
Reuse and Validation of Requirements for Mobile Systems
Rossana Andrade, Luigi Logrippo

Universidade Federal do Ceará, Departamento de Computação, Campus do Pici, Bloco 910
Fortaleza, Ceará, Brasil

rossana@ufc.br
School of Information Technology and Engineering, University of Ottawa, 150 Louis Pasteur,

MCD 310-B, Ottawa, Ontario, K1N 6N5, Canada
luigi@site.uottawa.ca

ABSTRACT

In the mobile wireless communication domain, different systems apply common
solutions to similar functional and architectural design problems. The recognition of
these commonalities is a starting point towards ironing out differences and possibly
towards finding better ways to interwork different systems and to develop new ones.
There is therefore a need for recognizing and reusing these commonalities. The
concept of pattern, which is used in the software community to describe
programming solutions to specific recurring problems, can be adopted for this
purpose. This paper proposes an approach for reuse and validation of a set of
solutions for mobility and radio resource management functions, solutions that have
been identified as common among a number of second and third generation systems.
The focus is on the early development stages. A visual technique called Use Case
Maps (UCMs) is applied to graphically specify reusable requirements. LOTOS
methods are used for validation.

KEYWORDS

Commonalities and Variabilities, Patterns, LOTOS, Mobile systems, Protocol Specification
and Validation, Use Case Maps, Software reuse.

1 INTRODUCTION

Different mobile systems provide telecommunication services that enable users to exchange
information using wireless technologies [7]. Well-known are the second generation systems,
which are based on standards such as the Global System for Mobile Communications (GSM)
[23] or the American National Standard Institute 41 (ANSI-41) [6]. Although these standards
have substantial differences, they adopt similar solutions for dealing with common mobility,
communication and radio resources management problems associated with similar
architectural elements [15].

The investigation of these common solutions leads us to the concept of pattern that is often
used by the software community to describe programming solutions to specific recurring
problems [3]. When the pattern concept is applied in the mobile system domain, it allows
designers to recognize commonalities among legacy systems and to reuse good solutions
independent of implementation. Third generation systems, such as Universal Mobile
Telecommunication System (UMTS) and IMT-2000, have been already reusing solutions of
second generation systems, such as GSM and ANSI-41.

In [3], we presented the first results of this investigation on a pattern language that captures
and informally describes common solutions for functional and architectural problems related
to mobility management functions.

In this paper, we introduce an approach for reuse and validation of solutions at the early

stages of the development and evolution of mobile systems. We apply a technique called Use
Case Maps (UCMs) [11] to graphically specify scenarios that illustrate each solution and
potential relationships among solutions. Solutions are also suitable for being specified with
the formal description language LOTOS [27] and validated with its tools. This technique
provides confidence in the correctness of these solutions.

The next section gives a summary of the Use Case Maps and LOTOS notations, followed by
an overview of common solutions for mobile systems in Section 3. The approach for reuse
and validation with Use Case Maps and LOTOS is presented in Section 4. Finally, our
contributions are summarized in Section 5.

2 NOTATIONS

USE CASE MAPS

Use Case Map (UCM) is a visual notation that describes scenarios in terms of causal
relationships between responsibilities. Due to its informality, the UCM notation is suitable for
the early stages of the development process, when the requirements are described at a high
level of abstraction and designers are considering the overall behavior of a system [22].

The UCM notation is suitable for this purpose because of the following characteristics:
simplicity (it is easy to learn and to understand), modularity (it helps the decomposition of
large systems in small units), and flexibility (it simplifies mapping the architecture to the
functional behaviour that may be described independently). We also choose UCMs for their
ability to express requirements and analysis models in such a way that the developer can have
a bird-eye view of the whole mobile system behavior and structure. This helps to identify the
design issues from the beginning.

At the requirements stage, unbound UCMs, which combine paths and responsibilities without
defining system components, are used. At the analysis and design stages, bound maps
describe how the architectural structure and the system behavior are related.

Section 3 introduces details of the UCM notation when common solution scenarios are
explained. Note there the salient elements of the notation: start points denoted by filled
circles, abstract responsibilities denoted by crosses, choice points denoted by forks in a path
(OR forks), end points denoted by bars, and UCM static stubs represented by diamonds.
Abstract responsibilities can be refined in many ways at further stages of design. Stubs
identify places where details are delayed to sub-maps called plug-ins. For a more detailed
description of the UCM notation, the reader may refer to [11] and for applications in the
mobile wireless communication domain to [1][4][5].

Although UCMs are supported by a drawing tool (the UCM Navigator [24][30]), due to their
informality, validation techniques are not possible with this notation. Therefore, LOTOS is
introduced to provide validation support at the requirements and analysis stages.

LOTOS

LOTOS specifications represent a formal system prototype by describing temporal relations
that correspond to the externally observable behaviors of a system. The LOTOS notation has
formally defined syntax, static semantics, and dynamic semantics, and the language is a ISO
standard [27].

A LOTOS specification is composed of a hierarchy of processes that interact with the
environment through gates or perform internal unobservable actions. LOTOS operators such

as action prefix, choice, disable, enable, and parallel composition are used to combine
processes, actions, and behavior expressions to form other behavior expressions. The notation
combines concepts present in pre-existing notations such as CSP [16] and CCS [23] for the
control part of a specification. CSP defines the notation for the offer and acceptance of values
between processes that are denoted by, respectively, “!” and “?” as in “g !dialTone
?user_ID: integer” where the network offers the dialTone message and receives the dialed
number at gate “g” to a specific “user_ID.” However, LOTOS formal semantics is mainly
based on CCS.

Algebraic abstract data types (ADTs), represented in an equational formalism, are also part of
LOTOS.

We combine the informality of UCMs with the formality of LOTOS. The translation of
UCMs into LOTOS has been investigated in the literature [1][5] and its feasibility has been
demonstrated due to the ability of LOTOS to express behaviors at several levels of
abstractions. The LOTOS features of process instantiation and parallel composition are used
to describe pattern solutions, which are initially specified with UCMs, at the requirements
and analysis stages. LOTOS specifications integrate behavior and architecture in a single
executable prototype that can be validated against the requirements represented by UCMs.
The UCM stub notation (see an example in Section 3) expresses modularity that is translated
into LOTOS as a result of the stepwise decomposition of processes. Synchronization between
processes, which correspond to the architectural elements and their functional behaviors, is
essential to describe mobile systems.

The language is executable (if certain conventions are respected) and supported by tools that
offer ways of checking completeness and consistency [9][28]. These tools are available to
provide validation and verification methods that allow the detection of errors, inconsistencies
and incompleteness at early development stages. LO tos LA boratory (LOLA) is a set of tools
developed by the Department of Telecommunication Engineering of the University of Madrid
[28], that includes: a step-by-step executor, a tool for obtaining the labeled transition system,
and a tool for testing. These tools were used in our work.

There is a new version of LOTOS called Enhanced LOTOS (E-LOTOS) under development
[17]. E-LOTOS brings several advantages in relation to LOTOS, such as: ADTs are much
easier to use; exception-handling facilities are included; and explicit control structures, a
module construct, and real-time behavior are incorporated. However, E-LOTOS is still a draft
proposal and only compilation tools are available. For these reasons, we chose the
standardized LOTOS to validate our work.

Further details about the LOTOS notation and the translation process are given in Section 4.

3 COMMON SOLUTIONS FOR MOBILE SYSTEMS

This work investigates European and North American mobile systems. The GSM 900 is a
European-based technology that is the foundation for the digital cellular system 1800 (GSM-
1800) [26] and the Personal Communication System 1900 (PCS-1900) [7]. The D-AMPS
(also known as Interim Standard 54-B) [7], which is a North American technology, defines a
hybrid air interface that allows mobile terminals to operate in a dual mode fashion (analog
and digital). On the network side, the American National Standards Institute - 41 (ANSI-41)
[1][6][14] provides registration, roaming, call features, and other mobile application protocol
features to support the D-AMPS air interface. We also consider the Wireless mobile
Asynchronous Transfer Mode (WmATM) architecture [7][13], which is under development
for high-speed local area networks (LANs).

These systems are incompatible due to differences of implementation such as: interfaces
among components, cryptography algorithms, and types of handoff [15]. However, common
functional behaviors and architectural elements can be identified among mobility,
communication and radio resource management functions.

The main motivation for the identification of commonalities among these systems arises from
the need of reusing good solutions in the development and evolution of mobile systems. The
recognition of commonalities also leads to a clear identification of the differences among
these systems and to a better way to make them interwork. In addition, the representation of
the relationships between these solutions show how these commonalities work together (see
Figure 2).

In our work, we concentrate on commonalities related to mobility and radio resource
management functions as shown in the next sub-sections. These commonalities are general
and abstract enough to allow freedom with respect to future implementation decisions. A
designer chooses solutions that best suit the system needs and adds the specific behavior and
structure of the system.

COMMON ARCHITECTURAL ELEMENTS

To help readers and designers visualize a possible environment where the identified common
solutions can be applied, Figure 1 depicts a simplified mobile system architecture. The
following common architectural elements are identified among the previously mentioned
second generation systems: mobile terminal (represented as a car), base station controller,
security database, home database, mobile switching center, and visitor database. At the
implementation stage (out of our scope), these elements, which represent network entities
[2][29], can be combined in one or more physical entities.

As shown in the figure, the environment is divided into cells. Each cell covers a geographical
area with a base station transceiver that supports the radio resources related to the use of the
allocated spectrum. A location area contains several cells and a mobile switching center,
which is responsible for the communication between the mobile terminal and the network.
The base station controller is responsible for a set of base station transceivers and the
connection between them is through the radio access ports. Many mobile terminals share a
base station transceiver. Databases such as security database, home database and visitor
database are responsible for keeping information about mobile users’ location, identification,
authentication keys, services, and equipment.

Location Area

Visitor
Database

Home
Database

Mobile
Switching

Center

Security
Database

Base
Station

Controller

Figure 1. Common Architectural Elements

SMM

[Unsuc]

Auth

[Suc]

E1
MM

E2
MM

Location

[RegOk]

checkRegistration

[RegNok]

(a) Mobility Management (MM)

checkAuth

Handoff

E2
RRM

[Unsuc]

RelResources

[Suc]

[Release]

SRRM

HandoffFailure

E1
RRM E3

RRM

(b) Radio Resource Management (RRM)

Cipher

TMUIAssign

HandoffDecision

Figure 2. Common Functional Behaviors with Unbound UCMs

[NoNeed]

[Need]

[Abort] [HandFail]
[HandSuc]

In a typical mobile wireless environment, the network controls the provision of a dedicated
channel to the mobile terminal over the radio interface. The main concern of the network is
how to maintain this dedicated channel despite the wanderings of the users. A handoff
function (also called handover in the literature) is responsible for this maintenance
[7][14][15][23].

Base station transceivers and base station controllers are important components of the
handoff process; however, this work considers only the handoff that generates network traffic
and involves different mobile switching centers (called inter-system handoff). At the upper
layers, the inter-system handoff is managed by mobile terminals (MSs) and mobile switching
centers (MSCs). Base stations act as complex transmission systems. This handoff also
requires specialized signaling protocols between the current and the candidate mobile
switching centers involved.

COMMON FUNCTIONAL BEHAVIORS WITH UNBOUND UCMS

Figure 2 presents the relationships between common functional behaviors that are identified
among mobility and radio resource management functions of the mobile systems mentioned
in the previous section. The UCM paths show how these commonalities work together and
each static stub represents a common functional behavior.

The stubs shown in Figure 2 encapsulate the following solutions for mobility and radio
resource management problems: authentication (Auth stub), ciphering (Cipher stub), location
registration (Location stub), temporary identification assignment (TMUIAssign stub),
handoff decision (HandoffDecision stub), inter-system handoff execution (Handoff stub),
handoff failure actions (HandoffFailure stub), and releasing resources (RelResources stub).

In Figure 2b, the following pre-condition associated with the SRRM start point triggers the
common solution for radio resource management: the quality of the current radio link when a
user is roaming is below threshold and a handoff measurement has been requested. The
UCM flow from one stub to another represents potential sequences in which these common
solutions can occur. The next stub in the sequence is chosen according to successful or

unsuccessful outcomes during the execution of the previous stub (e.g., the inter-system
handoff is performed after a handoff decision to change the current radio link). Each stub can
be also applied individually (see common solutions represented by plug-ins in Figure 3 and
Figure 4) in conformity with design decisions of different systems.

The responsibilities in Figure 2a are activated along the path to decide whether the mobile
station is, respectively, authenticated and registered at the current location area. Alternative
sub-paths are generated after these decisions.

Figure 3 illustrates scenarios for mobility management solutions with unbound UCMs. These
maps are bound to the stubs presented in Figure 2a. More details about mobility management
solutions can be found in [3], which textually describes them.

The authentication solution prevents unauthorized or fraudulent access to cellular networks
by mobile terminals illegally programmed with counterfeit identification and electronic serial
number. The unbound map depicted in Figure3a is triggered when the network side or the

mobile user side requests the authentication.

A triggering event described in the SAuth start point (e.g., when a power-on event or a change
of location area occurs) represents this request. After this, the result of an authentication
operation performed by the mobile terminal is sent to the network (the “send Authentication
Information” responsibility). Then, the “apply Authentication algorithm” responsibility
performs the same authentication operation at the network side. Alternative paths (called Or-
forks) represent UCMs that can be split into two different paths. For instance, the “check
Authentication result” responsibility generates successful or unsuccessful outcomes
(respectively, E1Auth or E2

Auth end points) depending on the outcomes of the comparison
between the respective results. In the case of denied authentication, the mobile user is
notified. Otherwise, a successful authentication occurs and a resulting event is generated.

The ciphering solution protects the privacy of the communication over an insecure wireless
communication channel. As illustrated in Figure3b, this function is responsible for starting a
ciphered communication over the air interface (ciphering and deciphering the data
information). The “ciphering data” responsibility ciphers the data that is sent by the mobile
terminal and the network deciphers it. The ciphering key, which is obtained by the “send
ciphering key” responsibility, and the respective ciphering algorithm are used in the
ciphering/deciphering procedure. This ciphering functional behavior starts when the network
sends a ciphering mode request to a mobile terminal (SCipher start point). The change to the
ciphering mode ends successfully ([Suc] path) after the network and the mobile terminal
agree upon the ciphering/deciphering procedures (i.e., mobile terminal acknowledge the use
of ciphering/deciphering). Otherwise, the map exits at the [Unsuc] path.

The location registration solution keeps up to date information about a mobile user’s location

SCipher

[Unsuc] [Suc]

E1
Cipher E2

Cipher

sendKey

(b) Ciphering

STempID

[Unsuc]

reqTempID

[Suc]

E1
TempID E2

TempID

chkTempID

(d) Temporary
Identification Assignment

cipherData

E1
Auth

 SAuth

[Unsuc]

 sendAuthInfo

[Suc]

E2
Auth

 applyAuthAlg

 chkAuthRes

 notifyUnsuc

(a) Authentication

SLoc

[Roaming] [NotRoaming]

ELoc
delPrevTemp

 UpdTemp

getLocInfo

updHome

chkLoc

(c) Location Registration

 updHome

Figure 3. UCM Plug-ins for Mobility Management Stubs

every time the user changes location area. Figure3c describes the Location Registration map
that is triggered when the mobile user roams and needs to be registered in the current
location area (SLoc start point). After getting the location information, the “check Location”
responsibility generates different outcomes according to the following post-conditions: either
the mobile user is visiting a new location area (both visitor and home databases are updated)
or not (just the home database is updated). When the user is roaming, the “update Temporary
user Profile” responsibility is an operation on the visitor database records. The “update home
user Profile” responsibility is performed whether the user is roaming or not. Sub-paths
labeled [Roaming], which means the user is visiting a location area , and [NotRoaming],
which means the user is in her home location area, are joined to perform the location
cancellation.

The purpose of the location cancellation is to delete the user profile in the location area
previously visited by the mobile terminal. The temporary profile is deleted from the previous
visiting database (the “delete previous temporary user profile” responsibility in the figure).
Unsuccessful outcomes are not shown in the figure but they can occur due to network or
database failures.

The Temporary identification solution ensures privacy of the subscriber’s identity when
sending it on the radio path. The Temporary identification assignment map depicted in
Figure3d is triggered when a mobile user powers on a mobile terminal or a mobile terminal
changes location area (two different triggering events of the STempID start point). First, the
mobile terminal sends its current temporary identification and the network assigns a new
temporary identification (the “assign Temporary Identification” responsibility) and sends to
the mobile terminal. Then, the “check the assigned Temporary Identification” responsibility
checks whether the mobile terminal gets this temporary identification or not. This
responsibility generates successful or unsuccessful outcomes (respectively, E1

TempID or
E2

TempID end points) depending on different outcomes. If the confirmation is not received by
the network, the operation is not successful ([Unsuc] path). Otherwise, the network completes
this assignment successfully ([Suc] path).

Radio resource management functions are performed by mobile systems when a dedicated
radio communication channel has been assigned between the mobile terminal and the mobile
switching center. Furthermore, they are applyed when the mobile user is roaming from one
place to another. This possibility of changing cells (and consequently location area) is the
major source of complexity for mobile networks [14][23]. Figure 4 illustrates the handoff
decision and the inter-system handoff solutions with unbound UCMs. In this paper, the
handoff failure actions and releasing resources solutions are not shown (respectively,
HandoffFailure and RelResources stubs).

SHDecision

[Need] [NoNeed]

E2
HDecision E1

HDecision

takeMeasur

compareMeasur

(a) Handoff Decision
SHand

[Unsuc]
[Suc]

E1
Hand

allocateChan

E2
Hand

tuneNewChan

verifyChan

(b) Inter-System Handoff Execution

Figure 4. UCM Plug-ins for Radio Resource Management Stubs

The handoff decision pattern solution controls the quality of the radio communication link
between the mobile terminal and the network. The decision is taken according to
measurements represented by the “take measurements” responsibility in Figure 4a. After this,
a comparison is done (the “compare measurements” responsibility). The E1

Hdecision and
E2

Hdecision end points represent the need of having a handoff or not.

The inter-system handoff solution continuously guarantees communication service
assessment for mobile users. Figure 4b starts with a handoff request triggering event (SHand
start point). After this, a new channel is allocated. The mobile terminal tunes to the new
channel. The new channel is verified to guarantee that the new link has better quality of
transmission than the previous one. Alternative sub-paths labeled [Suc] and [Unsuc] are
generated as a result of this action. In case of negative result, the resulting event of the E2

Hand
end point triggers the HandoffFailure stub shown in Figure 2b. In case of positive result, the
RelResources stub is triggered (see also Figure 2b).

4 APPROACH FOR REUSE AND VALIDATION

Requirement and analysis models are often used in the software engineering domain to
describe systems at the early development stages [22]. The requirements capture step
describes the system objectives as well as the user’s needs and encourages the thinking
process in terms of generic behavior. The analysis and design steps comprise the static
structure, the sequence of interactions that describe the problem to be solved in terms of
entities (e.g., objects or functions), and the data transformations.

On the other hand, the development process of telecommunication standards and services
often comprises three major stages as illustrated in Figure 5 [2]. This three-stage
methodology was first developed by ITU-T to describe services and protocols for ISDN.
Subsequently, it has become of general use in the telecommunication area.

Services are first described from the user’s point of view in prose form and with tables (stage
1). After this, they are expressed with information flows (also known as sequence diagrams
or Message Sequence Charts (MSCs) [21]) that represent the sequences of messages between
the different architectural elements involved in the communication (stage 2). Finally, they are
expressed with (informal) specifications of protocols and procedures (stage 3).

This work introduces an approach to reuse and to validate commonalities when developing or
maintaining mobile systems. The proposed approach combines UCMs and LOTOS notations
at the requirements and analysis stages as shown in Figure 6. Unbound UCMs are applied at
the requirements stage and bound maps at the analysis stage. These UCMs are translated into
the LOTOS notation for the validation part.

In addition, the proposed approach introduces commonalities, UCMs and LOTOS into the
ITU-T three-stage methodology, as illustrated in Figure 6 (compare with Figure 5). UCMs

Stage 1: : Informal Service Descriptions
Stage 2: : Message Sequence Information

(S i)Stage 3: Protocol and Procedure Specifications

Protocols &
Procedures Requirements

Stage 1

Information
Flows

Stage 2 Stage 3

IF

ENDIF
ELSE

Figure 5. ITU-T Three Stage Methodology

describe stage 1 documents (functional behaviors) and bridges the gap between stage 1
functional behaviors and stage 2 sequence diagrams with the mapping of functional behaviors
to architectural elements.

Our approach follows the Specification-Validation Approach with LOTOS and Use Case
Maps (SPEC-VALUE) presented in [1] for the validation part. SPEC-VALUE is a rigorous
scenario-driven approach for the description and validation of complex system functionalities
at the early development stages. UCMs capture functional requirements and, at the design
stage, the UCM scenarios are translated into detailed LOTOS specifications that are validated
with the help of tools. The validation testing approach introduced in SPEC-VALUE proposes
the generation of test cases at the design stage from the information provided by the users’
requirements.

In our case, the validation consists of functionality-based test cases generated in LOTOS
starting before the design stage. These test cases are generated from the common solutions
and from the system requirement model that also contains specific system behaviors. The
LOTOS specification, which is a system prototype, is derived from the UCM requirements
and analysis models. This specification is then validated against the test cases using the
LOLA tool. The goal is to guarantee that the prototype is in conformance with the
requirements before reaching the design stage. Similar to the SPEC-VALUE approach, there
is no formal method for the generation of these test cases.

Although not illustrated in the figure, different cycles are used to allow the system behavior
increases with designer and user needs. Each development cycle brings additional details
regarding new functional requirements as well as new system components (called
variabilities in [12]). This incremental characteristic is useful when developing a large
system. For instance, functionalities can be described at different development cycles, as
follows: mobility management functions are described in the development cycle 1, followed
by communication and radio resource management functions in the development cycle 2 and
development cycle 3, respectively. Besides this, if any modifications are required after
validating the prototype generated with LOTOS, it is possible to revisit the respective model
for several iterations. In this case, the informal description as well as the requirement and
analysis models may be revisited for several iterations.

LOTOS
Specification

Analysis Model
Bound Use Case Maps

Common
Solutions

Requirements

Stage 1

Requirement Model

Unbound Use Case Maps

Figure 6. Approach for Reuse and Validation

is reused by

provides information to

Reuse Validation

Validation
Test Cases

is generated from

+

Bridge of Stage 1 and Stage 2

Legend

…

The next sub-sections present details of the reuse and validation steps.

REUSE WITH UCMS

The first decisions regarding functional behaviors and architectural elements to be added to
the system are taken at the requirements and analysis stages, respectively. The reuse is done
at the requirement stage (ITU-T stage 1) where the required functionalities are extracted from
the set of common solutions for mobility and radio resource management that we have
identified among the chosen systems.

As mentioned in Section 3, commonalities are graphically specified with UCMs in a general
and abstract way to allow telecommunication designers to reuse them at stage 1. They offer a
common development foundation to mobile systems’ designers. Since the focus is on the
early stages, designers can adapt and make changes according to the system needs.

Figure 6 illustrates the requirements and analysis stages with the reuse of common solutions
and the generation of validation scenarios. The resulting models (requirements and analysis
models) generated at these stages are also depicted in the figure. Plain gray arcs represent the
reusability process. Functional behaviors and architectural elements are reused at the
requirements and analysis stages, respectively. Black arcs express the capture of information
from the requirements and requirements model to graphically specify unbound and bound
UCMs. The derivation of the validation scenarios from the solutions described by unbound
and bound UCMs is also part of the reusability process (see dashed gray arcs in the figure).

In order to avoid ambiguities caused by the narrative documents and tables used in the ITU-T
stage 1, UCMs are used to describe requirements (the requirements model shown in Figure
6). At the beginning, when details about architectural elements (e.g., the network reference
model shown in Figure 1) are not available, unbound UCMs are specified.

Decisions regarding which system component is responsible for a specific action or event are
taken during the analysis stage. The architectural elements come into play at this point and a
network reference model is described with UCM components. The functional behavior
(represented by the requirements model) is then mapped to the network reference model.
Bound UCMs that constitute the analysis model are the result of this mapping. Detailed
descriptions about what the system does are represented in terms of new stubs and plug-ins,
responsibilities, which are refined with pre- and post-conditions, start points, which are
refined with pre-conditions and triggering events, and end points, which are refined with
post-conditions and resulting events. Figure 8 depicts the inter-system handoff plug-in with
new responsibilities (compare with Figure 4b).

VALIDATION WITH LOTOS

Validation and verification techniques cannot be used directly with the UCM notation
because of its informality. On the other hand, such techniques are available in LOTOS, and
are supported by tools.

LOTOS was used as the formal underlying model that supports UCMs. At the analysis stage,
a LOTOS prototype is specified on the basis of the requirement and analysis models. To do
this, construction guidelines (CG) are taken from the SPEC-VALUE approach [1]. At the
design stage (not the focus of this paper), details about exchanged messages, parameters and
data types are added.

In this paper, the use of LOTOS, which starts in the analysis stage, reduces the semantic gap

between the translation of UCM requirements and analysis models to LOTOS at the design
stage. As a result, when the LOTOS specification is validated, several aspects of the UCM
notation are also validated including: causal sequences of responsibilities, choice relations,
enabling relations, disabling relations, join relations, and parallel relations. Our validation
part focuses on the reuse of common solutions in the specifications.

In order to specify systems and their validation test cases with LOTOS, the following
mapping is done from the UCM notation to the LOTOS operators:

• At the requirement stage, each plug-in is mapped to LOTOS processes as depicted in
Figure 7. At the analysis stage, UCM components are mapped to LOTOS processes.
Figure 8 illustrates part of the specification in UCMs and LOTOS, which constitute
analysis models, to address the communication between the MSC and the HLR processes
(respectively, mobile switching center and home database in Figure 1). When a UCM
path crosses a component as shown in Figure 8, we use the LOTOS gates to represent an
interaction with the environment or with other processes;

• LOTOS process behavior corresponds to the causality sequence of responsibilities. The
translation is straightforward at the requirement stage; however, the responsibilities for
each UCM component are not always included in one single map when generating the
analysis model.

• the action prefix operator “;” used as in “a;B” means that an action on gate “a” precedes a
behavior “B” This translates sequences of responsibilities as illustrated in Figure 7.

• the choice operator “[]” used as in “B1[]B2” means that the process will behave as either
“B1” or “B2”. This translates choices among paths in the UCM represented by the OR-
Forks or by stub alternatives as shown in Figure 7.

• the disable operator used as in “B1[>B2” means that at any time during the execution of
“B1”, “B 2” can be triggered and terminate “B1”. This translates zigzag abort paths in the
UCM (not shown in this paper).

• the enable operator used as in “B1>>B2” means that “B2” can only be activated after the
successful completion of “B1”. This translates concatenation of maps as depicted in
Figure 7.

Figure 7. From unbound UCMs to LOTOS

behavior
…

start !RRM; (* start point *)
(HandoffDecision [start, resp, end] >>
(Handoff[start, resp, end] >>
(RelRes[start, resp, end] >>
(end !E_RRM1; exit)) []
(HandoffFailure[start, resp, end] >>
(RelResources[start, resp, end] >>
(end !E_RRM2; exit)) || (end !E_RRM3; exit))
[] (end !E_RRM1; exit))
)

where
process HandoffDecision [start, resp, end] :exit :=
 …
Endproc
…

Handoff

E2
RRM

[Unsuc]

RelResources

[Suc]

[Release]

SRRM

HandoffFailure

E1
RRM E3

RRM

HandoffDecision
[NoNeed]

[Need]

[Abort] [HandFail]
[HandSuc]

• the guard operator used as in “[P]->B” means that “B” can only be performed if the
predicate “P” is true. This translates conditions on choices of paths (OR-Forks) and solves
non-determinism problems associated with choices (not shown in this paper).

• the full synchronization parallelism operator used as in “B1||B2” means that “B1” and
“B2” must synchronize in every action that they perform (see Figure 7);

• the interleaving operator used as in “B1|||B2” means that “B1” and “B2” are performed in
parallel without any synchronization between them;

• the interleaving operator used as in “B1|[g1,g2, …, gn]|B2” means that “B1” and “B2” are
performed in parallel with synchronization required on the gates g1,g2, …, gn. Figure 8
shows the MSC and HLR synchronization through the gates hlr_to_msc and msc_to_hlr.

The last three parallel composition operators translate situations where there are concurrent
paths in the UCM (AND-Forks). LOTOS parallelism allows more than one instance to
execute concurrently and for execution purposes, we limit the maximum number of instances
using ADTs.

It is also important to mention that UCM timeouts are described in LOTOS as explicit
internal actions (messages) to be executed if no triggering event comes from the environment.

Our validation purpose is to execute the specification against acceptance test cases that
describe the pattern solutions (i.e., commonalities). Our intention is to assure that the
common solution is well captured in the requirements and analysis models. In short, we
validate the specification against the solutions to guarantee that these solutions are preserved
in the specification with the addition of new behavior and structure (called variabilities in
[12]). However, this kind of validation does not guarantee that the solution is reused properly
in the specification that contains commonalities and variabilities. This case is validated with
test cases that cover complete scenarios on the basis of the requirements and analysis models.

 SHand

[Unsuc] [Suc]

E1
Hand

allocateChan

E2
Hand

tuneNewChan
verifyChan

 updProfile tunePrevChan

verifyChan
[Suc]

[Unsuc]

 updTempProf

MSC

HLR

VLR

Figure 8. From bound UCMs to LOTOS

behavior …
(MSC [ms_to_msc, msc_to_hlr, hlr_to_msc …] (msc1)
|[hlr_to_msc, msc_to_hlr]|
HLR [msc_to_hlr, hlr_to_msc] (hlr1, initialHLRset1) …
process MSC [ms_to_msc, msc_to_hlr, hlr_to_msc …] …
endproc
process HLR [msc_to_hlr, hlr_to_msc, …] …
endproc

Figure 9 depicts an example of validation test cases that are LOTOS processes derived from
the common solutions. These test cases are composed with the LOTOS prototype to detect
possible errors.

The successful termination of a test case means that the termination event (e.g., success in the
figure) has been reached. Unsuccessful test cases represent the case of not reaching the
terminating event due to deadlocks or internal livelocks. One of the following results may be
obtained with the LOLA tool: must pass, may pass, or reject.

Must pass and may pass are considered successful results that guarantee a good level of
confidence in the reuse of the solutions with the new behaviors, which are introduced in the
specification. When a test case fails, the functionality, which has been tested, contains a
logical error (reject result). As mentioned in [1], this functional behavior was incorrectly
specified according to the UCMs or was incorrectly integrated with the others.

5 CONCLUSION

We have presented the concept of pattern solution, together with an approach for reuse and
validation of pattern solutions for mobile systems at the requirements and analysis stages.
These solutions become easily understood to novices and experts alike by means of graphical
specification with UCMs. The validation test cases are generated in LOTOS from these
UCMs. As mentioned earlier, the formal specification and validation with LOTOS provide
confidence in the correctness of the reuse of these patterns.

The common solutions for mobility and radio resource management functions were described
in a general way, capable of different implementations. In practice, problems and their
respective solutions were recognized by investigating different mobile systems and by
capturing what they have in common. These commonalities were identified by abstracting
from the solutions used in various systems, such as GSM and ANSI-41 based systems as well
as WmATM systems, and looking for similarities.

Whether designers are maintaining existing systems or building new ones, they can identify
what makes their actual or future systems different based on the set of solutions that capture
the common behaviors and architecture of legacy systems. Once one recognizes
commonalities among existing systems, it is possible to iron out differences and enable them
to interwork.

The graphical specification of the requirement and analysis models with unbound and bound

SHand

[Unsuc] [Suc]

E1
Hand

allocateChan

E2
Hand

tuneNewChan

verifyChan

process Hand_1 [start,resp,end, success]
:exit:=
 start !S_Hand;
 resp !allocateChan;
 resp !tuneNewChan;
 resp !verifyChan; (*[Unsuc] *)
 end !E2_Hand;

success;stop
endproc

process Hand_2 [start, resp, end,
success] :exit:=
 start !S_Hand;
 resp !allocateChan;
 resp !tuneNewChan;
 resp !verifyChan; (*[Suc] *)
 end !E1_Hand;

success; stop
endproc

Validation
Scenario 1

Validation
Scenario 2

Figure 9. Validation Test Cases from Handoff Common Solution

UCMs, respectively, allows the designer to have an overview of how a typical mobile system
works from the early stages of the development and maintenance processes. Unbound UCMs
with their focus on causality and responsibilities without reference to the structure of
components have proved to be very useful for early descriptions of service functionalities
[1][4][5]. When the architectural structure is available, components can be easily added to the
functional maps. In this case, bound UCMs are generated.

This paper presents only some of the common solutions that can be identified and
documented among mobile systems. More commonalities related to architectural elements
and other functionalities might be identified in the future. Furthermore, a generic framework
can be generated to represent the relationships between the common solutions and to show
how these commonalities work together.

As future work, we aim to add the design model to our approach and to translate the
validation results to the MSC notation [21]. MSCs allow us to represent clearly the results of
the LOLA validation activities. Successful and unsuccessful MSC scenarios can be more
readable and attractive than LOTOS traces. In addition, these MSCs can become stage 2
documents, which are currently used by implementers to generate the protocols. In [5], we
have shown how a simplified Wireless mobile ATM network (WmATM) can be validated
using LOTOS [16] and how the validation results can be translated to the MSC notation.
However, the reusability process was not applied to this WmATM example.

ACKNOWLEDGEMENTS
We would like to thank the University of Ottawa’s LOTOS Group for their support and
useful comments, especially Jacques Sincennes, Ruoshan Guan and Leila Charfi. We also
acknowledge UFC, CAPES, CITO, and NSERC for their financial support.

REFERENCES
1. Amyot, D. and Logrippo, L., “Use Case Maps and LOTOS for the Prototyping and

Validation of a Mobile Group Call System,” Computer Communications 23, Special Issue
on FDTS, 1135-1157, 2000.

2. Amyot, D., Andrade, R., “Description of Wireless Intelligent Networks with Use Case
Maps”, In: Proc. Brazilian Symposium on Wireless Networks (SBRC 99), 418-433,
Salvador (BA), Brazil, 1999.

3. Andrade, R., Bottomley, M., Logrippo, L., Coram, T., “A Pattern Language for Mobility
Management”, In: Proc. of the 7th Conference on the Pattern Languages of Programs
(PLoP 2000), Monticello, Illinois, 2000.

4. Andrade, R., and Logrippo, L., “Reusability at the Early Development Stages of the
Mobile Wireless Communication Systems”, In: Proc. of the 4th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2000), Orlando, Florida, 2000.

5. Andrade, R., “Applying Use Case Maps and Formal Methods to the Development of
Wireless Mobile ATM Networks”, In: Proc. of the Fifth NASA Langley Formal Methods
Workshop, Williamsburg, Virginia, 2000.

6. ANSI/TIA/EIA ANSI-41-D, Cellular Radiotelecommunications Intersystem Operations,
1997.

7. Black, U., Second Generation Mobile & Wireless Networks, Prentice Hall Series in
Advanced Communication Technologies, Prentice-Hall, Inc., 1999.

8. Bolognesi, T., and Brinksma, E., “Introduction to the ISO Specification Language
LOTOS” In: P.H.J. van Eijk, C.A. Vissers, M. Diaz (Eds) The Formal Description
Technique LOTOS. Elsevier, 1989, 23-73.

9. Bolognesi, T., van de Lagemaat, J., and Vissers, C., Lotosphere: Software Development

with Lotos, Kluwer Academic Publishers, 1995.
10. Bora A., “Signaling Alternatives in a Wireless ATM Network,” In: IEEE Journal on

Selected Areas in Communications, Vol. 15, No. 1, January 1997.
11. Buhr, R. J. A, “Use Case Maps as Architectural Entities for Complex Systems”, In: IEEE

Transactions on Software Engineering, Special Issue on Scenario Management, Vol. 24,
No. 12, December 1998.

12. Coplien, J. O., Hoffman, D. M., Weiss, D. M., “Commonality and variability in software
engineering, IEEE Software, 15(6), 37-45, 1998.

13. Fang-Cheng and Holtzman, J. M., “Wireless Intelligent ATM Network and Protocol
Design for Future Personal Communication Systems,” In: IEEE Journal on Selected
Areas in Communications, Vol. 15, No. 7, September 1997.

14. Gallagher, M. D., Snyder, R. A., Mobile Telecommunications Networking with IS-41,
McGraw-Hill, 1997.

15. Grinberg, A., Seamless Networks: Interoperating wireless and wireline networks,
Addison-Wesley, 1996.

16. Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall International, 1985.
17. ISO/IEC, “Enhanced LOTOS”, ISO/IEC 15437, 2000.
18. ITU-T, “Q1701 Recommendation: IMT-2000 Systems Framework,” March 1998.
19. ITU-T, “Q1711 Recommendation: IMT-2000 Systems Signaling Requirements,” 1998.
20. ITU-T, “Q1721 Draft Recommendation: IMT-2000 Systems Information Flows,” 1999.
21. ITU-T, Recommendation Z. 120: Message Sequence Chart (MSC), Geneva, 1996.
22. Jacobson, I. et. al, Object-Oriented Software Engineering (A Use Case Driven Approach),

ACM Press, Addison-Wesley, 1992.
23. Logrippo. L., Faci, M., Haj-Hussein, M., “An Introduction to LOTOS: Learning by

Examples,” Computer Network and ISDN Systems 23, 325-342, 1992.
24. Miga, A., Application of Use Case Maps to System Design with Tool Support, M.Eng.

Thesis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa,
Canada, 1998.

25. Milner, R., Communication and Concurrency, Prentice-Hall, New York, 1989.
26. Mouly, M. and Pautet, M.-B., The GSM System for Mobile Communications, 1992.
27. OSI - IS 8807, “Information Processing Systems - Open Systems Interconnection -

LOTOS - A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour”, International Standard IS 8807 (E. Brinksma, ed.), 1989.

28. Pávon, S., Larrabeiti, D., and Rabay, G., “LOLA – User Manual,” version 3.6. DIT,
Universidad Politécnica de Madrid, Spain, LOLA/N5/V10, 1995.

29. TIA/EIA Wireless Intelligent Networks (WIN), Additions and modifications to ANSI-41
(Phase 1), TR-45.2.2.4, PN-3661 Ballot Version, May 1999.

30. Use Case Maps Web Page: http://www.UseCaseMaps.org, since 1999.

