
Implementation and Performance of a Total Order

Multicast to Multiple Groups

Udo Fritzke Jr.�

Pontif��cia Universidade Cat�olica de Minas Gerais

Campus de Po�cos de Caldas

37701-355 Po�cos de Caldas-MG, Brazil

E-mail :udo@pucpcaldas.br

Abstract

Group communication proved to be a powerful tool for the construction of

reliable distributed applications. This paper presents an implementation and

the performance of a total order (or atomic) multicast protocol. This com-

munication primitive assumes the distributed system is composed by a set of

disjoint process groups and allows messages to be multicast to arbitrary sets

of groups. The protocol implements total ordered delivery of messages. More-

over, message deliveries are reliable, that is, there is no message duplication

nor spurious messages, and messages are delivered to all correct recipients or

none of them.

We outline the total order protocol and then we present a prototype ar-

chitecture. The prototype implementation allowed us to obtain performance

�gures that stress the role of underlying agreement services, namely a con-

sensus primitive. We also compare analytically the costs of the protocol we

implemented with the costs of other protocols that ensure the same delivery

properties.

1 Introduction

Many distributed applications that execute on asynchronous networks subject to fail-

ures, need both consistent sharing of data and fault tolerance. Group communication

primitives, in particular multicast, have been used in several applications to hide fault-

tolerance and asynchrony issues from application programmers. As for example, recent

�This work was supported by a grant of the CNPq/Brazil.

research show how transaction systems on replicated data can bene�t from reliable and

total ordered multicast in order to verify important properties, as data consistency, dead-

lock avoidance, reduction of the number of aborted transactions and implementation of

non-blocking distributed atomic commitment (e.g. [17, 8]).

Multicast with order and reliability properties are however based on complex underly-

ing services. The implementation of reliable end-to-end message transfer and agreement

on the message delivery order among destination processes are far of being trivially im-

plemented in the presence of message losses, faults of processes and communication links,

and arbitrary processing and message transfer delays. Pragmatically, reliability and or-

der can be treated independently. Reliable message transfer imposing low overhead to

scalable raw multicast primitives (like IP-multicast) is a subject of intense research (e.g.

[6, 14, 1]). Ordered message delivery has also been studied in a range varying from

weaker order constraints, as causal order (e.g [2, 4]), to stronger ones, as global total

order [9, 16, 11].

In this paper we focus on the implementation of a total order (or atomic) multicast

to multiple groups primitive. The target of the multicast is a set of groups dynamically

de�ned by a parameter of the multicast. The total order multicast enforces reliability

and global total order in message deliveries. Reliability ensures that there is no message

duplication nor spurious messages, and messages are delivered to all correct recipients

or none of them (if the sender crashes during the multicast and no process receives the

message). Global total order respects an acyclic relation < de�ned on messages: if a

process delivers m before m0 we have m < m0.

We review in this paper the principles of a protocol proposed in [9] implementing

total order multicast. That protocol delivers messages according to timestamps that are

associated with messages by recipient processes. The coherence of timestamps computed

by distinct processes is reached thanks to the use of a Consensus primitive [5].

The prototype we have developed intended to study the behavior of this protocol,

particularly, when it comes to the agreement on the order of message deliveries. The

experimental results obtained highlight the role of the consensus primitive for the per-

formance of total order multicast. We show here that in order to obtain acceptable

performances we need a consensus primitive able to treat sets of messages.

This paper is structured as follows. Section 2 de�nes the distributed environment,

multicasts and consensus. Section 3 outlines the protocol and the implementation of the

total order multicast primitives. This section also compares analytically its costs with

the complexity of related work. Section 4 details experimental results on the behavior of

the total order protocol. Section 5 concludes the paper.

2 Group communication model

This section presents de�nitions and assumptions on the distributed environment as well

as the de�nitions of the communication primitives.

2.1 Process groups, failures and asynchronous systems

We consider a distributed system composed of a �nite set � of processes p1; p2; : : : ; pn.

The set � of processes is statically structured into non-empty non-intersecting groups gx;

gy; : : : ; gz (i.e., 8x : gx 6= ; ^ [xgx = � ^ 8x; y; x 6= y : gx \ gy = ;).

A process can fail by crashing, i.e., by prematurely halting. A process behaves accord-

ing to its speci�cation until it possibly crashes. By de�nition a correct process is a process

that never crashes. A crashed process does not recover from the failure. We consider that

groups are reliable, that is, a majority of processes are correct in each group (let fx be

the maximum number of processes of the group gx that can crash, then 8x : fx < jgxj=2).

Every pair pi and pj of processes is connected by a reliable channel, ensuring that

every message sent by pi to pj, is eventually received by pj if pi and pj are correct. We

do not assume any bound on process relative speed and on message transfer delays, that

is, we consider that the distributed system is asynchronous.

2.2 Multicast to multiple groups

We consider two multicast speci�cations: reliable multicast and total order multi-

cast (or atomic multicast). Reliable multicast is de�ned by two primitives, namely,

R multicast(m) and R deliver(m). R multicast(m) allows a process to send a message m

to the processes of a set of destination groups, designated by m:dest. R deliver(m) allows

a process to deliver the message m sent by the invocation of R multicast(m). Total order

multicast is also implemented by two primitives, TO multicast(m) and TO deliver(m),

that correspond, respectively, to R multicast(m) and R deliver(m). When a process ex-

ecutes TO multicast(m) (or R multicast(m)) we say that it \TO-multicasts" m (or \R-

multicasts" m). When a process executes TO deliver(m) (or R deliver(m)) we say that it

\TO-delivers" m (or \R-delivers" m).

The semantics of reliable multicast primitives is de�ned by the following three prop-

erties1 [11]:

� Uniform Validity. If a process p R-delivers m, then some process has R-multicast

m and p belongs to a group g such that g 2 m:dest. This property expresses there

are no spurious messages.

1The process that is mentioned in an uniform property can crash later, but until it (possibly) crashes

it is a priori considered as being potentially correct. Conversely, a non-uniform property concerns only

correct processes.

� Uniform Integrity. A process R-delivers a message m at most once. This property

expresses that there is no message duplication.

� Termination. If (1) a correct process R-multicasts m, or if (2) a process R-delivers

m, then all correct processes that belong to a group of m:dest R-deliver m. This

property de�nes that the only case in which a multicast can not terminate is when

the sender process crashes during its invocation of R multicast(m), and none of the

destinations has delivered the message.

The semantics of total order multicast is de�ned by the before mentioned Uniform

Validity, Uniform Integrity, and Termination properties, additioned to the following order

property:

� Global Total Order. Let \<" be the relation on messages de�ned in the following

way: if a process TO-delivers m1 before m2, then m1 < m2. The relation \<" is

acyclic. This property expresses that the set of delivered messages can be totally

ordered (by doing a topological sort of \<") in a way consistent with the message

delivery order at each process.

2.3 Consensus

Informally, in the Consensus problem a set of processes can propose (possibly distinct)

values, and subsequently, decide on some value v that is some of the proposed values.

Moreover, all correct processes eventually decide some value, and no two processes decide

on di�erent values. The proposition of a value v to a consensus execution is done by the

primitive Propose(v), and a v consensus decision value is obtained calling Decide(v).

It has been demonstrated by Fischer, Lynch and Paterson [5] that the Consensus

problem has no deterministic solution in asynchronous distributed systems that are sub-

ject to even one process crash failure. This impossibility result is related to the non

accurate distinction between crashed and slow processes in asynchronous systems. How-

ever, if each process of a group can be provided with suÆciently complete and accurate

process failure information, one can build a protocol solving Consensus on such systems.

Chandra and Toueg showed in [3] that Consensus is solved if: (1) every correct process

in the system is able to eventually (and permanently) suspect every crashed process (a

liveness property), and also if (2) after some time, a correct process is never suspected

by any process (a safety property).

In the notation introduced in [3], these properties are held by \unreliable" failure

detectors of class 3S (or \Eventually Strong" failure detectors). So, in order to be

able to use a consensus protocol, we assume that each process is provided with a failure

detector of class 3S.

3 Implementation of a Total Order Multicast

This section describes an implementation of the TO multicast(m) and TO deliver(m) prim-

itives, namely, the protocol proposed in [9]. Hereafter, this protocol will be cited within

the text as TOM (for \Total Order Multicast"). The TOM protocol is based on three

underlying services: a primitive solving the Consensus problem [5], a reliable multicast

implementing the properties de�ned in subsection 2.2, and unreliable failure detectors of

class 3S [3].

3.1 Overview of the protocol

We outline here the structure of the TOM protocol. Protocol details and a correctness

proof of it can be found in [9].

The global total order property of the TOM protocol is provided by the association of

a timestamp with each message and by delivering messages according to the order de�ned

by their timestamps. A timestamp is a pair (clock value, group identity). The timestamp

associated with a message m is denoted m:ts. The clock values of timestamps are values

of a group clock that equips each process, and that is updated both upon the reception

of a TO-multicast message and when some message gets its (de�nitive) timestamp. The

group clock of a process pi is implemented by a variable clocki, initially set to 0.

A message m is TO-multicast to groups of servers by the means of an invocation of the

R multicast(m) primitive, that implements the reliable delivery of m to the destination

groups. Thanks to the reliability assumption on the communication channels, this can

be done by the following straightforward protocol:

� R multicast(m) is executed by sending m to all processes in groups of m:dest.

� When a process receives m the �rst time, it forwards it to all other processes in

groups gx 2 m:dest, and only then R-delivers m. Otherwise, m is ignored.

Now, let m be a message that has been TO-multicast to a set of groups, say gx and gy,

that is m:dest = fgx; gyg. Suppose m was R-delivered and then stored in the reception

queue of a process pi 2 gx of some group gx 2 m:dest. This starts the computation of the

TO-delivery of m at pi. In order to obtain a global total ordered delivery, the protocol

proceeds in four consecutive steps.

The �gure 1 illustrates the execution steps. Arrows represent the ow of time at

a sender process and recipient processes, as well as the messages that are exchanged.

Squares represent an execution of a consensus protocol.

Step 1 (Timestamping consensus). Each group gx 2 m:dest de�nes a timestamp

for m (denoted m:tsx). This timestamp is gx's proposal to be the de�nitive timestamp

for m. To obtain a coherent timestamp proposal, in the scope of group gx, it is used

Decide(k0;m)
m:tsx (k0; x)

R multicast(m)

gx

gy

m

pi
pj

pk
pl

m

m

m:tsx

Reliable delivery

Propose(k0;�)

Step 3Step 2Step 1 Step 4

m:ts max(
Propose(k0;�) m:tsx;m:tsy)

clocki;m:ts)

Decide(k0;m)
clocki max(

m
m:tsy

Figure 1: The execution of a total ordered multicast of a message m to two groups of

processes.

a k-numbered execution of a consensus2. In a process pi 2 gx, the group clock clocki

is incremented by one and then k assumes its present value. A consensus execution is

started by a process every time some message is R-delivered to the process and stored in

the local reception queue. The oldest message in the queue, say m0, is the proposed value

for that kth execution. When the message m becomes the decision of some k0th consensus,

the number k0 becomes the agreed clock value of m in group gx (m:tsx).

Step 2. Each group of m:dest proposes its timestamp for m to the other groups of

m:dest. This is done by sending m:tsx to all processes of groups in m:dest. Then

each group computes the greatest timestamp proposed for m. Let m:ts be this greatest

timestamp: it is the de�nitive timestamp associated with m (by construction, it is the

same for all groups).

Step 3 (Resynchronization consensus). After the de�nition of m's de�nitive times-

tamp, the group clock has to be updated with a value greater than or equal to the clock

value of m:ts to ensure progression of group clock and the delivery of messages, even if

there is no more messages exchanged. Moreover, the group clock has to be updated by

any process within the group in a consistent manner. To accomplish this, for each mes-

sage m0 that has a de�nitive timestamp, it is executed a second k-numbered consensus, k

also being the present value of the group clock and m0 being the proposed value. When

a message with a de�nitive timestamp, say our message m, becomes the decision value

of a k0th consensus execution, the value of the group clock is set with the greatest value

among the present group clock and the clock value of m:ts.

2As suggested in [3], a k-numbered consensus execution is easily obtained by adding a parameter k

(that assumes a counter value) to the consensus primitives, and then tagging the consensus messages

with k.

Step 4. Finally, the process throws m from the reception queue and TO-delivers it

when m:ts is the lowest timestamp among all the timestamped messages in the queue

(be these timestamps proposals or de�nitive timestamps).

We note that two sequential consensus executions are then necessary for the delivery

of a message, a �rst timestamping consensus and then a group clock resynchronization

consensus. As we will see in section 4, this represents a performance limitation that

can however be circumvented when a higher message throughput is expected from the

protocol.

3.2 Related work

There are other protocols implementing TO multicast(m) and TO deliver(m) primitives

in asynchronous systems. Rodrigues et al. propose a SCALATOM (for \SCALable

ATOMic multicast) protocol in [16]. It also associates messages with timestamps, that

are however calculated di�erently. Processes exchange timestamps proposals and de�ne

a �nal timestamp with a consensus execution that involves all processes belonging to

destination groups of the message. Before the total order delivery of the message, the

history of processes are also exchanged in the scope of each group. This will allow a

process to safely deliver a message respecting global total order.

We can also use an atomic broadcast primitive, as the one in [3] to implement

TO multicast(m) and TO deliver(m). An atomic broadcast also ensures reliable and

total ordered delivery of messages, but messages are always addressed to all processes

that compose the distributed system. By considering that the processes of the distribu-

ted system compose a unique group of processes, the atomic broadcast allows to build a

global total order over this group. A total order multicast is than obtained by the atomic

broadcast of any message to that �ctitious group, and by delivering messages exclusively

to processes belonging to actual destination groups. In fact, this corresponds to a \non

minimal" protocol, that does not respect the Minimality property de�ned in [10].

3.3 Complexity comparisons

We compare in the following the complexity in number of messages and in number of

communication steps of the TOM, the SCALATOM and the non-minimal protocols.

Let G be the number of groups in the distributed system. Let d be the number of

destination groups of a message that is TO-multicast (1 < d � G), and n be number of

processes of any group. Consider protocol executions without failure nor failure suspicion.

The sender does not belong to any destination group.

The complexity of the TOM protocol is the overall complexity of a reliable multicast

plus the complexity of the three initial steps described above (the fourth step does not

require communication).

Complexity of a reliable multicast. The simple protocol sketched in subsection 3.1

costs d2:n2 messages and one communication step.

Complexity of step 1. It is the cost of a consensus protocol execution. Several

consensus protocols have been proposed in the literature. We consider two protocols, the

protocol due to Chandra and Toueg [3], denoted here CT, and the one from Hur�n and

Raynal [13], denoted HR. The CT protocol spends n(n� 1)+3(n� 1) messages and four

communication steps. HR costs 2n(n� 1) messages and two communication steps.

Complexity of step 2. It is the cost of the exchange of timestamps proposals between

processes in destination groups of m: d(d� 1)n2 messages and one communication step.

Complexity of step 3. It is the cost of a consensus protocol, and thus, the same

complexity as step 1.

The �rst line in table 1 summarizes the total complexity of TOM, with the CT and

HR consensus protocols. The complexities of both the SCALATOM and the non minimal

protocols are shown in the subsequent lines of table 1. We note that both SCALATOM

and the non minimal protocols also rely on reliable multicast and consensus primitives.

A detailed deduction of the complexity of the consensus protocols and of the total order

multicast protocols mentioned here can be found in [7].

Protocol CT consensus HR consensus

Number of Number of Number of Number of

messages comm. steps messages comm. steps

TOM 2d2:n2 + d:n2 + 4d:n� 6d 10 2d2:n2 + 3d:n2 � 4d:n 6

SCALATOM 3d2:n2 + d:n2 � 3 7 4d2:n2 + d:n2 � 4d:n 5

Non minimal 2:G2:n2 + 2:G:n� 3 5 3:G2:n2 � 2:G:n 3

Table 1: Comparisons between TOM, SCALATOM and the non minimal protocols, in

terms of the number of messages and communication steps, considering the use of CT

and HR consensus algorithms.

In opposition to the non minimal atomic multicast implementation, both TOM and

SCALATOM are genuine atomic multicast protocols [10]. Accordingly, the complexities

of TOM and SCALATOM are of O(d2), whereas the non minimal protocol is O(G2).

When the distributed system is structured into non-intersecting groups and messages

frequently only address some of them, genuine implementations become more eÆcient

than non minimal ones. If we assume G = 10 we note that:

� When d < 10, TOM with the CT consensus algorithm requires less messages than

the non minimal protocol.

� When the HR consensus is used TOM always outperforms the non minimal protocol.

� When d � 8 SCALATOM is better than the non minimal protocol, no matter the

CT or the HR consensus is used.

The O(d2) complexity of TOM is due to the reliable multicast and to the exchange

of timestamps proposals. For SCALATOM, the O(d2) complexity is due to the reliable

multicast, to the exchange of timestamps proposals, and to the consensus protocol. The

O(d2) cost of consensus in SCALATOM, in contrast to O(n2) consensus of TOM, makes

SCALATOM more complex than TOM for all messages addressed to more than one

group. In fact, both protocols di�er in that only TOM respects a Locality property [9]

that limits consensus executions to one process group.

With respect to the number of communication steps, the TOM algorithm reveals a

worst behavior than SCALATOM. This is clearly due to the two consensus executions per

message required by the former protocol. But this measure hides the fact that consensus

executions in SCALATOMmay expend more messages than in TOM when larger numbers

of groups are addressed. This is particularly true when, additionally, multicast is build

on top of point-to-point communication services.

3.4 The prototype

We have implemented a prototype of a group communication service based on the TOM

algorithm outlined in subsection 3.1. The prototype also includes the required underlying

services, providing a C++ library with the following components:

� A reliable communication service that implements group con�guration primitives,

the R multicast(m) and R deliver(m) primitives, and a reliable send primitive. This

service was built on top of a stream socket layer (TCP).

� A failure detection service that provides each process with a list of processes sus-

pected to be crashed. Failure detection is implemented with hints of the socket

layer about interrupted TCP connections [15].

� A consensus primitive based on the HR [13] protocol. The HR protocol was adopted

due to its lower (or at worst equal) cost in communication steps, when compared

to other contemporary consensus protocols.

� The TO multicast(m) and TO deliver(m) primitives.

This implementation intended mainly to be a basis for experimentations with the

TOM protocol. As it will be shown in the next section, we were interested in the analysis

of the original protocol, sketched in this paper, as well as in the performances obtained

after some optimizations on the use of consensus. To obtain an absolute performance of

TOM, other optimizations should be envisaged. The use of multi-point communications

instead of point-to-point TCP is one of them. To render unto raw multicast services

(IP-multicast) the reliability features required by TOM would however have demanded

a considerable additional implementation e�ort. Therefore, we decided to implement

reliable communication channels with the help of TCP connections. This made easier

the construction both of the reliable multicast primitives and of the failure detection

mechanism. We note however that more eÆcient reliable multicast protocols have been

studied and implemented elsewhere (e.g. [6, 14, 1]).

4 Performance of the protocol

The performance �gures presented in this section were obtained by running the imple-

mented TOM protocol on a distributed environment composed of nine Sun workstations

(Sparc-5, Ultra-1 and Ultra-30) under the Solaris operating system, interconnected by a

10/100 Mbps Ethernet network. This measures allowed us to identify the bottlenecks in

the protocols used in our communication architecture. We run a large set of experiments

and we will discuss here some important results related to the TOM protocol, in failure

free scenarios as well as in the presence of process crashes.

4.1 Failure free executions

Figure 2 shows the response of the protocol in terms of the number of TO-delivered

messages per second, for di�erent TO multicast(m) invocation rates, in protocol execu-

tions without process failures. This delivery time is computed after a stream of 10,000

TO multicast(m) invocations. Each TO multicast(m) invocation addresses 3 process

groups, each of them composed by 3 processes. A given invocation rate is obtained

by de�ning a delay time between any two consecutive invocations of TO multicast(m).

Messages have lengths of 10 bytes, 500 bytes or 1,000 bytes.

The three curves in the lower part of �gure 2 illustrate the behavior of the TOM pro-

tocol sketched in subsection 3.1. As it was described there, TOM requires two consensus

executions before a message is allowed to be TO-delivered, the timestamping consensus

and the group clock resynchronization consensus. These curves highlight the rapid sat-

uration of the message delivery rate as the TO multicast(m) invocation rate increases.

This happens as soon as the time delay between two TO multicast(m) invocations is

smaller than the time required to TO-deliver a message. Even if there are several mes-

0

10

20

30

40

50

60

70

80

90

100

0 5 10 20 50 75 100

TO-multicast rate (msg=s)

Total order multicast to 3 groups

Message

delivery rate

(msg=s)

10 bytes, multi-message consensus

3
3
3

3

3

3

3

3

3

500 bytes, multi-message consensus

+
+

+

+

+

+ + +

+
1000 bytes, multi-message consensus

2
2
2

2

2 2 2 2

2

10 bytes

�

�

�

�
�

� � �

�

500 bytes

4

4

4
4 4 4 4 4

4

1000 bytes

?
?

? ? ? ? ? ?

?

Figure 2: Total ordered message delivery rate (msg=s) as a function of the

TO multicast(m) invocation rate (msg=s).

sages in the local reception queue waiting to be treated by the TOM protocol, each of

them is proposed in two sequential consensus executions. Consequently, the consensus

executions acts in this case as a bottleneck before the �nal delivery of messages.

In order reduce this problem, consensus executions should propose and decide sets

of messages, rather than only one message. Accordingly, when a consensus decides on a

set of messages, all messages not yet timestamped get simultaneously their timestamps.

Moreover, all decided messages already associated with a timestamp can contribute to

the resynchronization of the group clock. With this modi�cation, TOM is able, in some

executions, to timestamp several messages and correctly re-synchronize group clocks after

only one consensus execution. The modi�ed protocol is detailed in [9, 7].

The three curves in the higher part of the �gure 2 show the gains in terms of the

message delivery rates provided by the optimization of the consensus use. The maxi-

mum message throughput of the protocol increased 2.7 to 5.6 times, with longer (1,000

bytes) and shorter (10 bytes) messages respectively. With longer messages, the satura-

tion of the message delivery rate occurs after 32 messages per second invocation rate,

whereas without a multi-message consensus, this happens around 12 messages per sec-

ond. With smaller messages, no saturation at all occurred before the maximum emission

rate that could be produced with our implementation (by setting the delay time between

TO multicast(m) invocations to zero). In fact, as the rate messages are R-delivered to

the TOM protocol increases, the consensus protocol tends to decide on a greater set of

messages. Accordingly, the number of consensus executions in the overall run decreases,

and TOM manages better to respond to the TO multicast(m) rate.

Table 2 presents the mean times for the delivery of messages with multi-message

consensus when 1, 2 and 3 groups, with 3 processes each, are addressed by messages with

di�erent lengths. This table was obtained by experiments on top of Ultra-1 and Ultra-30

Sun workstations.

Message

length

1 group 2 groups 3 groups

10 bytes 2.4 ms 4.5 ms 5.2 ms

500 bytes 2.4 ms 8.6 ms 10.4 ms

1,000 bytes 3.0 ms 13.9 ms 16.0 ms

Table 2: Mean message delivery times (in milliseconds) of the TOM protocol.

4.2 Executions with failures

To verify the impact of failures in the TOM protocol, we also measured the message

delivery rate after introducing process crashes within the protocol execution.

The HR consensus protocol we adopted in our prototype is based on a rotating coor-

dinator scheme [3]. The actual coordinator process is responsible for the determination

of a consistent decision value. For this, a consensus round is executed and, when no

failure suspicion occur, a decision is obtained in this round. When the coordinator is

suspected by other processes to be crashed, these processes chose deterministically3 an-

other coordinator and then they start another consensus computation round. As new

coordinator processes are suspected to be crashed, successive rounds are executed before

some decision is taken. Consequently, the duration of a consensus execution increases

with failures of coordinator processes.

Figure 3 compares the message delivery rate of the TOM protocol without process

crashes and considering one process crash per group. The curve with no failures corre-

sponds to the previously discussed scenario (�gure 2), where some process TO-multicasts

500 bytes long messages to 3 process groups. In a second curve, we forced a group coor-

dinator crash just before any TO multicast(m) invocation. This causes at least one more

execution round within each consensus execution.

The curves in �gure 3 reveal an interesting behavior of TOM during such a failure

scenario. As any consensus takes more time to decide a value in the presence of a

coordinator failure, more R-delivered messages are accumulated in the reception queues,

before they become the proposed value of a next consensus. Thus, the consensus protocol

tends to propose and decide on greater sets of messages and less consensus executions are

required to the delivery of the TO-multicast messages. This also helps TOM to follow

3The choice of the new coordinator is based on globally well known values, as the number of processes

in the group and the process id's.

0

10

20

30

40

50

60

70

80

0 5 10 20 50 75 100

TO-multicast rate (msg=s)

Total order multicast to 3 groups, messages with 500 bytes

Message

delivery rate

(msg=s)

with process crashes

3

3
3

3

3

3

3

3
3

without process crashes

+
+

+

+

+

+ + +

+

Figure 3: Total ordered message delivery rate (msg=s) as a function of the

TO multicast(m) invocation rate (msg=s), considering runs without process crashes and

with one process crash per group.

higher messages throughput, what is represented in �gure 3 by a smoother saturation of

the delivery rate.

5 Concluding remarks

We presented here a prototype implementing a total order multicast primitive. Our

implementation aimed mainly the study of the costs of the underlying consensus primitive.

The use of consensus protocols able to handle sets of messages as proposed and decided

values, allowed us to enhance the average message throughput up to 5.6 times, in relation

to the initial protocol, based on single message consensus protocol. Additionally, we noted

that failures do not necessary represent a bottleneck to the delivery of messages. The

accumulation of messages in the protocol during higher message multicast rates, can

reduce the number of consensus executions, and in some cases, enhance message delivery

rates.

Our prototype does not present an optimal performance, that could be envisaged by

using better reliable multicast protocols. Protocols that add reliability to raw multicast

primitives should be useful in this case. However, the results give interesting perspectives

with respect to applications of our total order multicast.

Recent research show how transaction systems on replicated data can bene�t from

reliable and total ordered multicast in terms of safety properties, as one-copy behavior of

replicas, as well as liveness properties, as deadlock avoidance, reduction of the number of

aborted transactions and simpli�cation of non-blocking distributed atomic commitment

(e.g. [8, 12]). It is important to note that these problems are very diÆcult (when not

impossible) to solve in asynchronous distributed systems. Total ordered multicasts for

asynchronous systems hide a great part of this complexity from application programmers.

References

[1] Marinho Barcellos, Andr�e Detsch, Guilherme B. Bedin, and Hisham H. Muhammad. Ef-

�cient TCP-like multicast support for group communication systems. In Proceedings of

the IX Brazilian Symposium on Fault-Tolerant Computing (SCTF01), Florian�opolis-SC,

Brazil, March 2001.

[2] Kenneth Birman, Andr�e Schiper, and Pat Stephenson. Ligthweight causal and atomic

group multicast. ACM Transactions on Computer Systems, 9(3):272{314, August 1991.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(1):225{267, March 1996. (a preliminary version appeared in Proc.

of the 10th ACM Symposium on Principles of Distributed Computing, pp. 325-340, 1991).

[4] P. Ezhilchelvan, R. Macêdo, and S. K. Shrivastava. Newtop: a fault tolerant group commu-

nication protocol. In Proceedings of the 15th IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 296{306, Vancouver, May 1995.

[5] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM, 32(2):374{382, April 1985.

[6] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A reliable multicast frame-

work for light-weight sessions and application level framing. In IEEE/ACM Transactions

on Networking, volume 5, pages 784{803, December 1997.

[7] Udo Fritzke Jr. Les syst�emes transactionnels r�epartis pour donn�ees dupliqu�ees fond�es sur

la communication de groupes. PhD thesis, Universit�e de Rennes 1, January 2001.

[8] Udo Fritzke Jr. and Philippe Ingels. Transactions on partially replicated data based on

reliable and atomic multicasts. In Proceedings of the 21st IEEE International Conference

on Distributed Computing Systems (ICDCS-21), Phoenix, Arizona, USA, April 2001.

[9] Udo Fritzke Jr., Philippe Ingels, Achour Mostefaoui, and Michel Raynal. Consensus-based

fault-tolerant total order multicast. IEEE Transactions on Parallel and Distributed Sys-

tems, 12(2), February 2001.

[10] Rachid Guerraoui and Andr�e Schiper. Genuine atomic multicast. In Proceedings of the

International Workshop on Distributed Algorithms (WDAG'97), LNCS 1320, pages 141{

154, Saarbr�ucken, Germany, September 1997.

[11] Vassos Hadzilacos and Sam Toueg. Distributed Systems, Second Edition, chapter 5: Fault-

Tolerant Broadcasts and Related Problems, pages 97{145. ACM Press New York and

Addison-Wesley, 1993.

[12] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. Using multicast to reduce

deadlock in replicated databases. In Proceedings of the 19th IEEE Symposium on Reliable

Distributed Systems, Nurnberg, Germany, October 2000. IEEE.

[13] Michel Hur�n and Michel Raynal. A simple and fast asynchronous consensus protocol

based on a weak failure detector. Distributed Computing, 12:209{223, 1999.

[14] S. K. Kasera, G. Hj�almt�ysson, D. F. Towsley, and J. F. Kurose. Scalable reliable multicast

using multiple multicast channels. In IEEE/ACM Transactions on Networking, volume 8,

pages 294{310, June 2000.

[15] Nuno Neves and W. Kent Fuchs. Fault detection using hints from the socket layer. In Pro-

ceedigns of the 16th Symposium on Reliable Distributed Systems (SRDS'97). IEEE Com-

puter Society, October 1997. Durham, North Carolina.

[16] Lu��s Rodrigues, Rachid Guerraoui, and Andr�e Schiper. Scalable atomic multicast. Tech-

nical Report DI-FCUL TR-98-2, Departamento de Inform�atica, Faculdade de Ciências de

Lisboa, Lisboa, Portugal, January 1998.

[17] I. Stanoi, D. Agrawal, and A. El Abbadi. Using broadcast primitives in replicated

databases. In Proceedings of the 18th IEEE International Conference on Distributed Com-

puting Systems (ICDCS), pages 148{155, Amsterdam, The Netherlands, May 1998.

