an analysis for 
buffers fed with SRD and LRD traffic is also provided in Section 4 to demonstrate the 
roles played by memory depth, marginal distribution, and correlation length in buffer 
performance assessment.  Finally, the conclusions are drawn in Section 5.  

2. Model description and assessment of its traffic features 
A time-slotted switching node with internally non-blocking space matrix with nN inputs 
and N outputs is analysed. This feature imposes a speed-up factor of nN for the switch 
fabric. The aim is to find out traffic characteristics at a given outlet, namely marginal 
distribution and correlation structure for the stochastic process representing arrival at 
output buffers. 

2.1 Traffic source 

The model considers input traffic per port as a two-state system, more specifically High 
and Low for the representation used in Fig. 2(a). Sources are independent and 
identically distributed (i.i.d.) and they are either producing a continuous stream of 
packets while in High state or no traffic during Low state. The transition probabilities 
RHL and RLH stand for High to Low and Low to High respectively. Each source spends, 
on average, 1/RLH on Low state and 1/RHL time-slots on High state. The latter is also the 
mean burst length β (burstiness) produced by each source. Applying local balance 
boundary to the source model shown in Fig. 2(a) one finds (1)  

)RR(R]Highstate[obPr HLLHLH +==  (1) 

2.2 Forwarding 

Balanced input and output loads (0≤ρ≤1 on average per input) are assumed. The 
forwarding process considers that, in the long term, the incoming traffic from nN 
sources is equally distributed across the N output ports. However, an ingenious way is 
utilised in [5] to address forwarding via a hybrid representation that could be fitted 
between independent and correlated approaches presented in Fig. 1(b) as each burst is 
forwarded in a correlated way to a given output. Consequently, one only needs to keep 



  

track of sources addressed to the tagged output. As packets are exclusively released in 
the High state, Prob[state=High]=ρ/N and from (1) the probability of transition from 
Low to High can be calculated as stated in (2). 
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The evolution in time for the number of sources in High state (and addressed to the 
tagged output) is modelled by a Markov chain, illustrated in Fig. 2(a), in which any 
transition among the Si (0≤ i ≤ nN) states is allowed. For each source, the transition 
probabilities are taken as geometric distributed with mean RHL and RLH for sources 
leaving state H and state L respectively. As a result, the number of input sources in state 
H and addressed to the outlet under observation in a given time-slot is a binomial 
distribution, where i represents the current state while j stands for the number of sources 
in High state one time-slot ahead. An auxiliary variable z is brought in to represent all 
possible combinations regarding transitions of individual sources, finally allowing the 
calculation of transition probability from i to j (i,j∈{0,1,2..,nN}) in a compact 
expression as shown in (3).  
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The resulting arrival pattern at a given output, represented here by a discrete stochastic 
process A(t), is the summation of individual contributions in each time-slot as 
illustrated in Fig. 2(b) for three inputs that have packets addressed for the tagged outlet. 
The marginal distribution and two random variables Aτ and Aτ+k, from temporal 
samples of A(t) taken at t=τ and t=τ+k respectively are also shown. 
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Fig. 2 – (a) Source representation. (b) Illustration for traffic headed for an outlet. 



  

2.3 Marginal distribution 

Two methods for obtaining the marginal distribution for traffic reaching an output 
buffer are discussed, namely, steady-state solution for the Markov chain representing 
state of input sources, and convolution of individual contributions within a time-slot.  

2.3.1 Analysis via Markov chain 

The steady-state solution for the evolution in time of number of sources in High state 
can then be found by solving the equation system presented in (4). The underlined S and 
Q are the state and transition probabilities, in vector and matrix form respectively; e is a 
unitary column vector, i.e. e=[1 1 … 1]T, with nN+1 elements while ∗  stands for 
matrices product. 





=
∗=

1e*S
Q  SS

 
(4) 

Once packets are released with probability 1 for sources at High state, vector S may be 
seen as the marginal distribution for the discrete-valued stochastic process A(t), i.e. 
Sa=pA(a) = Prob[A=a], a∈{0,1,2..,nN}. 

2.3.2 Analysis via Central Limit Theorem (CLT) 

Provided that the traffic addressed to a given output is simply a summation of 
independent random variables ϖ{i}, ϖ∈{0,1}, which are temporal samples from ς{i}(t) 
coming from i∈{1,2,…,nN} inputs within a time-slot as shown in Fig. 2(b), one is able 
to find out the marginal distribution at the outlet under analysis by convoluting (⊗) the 
individual contributions from each input as stated in (5)  
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For the assumptions used in Section 2.2, (6) gives the probabilities of sending either one 
or no packet to the tagged output in a time slot.  
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For CLT under balanced load, one may easily find the well-known binomial probability 
density function in (7) by convoluting nN i.i.d. sources. 
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This result may provide a proof for the memoryless nature of the aggregated traffic 
marginal distribution. In other words, despite the presence of time-correlation in each 
source that composes the total arrival, Eq. (4) should produce the same results as Eq. 
(7). The latter expression is clearly memoryless. Eq. (5) allows forwarding with hot-
spots to be analysed while (4) is valid for i.i.d. sources only. Before reaching Gaussian 
shapes for nN→∞, one should expect outcomes from (5) to go through intermediate 
profiles, e.g. Poisson-like, for a limited number of input sources. 



  

2.4 Correlation structure 

It is of great interest the correlation structure present in such aggregation of time-
correlated yet independent sources. An exact and simple method is developed here to 
perform this investigation. In addition, the concepts of correlation analysis of traffic 
traces and self-similarity are discussed in order to introduce a proposal to obtain 
variance-plot charts from analytical models.  

2.4.1 Correlation coefficient function 

Provided that A(t) is a stationary process, the two samples that are k time-slots apart, 
k∈{1, 2, 3,…,∞}, A0 and Ak, have the same marginal distribution pA(a) but they may 
not be independent. In order to evaluate the correlation coefficient between them, the 
joint probability density  is needed. Fig. 3 shows a diagram that 
illustrates the relationship between time samples. The arrows represent transition 
probabilities calculated in (3).  
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Fig. 3. - Correlation coefficient analytical calculations. 

One can see from Fig. 3 that the joint density is obtained by multiplying pA(a) by the 
conditional probabilities of transition (given by Q) for each step forward in time. If Q is 
stationary this may be represented as in (8) where (•) stands for scalar product and pp is 
a square matrix composed nN+1 repetitions of pA(a) , as shown in (9). 
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Finally, the correlation coefficient r(k) for A(t) can be found via covariance calculation, 
as stated by (10), where E[.] represents the average over the ensemble. 
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2.4.2 Long-range dependence and (second-order) self-similarity  

A wide-sense stationary process X(t) is long-range dependent (LRD) if its correlation 
coefficient rss(k) is nonsumable (i.e. ( )∑ ∞→

k
ss kr ), meaning that samples from a traffic 

trace are still related to each other no matter how far apart they are taken. An exact 
(second order) self-similar process is fully characterised by the Hurst factor H 
(0.5<H<1) as shown in (11). 
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By increasing the observation window (time-scale) in which a stochastic process is 
analysed, one may see the effects of long-range dependence manifesting its graphical 
fractal-like behaviour as illustrated in [8][15]. This phenomenon is due to the slow 
reduction of variance as the process is viewed in coarser scales. A convenient way to 
see the resilience of traffic variance and to estimate the Hurst factor is by constructing a 
new stochastic process of non-overlapping blocks of X(t), each of them gathering m 
samples as shown in (12), where m∈ {1, 2, … }. This is somehow equivalent to 
observing X(t) in a time scale that is m  coarser than the used by the original trace. 
Notice that lim  (convergence to the mean) consequently σ as m goes 
towards infinity. It is of great interest how fast this convergence is. 
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Plotting the variance of X (normalised by the variance of X(t)) against the aggregation 
factor m in log-log scale, one can use the slope (S) of this graph for Hurst parameter 
estimation, where 

}m{

( ) 22+S=H
) . It is worth looking at the two extreme values for H. For 

H→0.5 the variance of reduces at the same rate m increases, which actually means 
that the stochastic process is completely uncorrelated. This lack of correlation can be 
confirmed by the fact that in (11) where rss(k)=0 for H=0.5 and K>1, meaning that no 
self-similarity will be present as the time scale of observation is increased. In this case, 
variance is quickly smoothed by aggregation.  On the other hand, for H→1 the variance 
stays virtually the same regardless of the aggregation factor m. This is explained by the 
autocorrelation rss(k)=1 for ∀ k. In summary, the variance of aggregated traffic depends 
upon the correlation structure of the original samples. Therefore, long-range 
dependence implies (second order) self-similarity. In other words, if samples are 
strongly related to each other the aggregation will result in a process very similar to the 
original one (at least the variance). 

}m{X

Correlation coefficient can be estimated using (13) for traces with M samples, where 
Xµ
) and 2

Xσ
)  are temporal mean and (unbiased) variance estimation. 
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2.4.3 Traffic aggregation analysis for variance-plots  

From the interpretation of variance-plots in Section 2.4.2, one is able to devise an 
analytical method to obtain such charts. An aggregated version of A(t) directly depends 
upon the correlation structure of its original samples. Another way to see the 
aggregation process needed for variance-plots is as a summation of m correlated 
random variables, which is then multiplied by 1/m in order to obtain an averaged value 
over m samples. As a result, the analytically evaluated variance of A[m], represented 
here by Var[A[m]]), is the variance of this gathering of m samples multiplied by 1/m2 as 
seen in (14).  
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In order to produce the variance plot required for the estimation of H, the variance 
obtained in (14) must be normalised by the initial variance (m=1). Assuming that the 
stochastic process is wide-sense stationary, one obtains the normalised variance, 
NV(m), as in (15). 
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Using the limits for correlation coefficient in (15), convergence to 1/m and 1 takes 
place, as it would be expected, for uncorrelated and fully correlated traffic respectively. 

3. Model evaluation 
Traffic reaching output buffers according to the model presented in Section 2.1 and 2.2 
(called here basic model with hybrid forwarding) are checked against numerical 
simulation. Comparisons are performed within a framework used to analyse self-similar 
traffic, developed in Section 2.4, in order to provide a clear judgement to what extend 
the analytical model under analysis may neglect important traffic features. An ad hoc 
numerical simulator generates traces with 105 samples for a node with 4x16 input ports 
and 16 outlets. The basic purpose here is to validate the analytical model and to provide 
some insight into the traffic features where analytical investigation would be rather 
complex. The offered load (ρ), from each 16x4 independent sources, is 0.8 and it is 
evenly distributed across the 16 output ports (except in Section 3.3 where output hot-
spot is investigated). A mean burst length (β) with 16 time-slots was chosen for the 
results presented in this Section. 

3.1 Basic model with hybrid forwarding 

For this case the offered load is actually 0.8/16, as seen in (7), due to the forwarding 
approach utilised. The marginal distribution is shown in Fig. 4(a) for both analytical and 
numerical models. It is also presented a Poisson density function with the same mean 
found in the trace clearly showing that the model generates Poisson-like densities for 
this node size and offered load. As it might be expected, both methods for evaluating 



  

the marginal distribution presented in Section 2.3 produce the same result. This is the 
evidence that the number of active sources gathered over a outlet is itself a memoryless 
process. 

Temporal correlation properties are exposed by autocorrelation coefficient function and 
aggregation analysis, shown in Fig. 4(b) and (c) respectively. Fig. 4(b) shows the 
agreement between the autocorrelation obtained through the analytical procedure 
described in (8)-(10) and numerical evaluation of traffic traces in (13). One can also 
observe that the correlation values are negligible for lags over 60 time-slots. On the 
other hand, Fig. 4(c) shows that the variance for the aggregated version of this traffic 
remains virtually unchanged (H=0.96) until the observation period exceeds the mean 
burst length (16 time-slots). After this point, a steep reduction in variance against m 
takes place as the trace becomes uncorrelated. And this is also the explanation for the 
good matching found to a line in parallel with the curve for H=0.5. The best fitting line 
for the whole range studied (m=1000) would produce an estimated Hurst factor H=0.82. 
However, it is easy to conclude from Fig. 4(b) that this is a meaningless result since 
traffic correlation present in this trace is SRD. Nonetheless, it must be said that the trace 
has stronger correlation properties (and so has the analytical model) than an equivalent 
self-similar trace with H=0.82 for lags below 29 time-slots. As far as correlation goes, 
this result means that nodes with shallow buffers may be under more severe 
circumstances with this trace than with its self-similar counterpart with H=0.82.  
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Fig. 4. – Model. (a) Marginal distribution. (b) Autocorrelation. (c)Variance-plot. 



  

3.2 Strictly-correlated forwarding 

The point to be addressed here is whether the simplified approach towards packet 
forwarding may undermine the validity of results obtained analytically. A numerical 
model with strictly correlated forwarding is developed, i.e. the whole burst is always 
headed for a given outlet. Traffic features are then compared with the forwarding hybrid 
approach discussed in Section 3.2. Statistical study of a trace considering balanced load 
with correlated forwarding is presented in Fig. 5. For the sake of illustration, a fragment 
of the trace from a given incoming source is presented in Fig. 5(a) where packets are 
shown according to the output they are headed for versus time-slot intervals. The off 
period of this source is also shown. In this particular fragment, arrivals destined to 
output 6, for example, consist of a 63 time-slot burst followed by a single packet while 
no traffic is generated for outlets 1 and 3 during this period of observation.  

As far as statistical traffic features considered in this paper are concerned, no significant 
difference is noticed between the hybrid model and the strictly correlated forwarding as 
one can see by comparing marginal densities, aggregation and autocorrelation functions 
from  Fig. 4 and Fig. 5. Further experiments were performed for different offered load, 
node size and burstiness factor and both models kept producing very similar results. 
Nonetheless, it is noteworthy that convergence to zero in Fig. 5(c) is slower for long 
lags than in Fig. 4(b), which is also reflected in the mismatch observed in Fig. 5(d) 
between aggregations factor gathering more than 300 time-slots and the parallel line to 
H=0.5. This may be a slightly sign of LRD or even non-stationarity in the traffic trace. 
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Fig. 5. Strictly correlated forwarding. (a) Trace fragment (b) Marginal 
distribution. (c)Autocorrelation function, and (d) Variance-plot. 



  

3.3 Strictly correlated forwarding plus single hot-spot  

One more feature is included on top of strictly correlated routing. A single traffic hot-
spot takes place at output port five. In Fig. 6(a) the spatial distribution of packets and 
the numerical result obtained are compared. Outlet five was set to be five times more 
likely to receive packets. However, this implies that other ports will receive fewer 
packets, which indicates (negative) space correlation. For the balanced load case, each 
output would receive 6.25 % of the packets but here this number is reduces to 5% due to 
the fact that 25% of incoming packets are directed to the hot-spot. This result can be 
seen in Fig. 6(a). The marginal distribution at the hot-spot along with CLT analytical 
result are shown in Fig. 6(b). There is also a Gaussian curve using the mean and 
variance found in the trace generated by simulation. No alteration is observed for 
correlation structure, and consequently for aggregation function as well, compared to 
results shown in Fig. 4(b) and Fig. 5(c) such results are omitted in Fig. 6.  
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Fig. 6. Hot-spot. (a) Spatial distribution and (b) Marginal distribution 

It is noticed, however, that the marginal distribution is affected (expectedly converge to 
a Gaussian-like shape) by concentration of arrival over a given outlet. This paper does 
not investigate performance implications of traffic imbalances. Nevertheless, one can 
see that any performance degradation will be due to marginal distribution changes as 
correlation span appears to reach a saturation level, for the range of interest, after the 
aggregation of many sources is performed. Studies concerning ATM switches under 
uncorrelated traffic and hot-spot can be found in [16] while [9] provides analytical 
approaches for speed-up limitations and correlated traffic. Photonic node design taking 
into account traffic imbalances due to routing is numerically investigated in [1].  

4. Discussion 
Once the model under analysis has proved to be accurate enough in representing traffic 
features, issues related to performance assessment are now discussed in this section, 
allowing some important conclusion to be drawn concerning node performance 
evaluation.  

4.1 Asymptotical behaviour for correlation span and marginal distribution 

Before assessing buffer performance, one should carefully examine the features of the 
traffic reaching the buffer in order to better interpret outcomes of such experiments and 
avoid performing unnecessary trials. The results presented in Fig. 7(a) are for 



  

summation of the correlation coefficients (from k=1 to k= 100) versus node size for 
different burstiness and offered load. This method is used here to obtain very concise 
results for correlation behaviour against node and traffic characteristics. In order to 
produce traffic with a given mean burst length, the only option left for the model is to 
place burst far apart in order to comply with the offered load that has been chosen. One 
should remember that correlation structure has also to do with the off period of a traffic 
source [2] [3]. As a result, it is seen in Fig. 7(a) that highly correlated traffic is produced 
when simulations using light traffic are performed. In addition, the correlation obtained 
in this case becomes less sensitive to node size. The higher the traffic burstiness, the 
wider is the difference between curves for light and heavy traffic. Another important 
outcome is that the asymmetry (n) between input and output ports has virtually no 
impact on the results shown in Fig. 7(a). One should notice that results converge to the 
respective summation for the correlation coefficient from a single on-off source [2] with 
geometrically distributed transition coefficients for RLH→0 shown by dotted lines. This 
may mean the aggregation of incoming independent sources over switch outlets causes 
little increase in burstiness.  

A clear indication provided by Fig. 7(a) is that little difference is to be expected from 
assessments of output-buffered nodes with more than 16 ports, as far as influence of 
correlation on performance is concerned. Although it is evident that this traffic model 
only produces SRD, the correlation length is unbounded as Fig. 7(a) demonstrates when 
β is increased. At this point, it is important to gain an insight into the influences of LRD 
on performance of nodes with short memory (limited buffer space). For instance, take a 
bufferless node. In such case no information is kept about past events, therefore time-
correlated arrivals should cause absolutely no penalty to node performance. The 
relationship between buffer depth and correlation span has been studied, from different 
viewpoints, in [4] and [13]. Both approaches, however, have found a linear connection 
between correlation span and buffer depth. In other words, there is just a relevant 
correlation length (correlation horizon in [4] and critical time scale in [13]) that should 
be present in the traffic model in order to properly assess performance of a node with a 
given buffer depth. Therefore, the inclusion of long-range dependence may only have 
minor importance in the context of the present study. Additional evidences to support 
this argument can be found in results presented in [6] and [15]. Fig. 4(b) and (c) show 
that the level of SRD match (or even exceed) correlation levels from (exact) self-similar 
traffic sources within the range that might be realised by photonic switching nodes as 
feasible optical buffer depths are usually well below 50 time-slots [1].  

Marginal distribution plays an important role in influencing buffer performance. This 
traffic feature for the model under analysis is expected to converge to a Poisson-like 
distribution (and to Gaussian-like for large means). Comparisons for random variables 
distributions are generally performed via Quantile-Quantile plots [11] or simply by 
displaying cumulative distributions together. Nevertheless, these charts only provide a 
qualitative, and therefore subjective, appreciation of convergence. A simple summation 
of squared difference is proposed here instead. Results presented in Fig. 7 are 
insensitive to burstiness variations. For nodes larger than 8x8, the marginal density 
quickly converges to Poisson regardless of node asymmetry factor (n). Although the 
results presented in Fig. 7 is only for ρ=0.8, the lower the offered load, the faster is this 
convergence.  
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Fig. 7. Asymptotical behaviour vs. node size. (a) Summation over 100 time-slots 
for correlation coefficient. (b) Comparison with Poisson for ρ=0.8. 

In summary, performance assessment for a given buffer depth are not expected to vary 
much nodes for nodes with more than 16x16 ports, as seen in [12], since both correlation 
and marginal distribution remain practically unchanged for such node size onwards. 

 4.2 Influence of SRD, LRD, and marginal distribution on buffer performance  

Packet loss probability will be assessed for buffers fed with the traffic model under 
analysis and with traces bearing LRD.  
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Fig. 8 - Comparison with self-similar traffic performance. (a) Marginal 
distribution. (b) Packet loss probability. (c) Autocorrelation. (d) Variance-plot. 



  

Analytical buffer modelling proposed in [12] is applied in this Section while an exact 
(second order) self-similar trace, derived from Fractional Gaussian Noise (FGN) [11], is 
used in an ad hoc numerical simulator. Although both cases use N=16 and ρ = 0.8, 
slightly different marginal distributions are intentionally used in order to highlight its 
influence over buffer performance. The numerical model produces Gaussian marginal 
distributions and it was set to generate a traffic trace with µ=8 and σ2=8. If the 
analytical model was evaluated with n=1, it would produce µ=0.8 and σ2=0.76. For the 
sake of convenience it is assumed, however, that an asymmetry factor n=10 is used, 
mean and variance become ten times higher and, therefore, the curve takes a Gaussian-
like shape. These marginal distributions can be seen in Fig. 8(a). As a result, a small 
difference would still remains between variances of numerical and analytical traffic 
models. Outlets of the node under analysis are assumed to be ten times faster than its 
inlets. As a result, each buffer actually receives an offered load of 0.8. Packet loss 
probability against buffer depth is presented in Fig. 8(b). The effect of different 
variances is best seen in Fig. 8(b) for bufferless nodes (i.e. at buffer depth=0). The 
model with LRD predicts a worse performance at this point than the analytical model 
bearing SRD. This certainly is due to the marginal distribution characteristics since no 
time-correlation can be realised in the absence of memory. In order to isolate the effects 
of marginal distribution and time-correlation, performance offset caused by marginal 
distribution should be removed. One may still use Fig. 8(b) but self-similar curves have 
to shifted down in order to find the best match for uncorrelated traffic (β→1) and 
H=0.5. At these points similar loss probability outcomes are expected from both models 
(provided they have the same incoming traffic). As far as shallow buffers are concerned, 
it is clear that the self-similar model with H=0.82 predicts packet loss probabilities as 
SRD analytical model with β=2. The variance-plot in Fig. 8(d) for β=2 matches self-
similar trace with H=0.82 for small traffic aggregations (m<100.5) corroborating this 
finding for the range of buffer depth studied. It is important to draw attention to the fact 
that packet loss probability for the SRD model with β=16 is far less affected by buffer 
deepening than LRD model with H=0.82. This is because the analytical model 
possesses higher correlation levels within lags comparable with the buffer depth, as 
seen in Fig. 8(c). Note that FGN model generates exact (i.e. it is not asymptotic) second 
order self-similarity traffic as can be checked in Fig. 8(c) as traces fit results from (11) 
for ∀ k; and so does it for ∀ m in Fig. 8(d).  

 5. Conclusions 
A comprehensive study into the traffic features of a simple analytical SRD analytical 
model with hybrid (correlated-random) forwarding was performed. Statistical tools 
were developed, within an analytical framework, allowing direct comparisons between 
the investigated model and the so-called self-similar traffic. Numerical simulations were 
employed for further investigations into features arising from strictly correlated 
forwarding, hot-spot, and buffer performance under self-similar traffic. Although it is 
intuitive that the basic analytical model could appropriately represent first order traffic 
features, it is surprising to find out very little discrepancies in marginal distribution and 
correlation structure when compared with models that account for correlated forwarding 
and hot-spots. This is possibly due to the negligible effect of aggregation compared to 
the individual source behaviour. It is important to highlight that, even with moderate 
burtiness, the analytical model may evaluate node performance under more strict 



  

conditions than by using the so-called self-similar model over swallow buffers. In case 
buffer depths are well beyond the burst mean length, it must be expected a perform 
prediction for LRD traffic worse than the one found using SRD models. But remember 
that the outcome also depends on marginal distributions. Further investigation is needed 
to generalise the model studied for network performance assessment (end-to-end) taking 
into account issues such as network topology and routing algorithms. 
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