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Marquês de São Vicente 225 - Gávea
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Abstract

In this work we extended Acharya and Badrinath’s [2] reliable multicast
protocol for mobile computing so as to provide also for atomicity of message
delivery. In this protocol, named AM2C, a multicast message is only delivered
to all mobile host destinations if these are reachable during a first phase of
the protocol. After a multicast is either committed or aborted, the protocol
guarantees that all the mobile hosts are eventually informed about the final
status of the multicast. In this paper we discuss the protocol and present
results of our simulations.
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Resumo

Neste trabalho é proposta uma extensão do protocolo de multicast para com-
putadores móveis definido por Acharya and Badrinath’s[2] no sentido de prover
também a entrega atômica de mensagens. Em nosso protocolo, denominado
AM2C, uma mensagem de multicast só é entregue a todos os computadores
móveis se estes podem ser alcançados na primeira fase do protocolo. Depois
que um multicast é ou confirmado ou abortado, o protocolo garante que todos
os computadores móveis mais cêdo ou mais tarde são informados sobre o resul-
tado final do multicast. Neste artigo discutimos e apresentamos o protocolo e
os resultados de nossas simulações.
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1 Introduction

With the ongoing improvement and spread of cellular telephony technology, more and more
computer network services will be supporting wireless and mobile communication. In near
future, it will be possible to use a huge variety of services from lightweight, inexpensive and
hand-held terminals or PDAs, regardless of their current location. Some of these services
will require some form of coordination or synchronization among groups of mobile clients.
Examples of such services are strategic mission planing and execution, optimization in
vehicle movement, cooperative design, and many others.
In order to support coordinated actions, a mobile host must be able to communicate

reliably with a group of related mobile hosts. Some applications even require that multicast
communication be atomic, i.e. that a multicast message is either accepted by all mobile
hosts of the group or by none of them. This may be important for applications with
requirements for strong consistency of the mobile user’s view of the global system state.
In the following we present three scenarios/applications with such a strong consistency

requirement.

Group of Traveling Sales-persons A group of traveling sales-persons need a coherent
view of distributed data stored in the mobile computers of the group members.
For example, assume that each of the sales-person’s mobile computer stores a list
of products (with number of items) that he/she is authorized to sell directly (e.g.
without any query to the others), and that the total number of currently available
product items for sale is exactly the sum of the number of items stored in all the
group’s laptops. Therefore, if one of the sales-person wants to sell a quantity that
exceeds the local number of items, he/she will have to reserve the remaining items
from some other sales-person in the group. And this request must be communicated
and agreed upon by all group members since otherwise two or more concurrent
sales (or bookings) may leave the distributed state (i.e. the total number of items)
inconsistent.

Choosing a Movie A group of friends plan to go to a theater together and need to reach
an agreement on which movie to watch, and at which time to go, since they all want
to buy their tickets in advance from their mobile devices. So each of them in turn
makes a proposal, and eventually the group reaches an agreement. Atomic multicast
is of great value for such distributed decision-making, since alter each proposal (a
multicast), each of them learns whether the group has or not reached an agreement.
Moreover, if for some reason one of the friends is not reachable during a (hopefully
short) period of time, then no proposal submitted during this period of time should
be committed, since all friends want everyone in the group to meet.

Coordinated Position Tracking Members of an Coordinated Action Group (e.g. Police
Task Force, Fire Brigade, Traffic Control Department) need a consistent and up-
to-date view of the current locations of each member of the group. For example,
assume that each member of the group carries a mobile device (capable of local
position sensoring through GPS) and through which he/she is able to query the
current location of all other members. If the coordinated action requires up-to-date
and accurate data about each member’s current location, then each query must be
replied by all members. If one of the members is not reachable then all other members
must be aware that the result received for the query may not contain up-to-date
information.



In order to support the implementation of such forms of coordination, we propose a
protocol for atomic multicast among mobile hosts, which is an extension of Acharya and
Badrinath’s MCAST[2] reliable multicast protocol. In this article we focus on the property
of atomicity (all-or-nothing), and do not discuss any ordering requirements. FIFO or causal
message delivery could be incorporated into our protocol exactly in the same way as other
work[14] which extended MCAST.
Essentially, our protocol is a Two Phase Commit (with an additional garbage-collection

phase) executed among the mobile service stations, which are the intermediates in the
communication between any mobile hosts. According to our protocol, a multicast message
is only delivered to all mobile host destinations if these are reachable during the first
phase of the protocol. In this case the multicast is committed, otherwise it is aborted. The
second phase of the protocol guarantees that all the mobile hosts are eventually informed
of the final status of the multicast. This is achieved by retransmitting this information to
migrating mobile hosts until all addressee acknowledge its receipt. After this, the third
phase performs the removal of the information about the multicast’s final status.
The remainder of this paper is organized as follows: In the next section we describe the

system model and the main assumptions. In Section 3 we outline the proposed multicast
protocol. Section 4 explains the Hand-off part of the protocol in more detail. In Section 5
we present results of the protocol simulation. Section 6 mentions related work and finally,
in section 7 we draw some conclusions and mention our future work.

2 System Model and Assumptions

The model of the system has two types of machines, the Mobile Service Stations (Mss) and
the Mobile Hosts (Mh). The former are assumed not to fail, and are linked with each other
through a static, reliable computer network. Each Mss further defines a geographic region,
called cell, where it is able to communicate reliably with a set of mobile hosts currently
located in the cell. The information about the Mhs within a cell is maintained at each Mss
in the data structure local Mhs. Each Mss also maintains the status (e.g. outcome) of each
pending multicast request within in the system.
The mobile hosts are disconnected computers that have a system-wide unique identifi-

cation. From the perspective of the remaining system, a Mh may be in two possible states:
activated and deactivated. In the inactive state (e.g. power save state, turned off, or sim-
ply, unreachable) a Mh is unable to receive or send any message. A Mh joins the network
by sending a join message to the Mss in charge of the cell it is currently in, which then
becomes the Mss currently responsible for the Mh. (respMss). A Mh leaves the system by
sending a leave message to any reachable Mss, and this message is broadcasted to all other
Msss.
Mobile hosts are able to move from one cell to another. Whenever a Mh enters a new

cell it sends a greet (Msso) message to the Mss responsible for the new cell, and argument
Msso is the identity of its former respMss (i.e. the Mss responsible for the cell it is leaving).
With this information the Mss of the new cell is able to initiate a Hand-off protocol with
respMss to transfer some data related to the moving Mh to the new Mss. After the Hand-
off is completed, the Mss of the new cell officially becomes the new Mh’s respMss. The
Hand-off protocol is described in more detail in section 4.
The greet message is also sent by the Mh when it becomes active again within the same

cell where it has been before becoming inactive. In this particular case, however, the Mss



will not initiate a Hand-off protocol, since the Mss mentioned in message greet is itself.
In this model we abstract from the specific details of how a Mh learns that it is entering
or leaving a cell and assume that this can be achieved in different ways according to the
wireless technology being used.
Figure 1 shows a system with three cells (Msss) and four Mhs, where mobile host Mh1

is requesting a multicast to the group (Mh1, Mh2 and Mh3). The figure also suggests that
while the multicast is being processed, Mh2 is migrating from cell 2 to cell 3. This scenario
will be further explored in section 3.

Mss2
Mss3

Mss1Mh1

greet

Mh2

mcast(1,2,3)

Mh3

Mh2

Mh4

Figure 1: System with three Mss and five Mhs

Thus, the main assumptions of the model are the following:

1. Communication among any two Msss is reliable, message delivery is in causal order,
and Msss do not fail;

2. Broadcasts in the static network (among fixed hosts, including Msss) have an known
upper bound on transmission time;

3. Communication among a Mss and all the Mhs within its cell is unreliable, but there
exists a maximum communication latency (λ) for wireless transmissions in all cells,
and transmission faults (e.g. message losses) can be detected by any of the commu-
nicating partners.

4. At any time, each Mh in the system is associated with exactly one Mss, called its
respMss (i.e. if the Mh is in a region of cell overlapping it must select one Mss as its
respMss). A Mh must not reply to any message from anyMss other than its respMss;

5. If a Mh is active it must send an acknowledgment for all messages received from
respMss and while it is inactive it must not reply to any message. But a Mh can
only leave the system after flushing all its pending message acknowledgements.

At this point we should make some comments on the degree of realism of the model. The
reliability of the Msss and the wired communication can be guaranteed by replication
techniques[1] and well-known reliable communication protocols, and causal delivery is eas-
ily incorporated into wired distributed protocols. Assumption 2 can be fulfilled either if



the static network is a local network, or if it is a dedicated network with known traffic pat-
terns. Concerning assumption 3, although wireless communication is inherently unreliable,
disconnection or interference can usually and detected by both communication parties by
measuring the RF signal and the signal-to-noise ratio. In most wireless networks, despite
a mobile host is able to receive signals from more than one base station, above the MAC
layer it considers itself being served by (or connected to) a single Mss, which is exactly
our assumption 4. Finally, assumption 5 defines the terms active and inactive, and the
requirement of flushing pending acknowledgements is just used to ensure the proper ter-
mination of the protocol, e.g. the eventual removal of information concerning the outcome
of previous multicasts.

3 Outline of the Protocol

The Atomic Multicast Protocol for Mobile Computing AM2C is a Two-Phase Commit
Protocol (2PC) with an additional phase for garbage collection. The protocol uses the
Msss as intermediate repositories of messages and gateways to the wireless links. In AM2C
a multicast is only committed if all the addressed mobile hosts accept the message within
a certain time frame (first phase), otherwise it is aborted. The outcome of the protocol
however remains stored at the Msss and is re-forwarded to all addressee until all of them
acknowledge the receipt of the outcome (second phase). Only then, is the outcome removed
from all the Msss (third phase).
In the following, we describe the protocol in more detail.

Phase I

1. A mobile host (Mhsender) sends a new multicast request M to its respMss, which we
will call Mssini. Each multicast has a unique identifier, which is composed of the
identifier of Mssini and a sequence number sn (assigned by Mssini). Also as part
of message M, a field M.Dest specifies the set of destinations (mobile hosts) of the
message.

2. Mssini broadcasts the request M to all other Msss and waits for replies from them.

3. When receiving a M from Mssini, all Mss in the system forward the request to
local Mhs ∩ M.Dest and wait for T1 units of time for replies from these Mhs. If
either local Mhs ∩ M.Dest is the empty set, or all local Mhs answer with OkM within
T1 time units, thenMss sends an OkM toMssini. Otherwise it sends NOkM toMssini.
This is also done by Mssini, but the only difference is that Mhsender is not included
in the set of local Mh destinations.

4. When any Mh receives M from its respMss, it stores M in a local buffer, and imme-
diately replies with either a OkM or NOkM , depending on whether the application
program at the Mh is willing or able to accept M.

5. When the M message arrives at Mss during the migration of a new Mh (say Mhnew)
into Mss’s cell, then depending on the moment of Hand-Off completion, the waiting
time is extended by another T1 time units, in order to allow for the forwarding of
the message M also to Mhnew. This behavior is discussed in section 4 in more detail.

6. If a Mh resumes activity in its previous cell, then its respMss re-forwards to Mh all
the multicasts M for which timeiut T1 has not yet occurred.



Phase II

1. After receiving replies from all Msss, Mssini checks if all replies are of type OkM or if
any of them is of type NOkM . In the first case it sets the final status of the multicast
to Commit and in the latter case to Abort. It then stores either CommM or AborM

in its log outcomes and broadcasts this status to all Msss.

2. When receiving either an AborM or a CommM message from Mssini, each Mss stores
this message in its log outcomes1, forwards it to local Mhs ∩ M.Dest and waits a
period T2 of time for an acknowledgment from these local Mhs. Let C be the set of
local Mhs that acknowledged. Mss then sends message AckM C back to Mssini.

3. After a new Mh, say Mhnew, registers with a Mss, the Mss checks if Mhnew ∈ M.Dest
for any M ∈ outcomes. For every such message, Mss forwards the final status of
message M to Mhnew and waits at most time T2 for an acknowledgment AckM .
If this acknowledgment arrives in time, Mss sends an AckM {Mhnew} to Mssini,
and otherwise it does not send an AckM message. For every M /∈ outcomes or
Mhnew /∈ M.Dest, the arrival of Mhnew at Mss has no influence on the result OkM or
NOkM .

Phase III

1. Each time Mssini receives a message AckM C from a Mss, it adds the elements in C
to a set M.Replied. When eventually M.Replied = M.Dest then Mssini removes the
corresponding entry from log outcomes and broadcasts message DelM to all Msss.

2. When receiving DelM from Mssini, each Mss removes M from its own log outcomes
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Figure 2: The Multicast Protocol

Figure 2 shows the types of messages transmitted in the protocol in the following
scenario: Mh1 sends a multicast M to mobile hosts Mh2 and Mh3, and Mh2 migrates
from Mss2 to Mss3 in between the first and the second phases. Notice that all Msss keep

1Mss also removes the corresponding multicast message M from its buffer.



the result of a multicast request in their logs outcome until all Mhs have acknowledged
the receipt of this result (e.g. Mh2 sends this acknowledgment only when it is within
Mss3’s cell). By this, we guarantee non-uniform consistency[7] of message delivery to the
mobile hosts, meaning that all Mhs which are registered and eventually become active for
a sufficiently long period of time will be informed of the final status of each multicast M,
for which Mh ∈ M.Dest.

4 The Hand-Off Protocol

The Hand-off protocol defines the interactions between two Msss when a Mh moves from
the old cell (serviced by Msso) to the new cell (serviced by Mssn). In the following, we
describe these interactions for a migrating Mh, (Mh new) which is also member of M.Dest
for a given multicast M.

1. AfterMh new registers with aMssn (by sending a greetmessage), thisMh is included
in a (temporary) list future local Mhs. Mssn then sends a dereg(Mssn,Mh new) mes-
sage to Msso and waits for the corresponing acknowledgment, through message dere-
gAck.

2. When Msso receives dereg(Mssn,Mh new), it immediately removes Mhnew from lo-
cal Mhs, replies (to the corresponding Mssini) with NOkM for all messages M s.th.
Mh new ∈ M.Dest and for which it is still waiting for either a OkM or NOkM from
Mhnew. Then, it also sends message deregAck to Mssn.

3. When the message deregAck from Msso arrives at Mssn responsibility for Mhnew

is officially established at Mssn (i.e. Mhnew is added to local Mhs). Message dere-
gAck carries an array (h RECD) similar to the one described in [2]. Each element
h RECD[i] holds the largest sequence number sn of a multicast initiated at eachMssi

and replied by Mh new. Number h RECD[i] also means that Msso has handled the
replies (to Mssi) for all multicasts up to this sequence number (and greater than the
corrsponding sequence number received when Mh new entered Msso’s cell).

4. Based on the sequence numbers in h RECD, Mssn decides what to do for buffered
multicast messages M s.th. Mhnew ∈ M.Dest, and for which Mssn is still waiting
for replies from the local Mhs ∈ M.Dest. Essentially, there are two possible actions
depending on whether Msso has or not already forwarded M to Mhnew (and replied
to Mssini): if it did already handle the reply, then after timeout T1 Mssn replies
to Mssini without considering Mhnew (e.g. as if its contribution to the conjunction
of Mh replies were OkM); otherwise Mssn re-forwards M to Mhnew and extends the
waiting time for Mhnew’s reply by another T1 time units. However, for all multicasts
M with Mhnew ∈ M.Dest for which its timeout T1 expires before arrival of deregAck
(and if h RECD indicates that Msso has not yet handled the reply), Mssn replies
with NOkM .

The desired atomicity property of AM2C requires that a multicast is to be commited
only if it can be guaranteed that indeed all the Mhs in M.Dest received and accepted the
message. Therefore, if there is any uncertainty about this fact, then the multicast must
be aborted.



The Hand-Off protocol described above ensures this behavior: Until completion of the
Hand-off Msso remains responsible for sending the replies (to any possible Mssini) for all
multicasts messages forwarded to the local Mhs. Through ith element of array h RECD
Msso also informs Mssn of the latest multicast for which it already replied to Mssi. Since
wired message delivery times are unpredictable,Msso can not be sure thatMssn will receive
message deregAck early enough in order to be able to re-forward M to Mhnew, and hence
Msso must reply to Mssini with NOkM , if Mhnew did not yet reply. On the other hand,
Mssn must reply to Mssini with an extra NOkM message if dregAck arrives to late (e.g.
timeout T1 for Mh replies has already occurred), and it learns that Msso did not handle
the reply for this multicast (i.e. it probably replied considering OkM for Mhnew).

Mss
init

Mh
new

Mss n
Mh

new

Mss o

b

a c b

greet
dereg

deregAck

T1

T1
M T1

Ok NOk

M

M

M

Ok/NOk

NOk

Figure 3: The Hand-off problem

Figure 3 shows an example in which a migrating Mhnew does not send a reply to Msso

and the dereg message arrives at Msso before New+T1, where New denotes the moment
a new multicast message M arrives at each Mss. In this case Msso replies to Mssini with
NOkM and informs Mssn (through h RECD in deregAck) that it has already handled the
reply to Mssini. At Mssn, greet arrives after New but before New+T1. In this case,
Mssn sends message dereg and waits for either the arrival of deregAck or the occurrence of
timeout (T1), after which it decides what to do. When deregAck arrives before New+T1

then through h RECD Mssn will learn if Msso has already processed the reply. If this is
the case (solid lines) then at New+T1 Mssn will reply to Mssini without considering Mhnew

(case a).2 However, if Msso did not already process the reply for this M (dashed lines),
then Mssn will reset timer T1, re-forward M to Mhnew, wait for its reply, and send it to
Mssini (case b). In the case that deregAck arrives after New+T1, only if Msso has not
already sent the corresponding reply, then Mssn relies with NOkM (case c).

5 Simulations

We have also prototyped and simulated AM2C using the MobiCS[8] simulation environ-
ment. The purpose of the implementation was to get a deeper understanding of the com-
plexity of the protocol and to evaluate its performance for different mobility scenarios. In
this section we give an overview of the simulation environment, the AM2C implementation
and analyze some simulations results that we obtained.

2Assuming that Mssn has no other Mh∈ local Mhs ∩ M.Dest, then the reply will be OkM



5.1 MobiCS

MobiCS [8] is a Java framework for prototyping and simulating distributed protocols in
mobile networks. The framework provides means for modular programming of distributed
protocols and with interchangeable simulation models which do not affect the implemen-
tation of the distributed protocols.

MobiCS can emulate a mobile computing environment in either deterministic mode or
stochastic mode. In the first mode the user is able to define simulation scripts, where each
one describes a specific execution scenario (i.e. a network configuration and a particular
pattern of events, such as a migration, a disconnection, etc.). By simulating the protocol
for such a script, the developer is able to test if his/her protocol behaves “as expected”
for the particular scenario. In the second mode protocols are tested in random scenarios
that are defined by assigning a probabilistic event generator to some simulated network
elements, such as mobile hosts or network links. For Mhs the randomly generated events
are usually migrations, disconnections, reconnections, or in the specific case of AM2C, new
multicast requests. In both modes, the user is able to inspect the states of each protocol
component and network element.
The implementation of a distributed protocol in MobiCS is done following the com-

posite programming model described in [6]. In this model, a protocol is composed of
micro-protocols, which are protocol parts implementing small and a well-defined function-
ality and which interact through events. Many authors agree that distributed protocols for
mobile computing are most naturally described as the composition of the following three
micro-protocols:

• Wired handles all messages exchanged in the fixed portion of the network;

• Wireless handles all messages exchanges through the wireless interface;

• Hand-off handles all (wired or wireless) messages related to a host migration.

Each micro-protocol has an internal state and a set of handlers, i.e. operations that
implement the actions to be executed at the occurrence of a specific event addressed to
the micro-protocol. Events may be of two types: messages, which are received from other
micro-protocols, and timer-events, which are scheduled by a micro-protocol to be triggered
(by the simulation layer) after a specific period of simulated time.
This organization was also used for our prototype implementation of AM2C inMobiCS.

We first declared each protocol message (e.g. Dereg, DeregAck, Ack etc.) and its at-
tributes, then defined the corresponding handlers at the appropriate micro-protocols (e.g.
whenDereg, whenDeregAck and whenAck) and finally declared the classes implementing
these handlers. For example, we declared a class AM2CMss which implemented all the
message-handlingmethods of the interfaces AM2CMssWired, AM2CHandoffModule and AM2CMssWireless.

5.2 Deterministic Simulations

The purpose of the deterministic simulation mode is to test a protocol in some controlled
mobility scenarios, where it is easier to trace whether the protocol behaves correctly. Since
it is impossible to simulate a protocol in all possible situations of external events (which
would correspond to a protocol verification), only a few, more critical scenarios should be
chosen. If the protocol executes correctly in these scenarios, the programmer at least can
be sure that some functions of its protocol are correctly implemented.



The first steps for the deterministic simulations are always to decide which are the
protocol behaviors to be tested in each scenario, and to choose the smallest set of network
elements that is sufficient for all the scenarios. Then one designs each scenario, perhaps
starting from a time-space diagram showing all the network elements and the pattern of
events (e.g. migrations, multicast requests) which reflects the intended scenario. Finally,
the pattern is coded into a MobiCS script.
We simulated AM2C for several critical scenarios of concurrent migrations and multi-

casts. For example, we tested if the protocol executed correctly the cases (a), (b) and (c)
mentioned in section 4.
After our protocol implementation passed all the deterministic tests, we were ready to

submit it to the random and hence more “chaotic” stochastic simulations, knowing that
the protocol was correct at least for the situations tested in the deterministic mode.

5.3 Stochastic Simulations

With the stochastic simulations we wanted to evaluate the performance of AM2C when used
in networks with different mobility ratios. In particular, we measured (a) the percentage
of aborted multicasts, (b) the number of additional Ack messages generated in Phase
II, (c) the mean number of wireless messages per multicast and Mh and (d) the mean
duration of a multicast. We measured each of these variables for 5 migration probabilities
Pmig = {0.01, 0.2, 0.4, 0.6, 0.8}, and for two different values {125, 175} for timeouts T1/T2,
which were measured in Simulated Time Units - STUs.
For all simulations we used the following network configuration and simulation param-

eters:

• The static part of the network was composed of either 4 or 8 Msss, (i.e. 4 or 8 cells),
fully interconnected;

• The mobile part of the network consisted of 15 mobile hosts, all with the same
migration probability Pmig, and same disconnection and reconnection probabilities
(Pdisc = 0.01 and Preconn = 0.3)

3

• The wireless transmission latency was set 50 times the wired transmission latency,
which has a default value of 1 STU;

• Multicasts (to all 15 Mhs) were requested with probability Preq = 0.1, every 100
STUs;

Percentage of Aborts

We first measured the percentage of multicasts that are aborted (figure 4).
The results confirmed our expectation that the percentage of Aborts grows with the

increase of the migration probability, and showed that the percentage of Aborts grows
more at the lower spectrum of migration probabilities flattening for higher probabilities.
In fact, one can see that already for Pmig = 0.2, approximately 50% of the multicasts are
aborted. This is a direct consequence of AM2C’s “pessimistic” approach, where multicasts
are aborted whenever a migration during a multicast.

3We used probability PX with linear distribution for deciding, every 100 STUs, if the corresponding
event would be generated.
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Figure 4: Percentage of Aborts

The curves at figure 4 also show that there are fewer Aborts for a larger timeout T1,
as expected, but that this difference shrinks as the probability gets higher.

Additional Acknowledgements

In this test we evaluated how the number of additional Ack messages (generated in Phase
II) relate to the migration probability, since these messages are the only variable part of
the overhead in the wired network.
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Figure 5: Number of Additional Acks

The graphics in Figure 5 shows that for small migration probabilities (Pmig < 0.4), the
additional number of Acks remains reasonable (recall that all 15 Mhs are in M.Dest), but



gets prohibitive for large values of Pmig. It also confirms that for “reasonable” values of
Pmig a larger value of timeout T2 tends to reduce the number of Acks.

Wireless Messages

We also measured the mean number of wireless messages (per request and perMh). As with
the wired messages, we wanted also to check how much the number of wireless messages
increases with the migration probability, and how much it depends on the timeout period.
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The graphics of Figure 6 showed a rather slow increase of the curve, where the mean
wireless messages only increases significantly beyond 4 after migration probability > 0.5.
These results suggest that AM2C does not create high overhead on the wireless medium.
The graphics also shows that the value of timeouts T1 (and T2) only makes some difference
for high migration probabilities.

Duration of the Multicast

Finally, we measured also how much the timeout (T1/T2) values and the migration proba-
bility have influence on the duration of the protocol. The duration was measured in STU,
from the momentMssini broadcasts a new multicast until the DelM message is broadcasted
to all the Msss.
As can be seen from the graphics (Figure 7) the smallest timeout value (125 STU)

caused the shortest protocol duration for any migration probability, despite the fact that
it probably causes more Mhs to miss AM2C’s phase I or II messages (which in turn extends
the protocol execution due to retransmissions) during ongoing migrations. The graphics
also shows that AM2C has a relatively small execution time, considering that each multicast
requires at least 200 STUs just for the wireless transmissions (two transmissions in each
phase, each lasting 50 STUs).
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Figure 7: Duration of a Multicast

6 Related Work

We are unaware of any other work which deals with atomic multicast for mobile hosts, i.e.
which propose a multicast service implementing all-or-nothing delivery semantics. Most
other works propose protocols which only guarantee reliable multicast, i.e. that messages
are eventually delivered to all the destinations (Mhs), but where the addressee do not get
a feedback if the multicast was or not accepted by all of them.
Acharya and Badrinath’s MCAST[2] protocol guarantees reliable multicast with exactly

once delivery. From their work, we borrowed the idea of using the Msss as intermediate
repositories for pending multicasts. The main difference is that in our protocol the multi-
cast message per se is deleted after the First phase (after timeout T1), and only the final
status of the multicast (outcome) is retained until it has been delivered to all addressee.
Prakash et al. present an efficient causal ordering algorithm[14], which can be easily

combined with MCAST to enforce reliable, causally ordered multicasts in mobile systems.
The major addition is that each wired and wireless message carry information about its
direct predecessor messages with respect to each destination hosts. Hence, in a similar way
their algorithm could also be incorporated into AM2C, ensuring causally ordered, atomic
multicasts.
Algar and Venkatesan have also proposed three protocols for reliable and causally

ordered message delivery in mobile computing systems[3] which could be used for reliable
multicast. The three algorithms are extensions of Raynal et al.’s algorithm [15] and differ
in the message complexity of the Hand-Off component and the size of the message headers
(i.e. which carry information about causal dependencies). Unlike Prakash’s algorithm, here
most of the message ordering and filtering task is performed at the Msss, which behave as
the representatives of their local Mhs. Among the proposed algorithms, only the first one
is similar with MCAST (and with AM2C), while the other two are based on broadcasting
causality information among the Msss at every Mh migration, which obviously does not
scale with respect to the migration probability.
Anastasi et al. have proposed a reliable multicast protocol with dynamic group mem-

bership and several ordering semantics [4], which also uses Mss as the intermediates for



caching and relaying messages to the mobile hosts. Unlike the other approaches, their
protocol lacks a Hand-Off component, which makes the protocol efficient in scenarios of
high migration rates, and with many Mhs. However, the protocol requires Mss to peri-
odically re-broadcast pending multicasts and to include sequence number information in
the beacon messages, and Mhs to explicitly request re-transmission of “missed” messages
through Negative Acks (NACK) messages. This not only waists the wireless resources and
requires the wireless technology to support piggy-backing data on beacons (which is not
always possible), but also requires more processing from the Mhs, which have to keep track
of missing messages and send NACKs whenever necessary. A similar approach for reliable
multicast using NACKs is presented in [5].
Some other works [17, 11, 10] extend traditional IP multicast protocols for mobile hosts,

most of them relying on Mobile IP[13]. Rather than providing reliable multicast, these
approaches guarantee only best-effort multicasting and suffer from the scalability problems
of Mobile IP. Mobile IP currently defines two basic approaches to support multicast: remote
subscription and bi-directional tunneling.
Work by Harrison et al [11] proposes an approach called MoM for a Mobile IP-based

Multicast service that addresses the problems of tunnel convergence and multicast dupli-
cation, by choosing a Designated Multicast Service Provider (DMSP) among all the home
agents that have mobile host in a foreign network. In [16] several alternatives in the choice
of the DMSP are considered and their performance was evaluated using a discrete event
simulator. All these approaches, however, do not deal with loss of multicast packages
during migrations or periods of inactivity of Mhs.
Maffeis et al. [12] describe a configurable, generic multicast service at the transport

layer, which offers order-preserving best-effort multicast for different communication pro-
tocols. It is implemented as a set of so called GTS servers, which communicate with other
GTS servers or the clients and guarantee message delivery in total order. Total order
is achieved by defining a single GTS server as the sequencer for every multicast group.
Messages sent to temporarily unavailable mobile hosts are kept in a message spool at the
sequencer until they can be delivered to the destination. Thus, during disconnection of a
group member all messages following the first non-delivered message are retained in the
spool for future delivery. Our protocol differs from their approach in that it guarantees
atomic delivery, but no total ordering policy. Other differences are that AM2C does not
rely on a single sequencer/spooler and is able to proceed with other multicasts even if some
mobile hosts are unavailable.

7 Conclusion

In this paper we have presented an atomic multicast protocol for mobile hosts, which we
called AM2C. It is a 2PC protocol which guarantees that multicast messages are only be
delivered to all the destinations (mobile hosts) if all of them are available and reachable
during the first phase of the protocol, otherwise, the multicast is aborted. However, the
multicast outcome (CommM , AborM) is transmitted to all group members until all of them
acknowledge its receipt.
Compared to an earlier presentation of the protocol[9], the current version of the pro-

tocol has been refined, implemented and thoroughly tested. The preliminary simulation
results showed that AM2C’s Abort ratio is quite sensitive the migration ratio of the mo-
bile hosts, which suggests that the protocol is only suitable for networks high request-



to-migration rates. On the other hand, it has a relatively short protocol execution time,
which favors time-constrained group communication. It also causes a small overhead on
the wireless links, and except for the wired messages of the hand-off protocol, also does
not cause much overhead on the wired links.
One should say also that our simulation results are based on “theoretical” parameters

(e.g. Pmig, Preq), which may not be realistic values. Hence, our simulations cannot be used
to say if AM2C would be feasible in a real setting, e.g. a wireless LAN. However, although
we did not simulate the protocol for larger network configurations, it should be obvious
that AM2C is not scalable in the number of Msss. Therefore, we are now working on a
variant of the protocol, with a hierarchical Mh location management architecture, which
we believe, will be more scalable than AM2C.
As a future step we plan to implement the multicast service in a real wireless LAN

environment for PDAs, investigate possible optimizations of AM2C and design other multi-
point communication protocols with weaker consistency properties.
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