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ABSTRACT 

In the mobile wireless communication domain, different systems apply common 
solutions to similar functional and architectural design problems. The recognition of 
these commonalities is a starting point towards ironing out differences and possibly 
towards finding better ways to interwork different systems and to develop new ones. 
There is therefore a need for recognizing and reusing these commonalities. The 
concept of pattern, which is used in the software community to describe 
programming solutions to specific recurring problems, can be adopted for this 
purpose. This paper proposes an approach for reuse and validation of a set of 
solutions for mobility and radio resource management functions, solutions that have 
been identified as common among a number of second and third generation systems. 
The focus is on the early development stages. A visual technique called Use Case 
Maps (UCMs) is applied to graphically specify reusable requirements.  LOTOS 
methods are used for validation.  
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1 INTRODUCTION 

Different mobile systems provide telecommunication services that enable users to exchange 
information using wireless technologies [7]. Well-known are the second generation systems, 
which are based on standards such as the Global System for Mobile Communications (GSM) 
[23] or the American National Standard Institute 41 (ANSI-41) [6]. Although these standards 
have substantial differences, they adopt similar solutions for dealing with common mobility, 
communication and radio resources management problems associated with similar 
architectural elements [15].  

The investigation of these common solutions leads us to the concept of pattern that is often 
used by the software community to describe programming solutions to specific recurring 
problems [3]. When the pattern concept is applied in the mobile system domain, it allows 
designers to recognize commonalities among legacy systems and to reuse good solutions 
independent of implementation. Third generation systems, such as Universal Mobile 
Telecommunication System (UMTS) and IMT-2000, have been already reusing solutions of 
second generation systems, such as GSM and ANSI-41. 

In [3], we presented the first results of this investigation on a pattern language that captures 
and informally describes common solutions for functional and architectural problems related 
to mobility management functions.  

In this paper, we introduce an approach for reuse and validation of solutions at the early 



stages of the development and evolution of mobile systems. We apply a technique called Use 
Case Maps (UCMs) [11] to graphically specify scenarios that illustrate each solution and 
potential relationships among solutions. Solutions are also suitable for being specified with 
the formal description language LOTOS [27] and validated with its tools. This technique 
provides confidence in the correctness of these solutions.  

The next section gives a summary of the Use Case Maps and LOTOS notations, followed by 
an overview of common solutions for mobile systems in Section 3. The approach for reuse 
and validation with Use Case Maps and LOTOS is presented in Section 4. Finally, our 
contributions are summarized in Section 5.  

2 NOTATIONS 

USE CASE MAPS 

Use Case Map (UCM) is a visual notation that describes scenarios in terms of causal 
relationships between responsibilities. Due to its informality, the UCM notation is suitable for 
the early stages of the development process, when the requirements are described at a high 
level of abstraction and designers are considering the overall behavior of a system [22].  

The UCM notation is suitable for this purpose because of the following characteristics: 
simplicity (it is easy to learn and to understand), modularity (it helps the decomposition of 
large systems in small units), and flexibility (it simplifies mapping the architecture to the 
functional behaviour that may be described independently). We also choose UCMs for their 
ability to express requirements and analysis models in such a way that the developer can have 
a bird-eye view of the whole mobile system behavior and structure. This helps to identify the 
design issues from the beginning. 

At the requirements stage, unbound UCMs, which combine paths and responsibilities without 
defining system components, are used. At the analysis and design stages, bound maps 
describe how the architectural structure and the system behavior are related.  

Section 3 introduces details of the UCM notation when common solution scenarios are 
explained. Note there the salient elements of the notation: start points denoted by filled 
circles, abstract responsibilities denoted by crosses, choice points denoted by forks in a path 
(OR forks), end points denoted by bars, and UCM static stubs represented by diamonds. 
Abstract responsibilities can be refined in many ways at further stages of design.  Stubs 
identify places where details are delayed to sub-maps called plug-ins. For a more detailed 
description of the UCM notation, the reader may refer to [11] and for applications in the 
mobile wireless communication domain to [1][4][5]. 

Although UCMs are supported by a drawing tool (the UCM Navigator [24][30]), due to their 
informality, validation techniques are not possible with this notation. Therefore, LOTOS is 
introduced to provide validation support at the requirements and analysis stages. 

LOTOS 

LOTOS specifications represent a formal system prototype by describing temporal relations 
that correspond to the externally observable behaviors of a system. The LOTOS notation has 
formally defined syntax, static semantics, and dynamic semantics, and the language is a ISO 
standard  [27]. 

A LOTOS specification is composed of a hierarchy of processes that interact with the 
environment through gates or perform internal unobservable actions. LOTOS operators such 



as action prefix, choice, disable, enable, and parallel composition are used to combine 
processes, actions, and behavior expressions to form other behavior expressions. The notation 
combines concepts present in pre-existing notations such as CSP [16] and CCS [23] for the 
control part of a specification. CSP defines the notation for the offer and acceptance of values 
between processes that are denoted by, respectively, “!” and “?” as in “g !dialTone 
?user_ID: integer” where the network offers the dialTone message and receives the dialed 
number at gate “g” to a specific “user_ID.” However, LOTOS formal semantics is mainly 
based on CCS.  

Algebraic abstract data types (ADTs), represented in an equational formalism, are also part of 
LOTOS. 

We combine the informality of UCMs with the formality of LOTOS. The translation of 
UCMs into LOTOS has been investigated in the literature [1][5] and its feasibility has been 
demonstrated due to the ability of LOTOS to express behaviors at several levels of 
abstractions. The LOTOS features of process instantiation and parallel composition are used 
to describe pattern solutions, which are initially specified with UCMs, at the requirements 
and analysis stages. LOTOS specifications integrate behavior and architecture in a single 
executable prototype that can be validated against the requirements represented by UCMs. 
The UCM stub notation (see an example in Section 3) expresses modularity that is translated 
into LOTOS as a result of the stepwise decomposition of processes. Synchronization between 
processes, which correspond to the architectural elements and their functional behaviors, is 
essential to describe mobile systems. 

The language is executable (if certain conventions are respected) and supported by tools that 
offer ways of checking completeness and consistency [9][28]. These tools are available to  
provide validation and verification methods that allow the detection of errors, inconsistencies 
and incompleteness at early development stages. LO tos LA boratory (LOLA) is a set of tools 
developed by the Department of Telecommunication Engineering of the University of Madrid 
[28], that includes: a step-by-step executor, a tool for obtaining the labeled transition system, 
and a tool for testing. These tools were used in our work. 

There is a new version of LOTOS called Enhanced LOTOS (E-LOTOS) under development 
[17]. E-LOTOS brings several advantages in relation to LOTOS, such as: ADTs are much 
easier to use; exception-handling facilities are included; and explicit control structures, a 
module construct, and real-time behavior are incorporated. However, E-LOTOS is still a draft 
proposal and only compilation tools are available. For these reasons, we chose the 
standardized LOTOS to validate our work. 

Further details about the LOTOS notation and the translation process are given in Section 4. 

3 COMMON SOLUTIONS FOR MOBILE SYSTEMS  

This work investigates European and North American mobile systems. The GSM 900 is a 
European-based technology that is the foundation for the digital cellular system 1800 (GSM-
1800) [26] and the Personal Communication System 1900 (PCS-1900) [7]. The D-AMPS 
(also known as Interim Standard 54-B) [7], which is a North American technology, defines a 
hybrid air interface that allows mobile terminals to operate in a dual mode fashion (analog 
and digital). On the network side, the American National Standards Institute - 41 (ANSI-41) 
[1][6][14] provides registration, roaming, call features, and other mobile application protocol 
features to support the D-AMPS air interface. We also consider the Wireless mobile 
Asynchronous Transfer Mode (WmATM) architecture [7][13], which is under development 
for high-speed local area networks (LANs). 



These systems are incompatible due to differences of implementation such as: interfaces 
among components, cryptography algorithms, and types of handoff [15]. However, common 
functional behaviors and architectural elements can be identified among mobility, 
communication and radio resource management functions. 

The main motivation for the identification of commonalities among these systems arises from 
the need of reusing good solutions in the development and evolution of mobile systems. The 
recognition of commonalities also leads to a clear identification of the differences among 
these systems and to a better way to make them interwork. In addition, the representation of 
the relationships between these solutions show how these commonalities work together (see 
Figure 2).  

In our work, we concentrate on commonalities related to mobility and radio resource 
management functions as shown in the next sub-sections. These commonalities are general 
and abstract enough to allow freedom with respect to future implementation decisions. A 
designer chooses solutions that best suit the system needs and adds the specific behavior and 
structure of the system.  

COMMON ARCHITECTURAL ELEMENTS 

To help readers and designers visualize a possible environment where the identified common 
solutions can be applied, Figure 1 depicts a simplified mobile system architecture. The 
following common architectural elements are identified among the previously mentioned 
second generation systems: mobile terminal (represented as a car), base station controller, 
security database, home database, mobile switching center, and visitor database. At the 
implementation stage (out of our scope), these elements, which represent network entities 
[2][29], can be combined in one or more physical entities.  

As shown in the figure, the environment is divided into cells. Each cell covers a geographical 
area with a base station transceiver that supports the radio resources related to the use of the 
allocated spectrum. A location area contains several cells and a mobile switching center, 
which is responsible for the communication between the mobile terminal and the network. 
The base station controller is responsible for a set of base station transceivers and the 
connection between them is through the radio access ports. Many mobile terminals share a 
base station transceiver. Databases such as security database, home database and visitor 
database are responsible for keeping information about mobile users’ location, identification, 
authentication keys, services, and equipment.  
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Figure 1. Common Architectural Elements
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In a typical mobile wireless environment, the network controls the provision of a dedicated 
channel to the mobile terminal over the radio interface. The main concern of the network is 
how to maintain this dedicated channel despite the wanderings of the users. A handoff 
function (also called handover in the literature) is responsible for this maintenance 
[7][14][15][23].  

Base station transceivers and base station controllers are important components of the 
handoff process; however, this work considers only the handoff that generates network traffic 
and involves different mobile switching centers (called inter-system handoff). At the upper 
layers, the inter-system handoff is managed by mobile terminals (MSs) and mobile switching 
centers (MSCs). Base stations act as complex transmission systems. This handoff also 
requires specialized signaling protocols between the current and the candidate mobile 
switching centers involved.  

COMMON FUNCTIONAL BEHAVIORS WITH UNBOUND UCMS 

Figure 2 presents the relationships between common functional behaviors that are identified 
among mobility and radio resource management functions of the mobile systems mentioned 
in the previous section. The UCM paths show how these commonalities work together and 
each static stub represents a common functional behavior. 

The stubs shown in Figure 2 encapsulate the following solutions for mobility and radio 
resource management problems: authentication (Auth stub), ciphering (Cipher stub), location 
registration (Location stub), temporary identification assignment  (TMUIAssign stub), 
handoff decision (HandoffDecision stub), inter-system handoff execution (Handoff stub), 
handoff failure actions (HandoffFailure stub), and releasing resources (RelResources stub).  

In Figure 2b, the following pre-condition associated with the SRRM start point triggers the 
common solution for radio resource management: the quality of the current radio link when a 
user is roaming is below threshold and a handoff measurement has been requested. The 
UCM flow from one stub to another represents potential sequences in which these common 
solutions can occur. The next stub in the sequence is chosen according to successful or 



unsuccessful outcomes during the execution of the previous stub (e.g., the inter-system 
handoff is performed after a handoff decision to change the current radio link). Each stub can 
be also applied individually (see common solutions represented by plug-ins in Figure 3 and 
Figure 4) in conformity with design decisions of different systems.  

The responsibilities in Figure 2a are activated along the path to decide whether the mobile 
station is, respectively, authenticated and registered at the current location area. Alternative 
sub-paths are generated after these decisions. 

Figure 3 illustrates scenarios for mobility management solutions with unbound UCMs. These 
maps are bound to the stubs presented in Figure 2a. More details about mobility management 
solutions can be found in [3], which textually describes them.  

The authentication solution prevents unauthorized or fraudulent access to cellular networks 
by mobile terminals illegally programmed with counterfeit identification and electronic serial 
number. The unbound map depicted in Figure3a is triggered when the network side or the 

mobile user side requests the authentication.   

A triggering event described in the SAuth start point (e.g., when a power-on event or a change 
of location area occurs) represents this request. After this, the result of an authentication 
operation performed by the mobile terminal is sent to the network (the “send Authentication 
Information” responsibility). Then, the “apply Authentication algorithm” responsibility 
performs the same authentication operation at the network side. Alternative paths (called Or-
forks) represent UCMs that can be split into two different paths. For instance, the “check 
Authentication result” responsibility generates successful or unsuccessful outcomes 
(respectively, E1Auth or E2

Auth end points) depending on the outcomes of the comparison 
between the respective results. In the case of denied authentication, the mobile user is 
notified. Otherwise, a successful authentication occurs and a resulting event is generated. 

The ciphering solution protects the privacy of the communication over an insecure wireless 
communication channel. As illustrated in Figure3b, this function is responsible for starting a 
ciphered communication over the air interface (ciphering and deciphering the data 
information). The “ciphering data” responsibility ciphers the data that is sent by the mobile 
terminal and the network deciphers it. The ciphering key, which is obtained by the “send 
ciphering key” responsibility, and the respective ciphering algorithm are used in the 
ciphering/deciphering procedure. This ciphering functional behavior starts when the network 
sends a ciphering mode request to a mobile terminal (SCipher start point). The change to the 
ciphering mode ends successfully ([Suc] path) after the network and the mobile terminal 
agree upon the ciphering/deciphering procedures (i.e., mobile terminal acknowledge the use 
of ciphering/deciphering). Otherwise, the map exits at the [Unsuc] path. 

The location registration solution keeps up to date information about a mobile user’s location 
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every time the user changes location area. Figure3c describes the Location Registration map 
that is triggered when the mobile user roams and needs to be registered in the current 
location area (SLoc start point). After getting the location information, the “check Location” 
responsibility generates different outcomes according to the following post-conditions: either 
the mobile user is visiting a new location area (both visitor and home databases are updated) 
or not (just the home database is updated). When the user is roaming, the “update Temporary 
user Profile” responsibility is an operation on the visitor database records. The “update home 
user Profile” responsibility is performed whether the user is roaming or not. Sub-paths 
labeled [Roaming], which means the user is visiting a location area , and [NotRoaming], 
which means the user is in her home location area, are joined to perform the location 
cancellation.  

The purpose of the location cancellation is to delete the user profile in the location area 
previously visited by the mobile terminal. The temporary profile is deleted from the previous 
visiting database (the “delete previous temporary user profile” responsibility in the figure). 
Unsuccessful outcomes are not shown in the figure but they can occur due to network or 
database failures.  

The Temporary identification solution ensures privacy of the subscriber’s identity when 
sending it on the radio path. The Temporary identification assignment map depicted in 
Figure3d is triggered when a mobile user powers on a mobile terminal or a mobile terminal 
changes location area (two different triggering events of the STempID start point). First, the 
mobile terminal sends its current temporary identification and the network assigns a new 
temporary identification (the “assign Temporary Identification” responsibility) and sends to 
the mobile terminal. Then, the “check the assigned Temporary Identification” responsibility 
checks whether the mobile terminal gets this temporary identification or not. This 
responsibility generates successful or unsuccessful outcomes (respectively, E1

TempID or 
E2

TempID end points) depending on different outcomes. If the confirmation is not received by 
the network, the operation is not successful ([Unsuc] path). Otherwise, the network completes 
this assignment successfully ([Suc] path). 

Radio resource management functions are performed by mobile systems when a dedicated 
radio communication channel has been assigned between the mobile terminal and the mobile 
switching center. Furthermore, they are applyed when the mobile user is roaming from one 
place to another. This possibility of changing cells (and consequently location area) is the 
major source of complexity for mobile networks [14][23]. Figure 4 illustrates the handoff 
decision and the inter-system handoff solutions with unbound UCMs. In this paper, the 
handoff failure actions and releasing resources solutions are not shown (respectively, 
HandoffFailure and RelResources stubs). 
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The handoff decision pattern solution controls the quality of the radio communication link 
between the mobile terminal and the network. The decision is taken according to 
measurements represented by the “take measurements” responsibility in Figure 4a. After this, 
a comparison is done (the “compare measurements” responsibility). The E1

Hdecision and 
E2

Hdecision end points represent the need of having a handoff or not. 

The inter-system handoff solution continuously guarantees communication service 
assessment for mobile users. Figure 4b starts with a handoff request triggering event (SHand 
start point). After this, a new channel is allocated. The mobile terminal tunes to the new 
channel. The new channel is verified to guarantee that the new link has better quality of 
transmission than the previous one. Alternative sub-paths labeled [Suc] and [Unsuc] are 
generated as a result of this action. In case of negative result, the resulting event of the E2

Hand 
end point triggers the HandoffFailure stub shown in Figure 2b. In case of positive result, the 
RelResources stub is triggered (see also Figure 2b).  

4 APPROACH FOR REUSE AND VALIDATION 

Requirement and analysis models are often used in the software engineering domain to 
describe systems at the early development stages [22]. The requirements capture step 
describes the system objectives as well as the user’s needs and encourages the thinking 
process in terms of generic behavior. The analysis and design steps comprise the static 
structure, the sequence of interactions that describe the problem to be solved in terms of 
entities (e.g., objects or functions), and the data transformations. 

On the other hand, the development process of telecommunication standards and services 
often comprises three major stages as illustrated in Figure 5 [2]. This three-stage 
methodology was first developed by ITU-T to describe services and protocols for ISDN. 
Subsequently, it has become of general use in the telecommunication area.  

Services are first described from the user’s point of view in prose form and with tables (stage 
1). After this, they are expressed with information flows (also known as sequence diagrams 
or Message Sequence Charts (MSCs) [21]) that represent the sequences of messages between 
the different architectural elements involved in the communication (stage 2). Finally, they are 
expressed with (informal) specifications of protocols and procedures (stage 3).  

This work introduces an approach to reuse and to validate commonalities when developing or 
maintaining mobile systems. The proposed approach combines UCMs and LOTOS notations 
at the requirements and analysis stages as shown in Figure 6. Unbound UCMs are applied at 
the requirements stage and bound maps at the analysis stage. These UCMs are translated into 
the LOTOS notation for the validation part.  

In addition, the proposed approach introduces commonalities, UCMs and LOTOS into the 
ITU-T three-stage methodology, as illustrated in Figure 6 (compare with Figure 5). UCMs 
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describe stage 1 documents (functional behaviors) and bridges the gap between stage 1 
functional behaviors and stage 2 sequence diagrams with the mapping of functional behaviors 
to architectural elements.  

Our approach follows the Specification-Validation Approach with LOTOS and Use Case 
Maps (SPEC-VALUE) presented in [1] for the validation part. SPEC-VALUE is a rigorous 
scenario-driven approach for the description and validation of complex system functionalities 
at the early development stages. UCMs capture functional requirements and, at the design 
stage, the UCM scenarios are translated into detailed LOTOS specifications that are validated 
with the help of tools. The validation testing approach introduced in SPEC-VALUE proposes 
the generation of test cases at the design stage from the information provided by the users’ 
requirements.  

In our case, the validation consists of functionality-based test cases generated in LOTOS 
starting before the design stage. These test cases are generated from the common solutions 
and from the system requirement model that also contains specific system behaviors. The 
LOTOS specification, which is a system prototype, is derived from the UCM requirements 
and analysis models. This specification is then validated against the test cases using the 
LOLA tool. The goal is to guarantee that the prototype is in conformance with the 
requirements before reaching the design stage. Similar to the SPEC-VALUE approach, there 
is no formal method for the generation of these test cases. 

Although not illustrated in the figure, different cycles are used to allow the system behavior 
increases with designer and user needs. Each development cycle brings additional details 
regarding new functional requirements as well as new system components (called 
variabilities in [12]). This incremental characteristic is useful when developing a large 
system. For instance, functionalities can be described at different development cycles, as 
follows: mobility management functions are described in the development cycle 1, followed 
by communication and radio resource management functions in the development cycle 2 and 
development cycle 3, respectively. Besides this, if any modifications are required after 
validating the prototype generated with LOTOS, it is possible to revisit the respective model 
for several iterations. In this case, the informal description as well as the requirement and 
analysis models may be revisited for several iterations.  
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The next sub-sections present details of the reuse and validation steps. 

REUSE WITH UCMS 

The first decisions regarding functional behaviors and architectural elements to be added to 
the system are taken at the requirements and analysis stages, respectively. The reuse is done 
at the requirement stage (ITU-T stage 1) where the required functionalities are extracted from 
the set of common solutions for mobility and radio resource management that we have 
identified among the chosen systems. 

As mentioned in Section 3, commonalities are graphically specified with UCMs in a general 
and abstract way to allow telecommunication designers to reuse them at stage 1. They offer a 
common development foundation to mobile systems’ designers. Since the focus is on the 
early stages, designers can adapt and make changes according to the system needs.  

Figure 6 illustrates the requirements and analysis stages with the reuse of common solutions 
and the generation of validation scenarios. The resulting models (requirements and analysis 
models) generated at these stages are also depicted in the figure. Plain gray arcs represent the 
reusability process. Functional behaviors and architectural elements are reused at the 
requirements and analysis stages, respectively. Black arcs express the capture of information 
from the requirements and requirements model to graphically specify unbound and bound 
UCMs. The derivation of the validation scenarios from the solutions described by unbound 
and bound UCMs is also part of the reusability process (see dashed gray arcs in the figure).  

In order to avoid ambiguities caused by the narrative documents and tables used in the ITU-T 
stage 1, UCMs are used to describe requirements (the requirements model shown in Figure 
6). At the beginning, when details about architectural elements (e.g., the network reference 
model shown in Figure 1) are not available, unbound UCMs are specified.   

Decisions regarding which system component is responsible for a specific action or event are 
taken during the analysis stage. The architectural elements come into play at this point and a 
network reference model is described with UCM components. The functional behavior 
(represented by the requirements model) is then mapped to the network reference model. 
Bound UCMs that constitute the analysis model are the result of this mapping. Detailed 
descriptions about what the system does are represented in terms of new stubs and plug-ins, 
responsibilities, which are refined with pre- and post-conditions, start points, which are 
refined with pre-conditions and triggering events, and end points, which are refined with 
post-conditions and resulting events. Figure 8 depicts the inter-system handoff plug-in with 
new responsibilities (compare with Figure 4b).  

VALIDATION WITH LOTOS 

Validation and verification techniques cannot be used directly with the UCM notation 
because of its informality. On the other hand, such techniques are available in LOTOS, and 
are supported by tools.  

LOTOS was used as the formal underlying model that supports UCMs. At the analysis stage, 
a LOTOS prototype is specified on the basis of the requirement and analysis models. To do 
this, construction guidelines (CG) are taken from the SPEC-VALUE approach [1]. At the 
design stage (not the focus of this paper), details about exchanged messages, parameters and 
data types are added.  

In this paper, the use of LOTOS, which starts in the analysis stage, reduces the semantic gap 



between the translation of UCM requirements and analysis models to LOTOS at the design 
stage. As a result, when the LOTOS specification is validated, several aspects of the UCM 
notation are also validated including: causal sequences of responsibilities, choice relations, 
enabling relations, disabling relations, join relations, and parallel relations. Our validation 
part focuses on the reuse of common solutions in the specifications.  

In order to specify systems and their validation test cases with LOTOS, the following 
mapping is done from the UCM notation to the LOTOS operators: 

• At the requirement stage, each plug-in is mapped to LOTOS processes as depicted in 
Figure 7. At the analysis stage, UCM components are mapped to LOTOS processes. 
Figure 8 illustrates part of the specification in UCMs and LOTOS, which constitute 
analysis models, to address the communication between the MSC and the HLR processes 
(respectively, mobile switching center and home database in Figure 1). When a UCM 
path crosses a component as shown in Figure 8, we use the LOTOS gates to represent an 
interaction with the environment or with other processes; 

• LOTOS process behavior corresponds to the causality sequence of responsibilities. The 
translation is straightforward at the requirement stage; however, the responsibilities for 
each UCM component are not always included in one single map when generating the 
analysis model. 

• the action prefix operator “;” used as in “a;B” means that an action on gate “a” precedes a 
behavior “B” This translates sequences of responsibilities as illustrated in Figure 7. 

• the choice operator “[]” used as in “B1[ ]B2” means that the process will behave as either 
“B1”  or “B2”. This translates choices among paths in the UCM represented by the OR-
Forks or by stub alternatives as shown in Figure 7. 

• the disable operator used as in “B1[>B2” means that at any time during the execution of  
“B1”, “B 2” can be triggered and terminate “B1”. This translates zigzag abort paths in the 
UCM (not shown in this paper). 

• the enable operator used as in “B1>>B2” means that “B2” can only be activated after the 
successful completion of  “B1”. This translates concatenation of maps as depicted in 
Figure 7. 
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• the guard operator used as in “[P]->B” means that “B” can only be performed if the 
predicate “P” is true. This translates conditions on choices of paths (OR-Forks) and solves 
non-determinism problems associated with choices (not shown in this paper). 

• the full synchronization parallelism operator used as in “B1||B2” means that “B1” and 
“B2” must synchronize in every action that they perform (see Figure 7); 

• the interleaving operator used as in “B1|||B2” means that “B1” and “B2” are performed in 
parallel without any synchronization between them; 

• the interleaving operator used as in “B1|[g1,g2, …, gn]|B2” means that “B1” and “B2” are 
performed in parallel with synchronization required on the gates g1,g2, …, gn. Figure 8 
shows the MSC and HLR synchronization through the gates hlr_to_msc and msc_to_hlr.  

The last three parallel composition operators translate situations where there are concurrent 
paths in the UCM (AND-Forks). LOTOS parallelism allows more than one instance to 
execute concurrently and for execution purposes, we limit the maximum number of instances 
using ADTs. 

It is also important to mention that UCM timeouts are described in LOTOS as explicit 
internal actions (messages) to be executed if no triggering event comes from the environment. 

Our validation purpose is to execute the specification against acceptance test cases that 
describe the pattern solutions (i.e., commonalities). Our intention is to assure that the 
common solution is well captured in the requirements and analysis models. In short, we 
validate the specification against the solutions to guarantee that these solutions are preserved 
in the specification with the addition of new behavior and structure (called variabilities in 
[12]). However, this kind of validation does not guarantee that the solution is reused properly 
in the specification that contains commonalities and variabilities. This case is validated with 
test cases that cover complete scenarios on the basis of the requirements and analysis models. 
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Figure 8. From bound UCMs to LOTOS 

behavior … 
(MSC [ms_to_msc, msc_to_hlr, hlr_to_msc …] (msc1) 
|[hlr_to_msc, msc_to_hlr]| 
HLR [msc_to_hlr, hlr_to_msc] (hlr1, initialHLRset1) … 
process  MSC [ms_to_msc, msc_to_hlr, hlr_to_msc …] … 
endproc 
process  HLR [msc_to_hlr, hlr_to_msc, …] … 
endproc  



Figure 9 depicts an example of validation test cases that are LOTOS processes derived from 
the common solutions. These test cases are composed with the LOTOS prototype to detect 
possible errors.  

The successful termination of a test case means that the termination event (e.g., success in the 
figure) has been reached. Unsuccessful test cases represent the case of not reaching the 
terminating event due to deadlocks or internal livelocks. One of the following results may be 
obtained with the LOLA tool: must pass, may pass, or reject. 

Must pass and may pass are considered successful results that guarantee a good level of 
confidence in the reuse of the solutions with the new behaviors, which are introduced in the 
specification. When a test case fails, the functionality, which has been tested, contains a 
logical error (reject result). As mentioned in [1], this functional behavior was incorrectly 
specified according to the UCMs or was incorrectly integrated with the others. 

5 CONCLUSION 

We have presented the concept of pattern solution, together with an approach for reuse and 
validation of pattern solutions for mobile systems at the requirements and analysis stages. 
These solutions become easily understood to novices and experts alike by means of graphical 
specification with UCMs. The validation test cases are generated in LOTOS from these 
UCMs. As mentioned earlier, the formal specification and validation with LOTOS provide 
confidence in the correctness of the reuse of these patterns. 

The common solutions for mobility and radio resource management functions were described 
in a general way, capable of different implementations. In practice, problems and their 
respective solutions were recognized by investigating different mobile systems and by 
capturing what they have in common. These commonalities were identified by abstracting 
from the solutions used in various systems, such as GSM and ANSI-41 based systems as well 
as WmATM systems, and looking for similarities.  

Whether designers are maintaining existing systems or building new ones, they can identify 
what makes their actual or future systems different based on the set of solutions that capture 
the common behaviors and architecture of legacy systems. Once one recognizes 
commonalities among existing systems, it is possible to iron out differences and enable them 
to interwork.  

The graphical specification of the requirement and analysis models with unbound and bound 
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Figure 9. Validation Test Cases from Handoff Common Solution 



UCMs, respectively, allows the designer to have an overview of how a typical mobile system 
works from the early stages of the development and maintenance processes. Unbound UCMs 
with their focus on causality and responsibilities without reference to the structure of 
components have proved to be very useful for early descriptions of service functionalities 
[1][4][5]. When the architectural structure is available, components can be easily added to the 
functional maps. In this case, bound UCMs are generated. 

This paper presents only some of the common solutions that can be identified and 
documented among mobile systems.  More commonalities related to architectural elements 
and other functionalities might be identified in the future. Furthermore, a generic framework 
can be generated to represent the relationships between the common solutions and to show 
how these commonalities work together. 

As future work, we aim to add the design model to our approach and to translate the 
validation results to the MSC notation [21]. MSCs allow us to represent clearly the results of 
the LOLA validation activities. Successful and unsuccessful MSC scenarios can be more 
readable and attractive than LOTOS traces. In addition, these MSCs can become stage 2 
documents, which are currently used by implementers to generate the protocols. In [5], we 
have shown how a simplified Wireless mobile ATM network (WmATM) can be validated 
using LOTOS [16] and how the validation results can be translated to the MSC notation. 
However, the reusability process was not applied to this WmATM example. 
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