
Event-Driven Programming for Distributed Multimedia Applications

Alésio Pfeifer, Cristina Ururahy, Noemi Rodriguez, Roberto Ierusalimschy
{alesio, ururahy, noemi, roberto}@inf.puc-rio.br

Departamento de Informática – PUC-Rio
R. Marquês de São Vicente, 225, Rio de Janeiro – RJ, 22453-900, Brazil

Tel.: +55 (21) 3114-1500 r. 3504, Fax.: +55 (21) 3114-1530

Resumo. O interesse atual em computação distribuída para redes geográficas
vem destacando a necessidade de um modelo de programação adequado a este
ambiente. Devido à sua natureza assíncrona, a programação dirigida a eventos
fornece um modelo apropriado ao tratamento de falhas e retardos, que são fre-
quentes neste contexto. Neste trabalho nós propomos uma arquitetura para apli-
cações multimídia distribuídas baseada em um modelo de programação orientado
a eventos. Para evitar problemas de sincronização, inerentes à programação com
múltiplas threads, optamos por uma abordagemsingle thread, orientada a even-
tos, aliada ao uso de múltiplos canais de comunicação. Com essa abordagem, o
programador pode definir procedimentos de manipulação apropriados para cada
canal, permitindo que a aplicação processe concorrentemente fluxos de controle e
de dados. Neste trabalho, discutimos este modelo de programação, apresentamos o
sistema implementado sobre ele e descrevemos experiências com este sistema.

Abstract. Current interest in wide-area distributed computing has highlighted
the need for an adequate programming model for this environment. Because of
its asynchronous nature, event-driven programming provides a suitable model for
dealing with the failures and delays that are frequent in this context. In this work we
propose an architecture for distributed multimedia applications based on an event-
driven programming model. To avoid the synchronization problems that are inher-
ent to multi-threaded programming, the proposed architecture is based on a single-
threaded structure. Instead of multithreading, we opted for the event-oriented ap-
proach allied to multiple communication channels with user-defined handling pro-
cedures to allow the application to deal concurrently with control and data streams.
We discuss this programming model, present the system we have implemented
based on this model, and describe the experience we have had with this system.

keywords: multimidia distributed systems, mobile code, asynchronous communi-
cation, event-driven programming, interpreted language

1 INTRODUCTION

Over the last years, we have seen a shift in the focus of distributed computing from local-area
to large-area networks. However, the programming model that has been largely successful in
the context of NOWs (networks of workstations), which is the client-server model, does not
adapt itself well to wide-area distributed systems. In geographically distributed networks, there
is no guarantee about the state of the resources, and the synchronous nature of client-server

computing becomes inconvenient. This has led to a renewal of the discussion about alternative
paradigms for distributed programming [1, 2, 3].

The event-oriented programming paradigm has been gaining importance over the last years,
due, specially, to the growth in systems with graphical interfaces. It is now common for appli-
cations to be written in an interface-driven style, which has shifted the control of application
flow from the program to the user: Instead of using code that dictates the flow of execution, the
programmer writes code to react to user input, letting the user direct the flow of control.

Several groups have investigated the applicability of the event-oriented paradigm to concur-
rent and distributed programming. Early work on Tcl/Tk discusses this communication model
as a technique to exchange information between different applications running on a single ma-
chine [4]. In this case, events are chunks of code that are executed upon being received. The
Glish system uses scripts as a glue between compiled components, and these components send
information to the controlling scripts through events [5]. More recently, reactive coordination
models make it possible for the programmer to define activities (reactions) to be triggered by
the occurrence of a communication event on a Linda-style tuple space [6, 7, 8].

Work with the ALua system has investigated the extent to which the event-oriented model
can be used as a basic model for distributed computing [9]. Messages exchanged by ALua
processes are regarded as chunks of code to be executed by the receiver. The arrival of a message
through the network is regarded as an event that can trigger state transitions. An ALua process
contains a single thread that handles each event to completion before it receives the next event;
thus, as in a program with a graphical interface, the structure of an ALua program is a set of
event-handling functions that modify the current execution state.

This architecture has been successfully employed to build different distributed and parallel
applications [9]. In most cases, ALua applications use a dual programming language model,
in which a scripting language, Lua [10], is used to coordinate the interaction between compo-
nents written in C. Lua code handles all communication among processes (and therefore defines
the architecture of the application), while C functions handle the CPU-intensive tasks in each
process.

We have identified a new class of applications that can benefit from ALua’s programming
model: multimedia applications such as VoD (Video-on-Demand), videoconference, or video-
telephone. Leite and colleagues describe a distributed video service that has been implemented
with ALua [11]. In this kind of application, the transmission of Lua code is useful for transmit-
ting control information, allowing agents to asynchronously receive commands and to exchange
code. However, in these applications agents also need to exchange large streams of data. This
typically involves synchronous (blocking) operations which do not match well with ALua’s
original architecture: If an agent becomes blocked on an synchronous I/O operation, it cannot
complete the execution of the current event, and pending control events will not get a chance to
be processed. Thus, an agent may deadlock waiting for data that will never arrive, or react too
slowly to user commands.

One possible solution to this problem would have been to introduce multithreading in ALua,
reserving a separate thread for control commands. However, this would conflict with ALua’s
basic design choices.

In this paper, we propose an event-driven architecture that allows us to deal with both kinds
of messages — control and data — in one single asynchronous programming model. We have
extended the original ALua system according to this new model. We opted for a solution that
maintains the single-threaded structure of ALua agents, but at the same time allows agents to

handle different communication channels concurrently. This structure fits in well with the re-
quirements of distributed multimedia applications, since it allows the agents to asynchronously
receive different kinds of information. At the same time, we avoid the synchronization problems
that are inherent to multi-threaded programming.

The remainder of this work has the following structure. In the next Section, we describe
the original ALua system. Then, in Section 3, we discuss our solution for dealing concurrently
with multiple types of messages. Section 4 highlights some characteristics of the multiple
channel ALua architecture and presents a simple example program. Section 5 describes a sim-
ple multimedia application using the new system. Next, Section 6 presents some preliminary
performance measures. Finally, Section 7 contains some concluding remarks.

2 ALUA — BASIC DESIGN AND EXAMPLES

A program in the ALua system is composed of several processes (also calledagents), which may
run in different hosts. ALua follows the event-driven design first advanced by GUI systems:
Each agent runs an event loop, and only acts as a reaction to some event.

There is only one communication primitive between agents, asend operation, which gener-
ates an event in the receiver process (this is similar to the communication model used in [12],
for instance). There is no explicit operation to receive messages. The receiver process gets
its messages through its intrinsic event loop, like any other event (such as a mouse-move or a
key-press event).

What makes ALua quite flexible is what is inside each message, and how receivers react
to communication events. In ALua, each message is a piece of code (written in an interpreted
language). When an agent receives a message, it immediately runs its contents. This results
in a programming model with the same character of interpreted languages: Not very secure,
but highly flexible. Each agent runs a single thread. The event-driven architecture provides
responsiveness, while avoiding internal concurrency and its inherent problems.

Next we will see how to implement some common tasks using this model. In our first
example, agentA simply sets a value in agentB:

alua.send("B", "n = 50")

This chunk of code will send the messagen = 50 to agentB. WhenB receives this mes-
sage, it will execute it, setting its global variablen to 50.

Now, if A wants to run some functionfoo over the value ofB’s variablen, it does the
following:

alua.send("B", "alua.send(’A’, format(’foo(%d)’, n))")

The message thatB gets is

alua.send(’A’, format(’foo(%d)’, n))

Assuming thatn is still 50, the string’foo(50)’ will be the result of theformat com-
mand, and this is the messageB will send toA. Finally, whenA gets the message and runs it, it
will call function foo with 50 as an argument.

It is interesting to note that, in our previous example,foo plays the role of acontinuation
for processA; that is, it encompasses whatA wants to do upon receiving the value ofn. This
continuation-passing style of programming is very frequent in ALua. It allowsA to wait for its
answer without blocking. Between the timeA sends its message toB and the time it gets its
result,A is free to handle any other incoming event.

Another useful way to structure a program in ALua is as a state machine. To illustrate this
technique, let us suppose agentA needs to send a message to two other agents,B andC, and then
terminates its own execution when it receives acknowledgment from both of them. A script for
that task follows:
function firstAnswer ()
answer = secondAnswer

end

function secondAnswer ()
print("The End")
exit()

end

answer = firstAnswer

alua.send({"B", "C"}, "alua.send(’A’, ’answer()’)")

WhenA runs this code, it sends toB andC the messagealua.send(’A’,’answer()’)
which makes bothB andC send the messageanswer() back toA. WhenA receives the first
answer, it will call functionfirstAnswer, which is the current value of variableanswer.
This function changes the value of the variableanswer, so that the next message will call
secondAnswer, and finally finish the execution ofA.

Typically, when we run an ALua program, we create a “console agent”, that simply opens
an interactive console to the user, and executes any command typed into the console. Through
this console, a user has the means to dynamically add or change functionality in other processes.
For instance, let us suppose we have several agents running a program, and they all send their
output through functionprint. Now, the user decides to redirect the output from all processes
into its own console, prefixing each output message with an identification of its origin. All she
has to do is to type the following code into her console:
prog = [[
print = function (msg)
alua.send("A",

format("print(’%s: %s\n’)", alua.myname, msg))
end

]]

alua.send(all, prog)

(The double square brackets[[...]] work as literal-string delimiters, mostly like dou-
ble or single quotes, but they allow the string to span several lines.) Each process will even-
tually receive and run the codeprog, which will redefine itsprint function. This new
print function, when called, sends to processA (which runs the console) a message like
print(’processname: msg’).

The beauty of this facility is that the user does not need to anticipate such a change, and
does not need to stop the program. The interpreted language allows her to change the program
on the fly, with new code created on the fly.

3 MULTIPLE COMMUNICATION CHANNELS

In the original ALua architecture, a single callback function is employed for any message ar-
riving for a given agent. Because messages contain arbitrary Lua code, the use of a single

callback that executes this code has proved to be quite flexible in a range of applications [9].
However, looking at the demands of multimedia distributed applications, we identified the need
for an agent to handle different messages in different ways. In such applications, processes typ-
ically exchange large data streams, and it would not be feasible to handle this exchange though
messages containing Lua code. On the other hand, many of these applications would greatly
benefit from ALua’s facilities for code distribution and runtime configuration. We thus decided
to extend the basic ALua model and allow it to define different handlers for different messages.

One important characteristic of the ALua model is its single-threaded execution model. This
model imposes a programming discipline on the ALua programmer: The code invoked when a
message is received must not execute blocking operations. If it does, the system will become
blocked and will not handle new incoming events. When extending the ALua model to deal
with data streams, this was an important consideration. The new architecture should maintain
an event-oriented approach throughout the handling of all communication.

Once we had identified the need to handle different messages in different ways, the obvious
question was how to associate messages to handlers. One convenient way to specify that a mes-
sage is to receive a certain treatment (or service) is through the use ofcommunication channels
[13, 14]. In the new ALua architecture, communication channels became objects that the ALua
programmer can manipulate. An agent may now define as many communication channels as it
needs and associate different callback functions to each of them. The event loop now observes
the status of a set of communication channels, and triggers the callback functions associated to
the ones that need handling. One channel — called thecontrol channel — is regarded as having
a distinguished status, maintaining the original function of exchange of Lua code. We will use
the expressionMulti-channel ALua to distinguish the new ALua architecture from the original
one. Figure 1 sketches a possible configuration for an application running on Multi-channel
ALua.

agent 3

agent 1 agent 2

communcation channel

control channel

Figure 1: Agents using several communication channels.

The communication channels are implemented through LuaSocket [15]. LuaSocket is a
library that exports Berkeley sockets to Lua. Integration with the LuaSocket library allows Lua
code to manipulate sockets directly through a simplified interface. Our implementation of the
ALua agent is itself mostly written in Lua with calls to LuaSocket, and the ALua programmer
may also directly access the library if she so wishes.

A set of new ALua functions provides the programmer with the ability to manipulate chan-
nels. Functionalua.new_srvchannel creates a new TCP server channel. It receives as ar-
guments the port to which this channel must be bound and four callback functions:onConnect,
onRead, onWrite, andonClose. When a new connection arrives at this channel, a new
communication channel will be set up between the contacted and contacting agents. Function

onConnectwill then be triggered. The three other functions passed toalua.new_srvcha-
nnel are automatically defined as callbacks for the new communication channel.

Functionalua.new_channel creates a client connection to a TCP server. Besides a port
and host, this function receives as parameters three callback functions —onRead, onWrite
andonClose — that are to be invoked whenever the new channel is ready for reading, writing
or when it is about to be closed. Functionalua.set_handler allows the programmer to
change the callbacks associated with a given communication channel at any point of execu-
tion. Functionalua.close_channel will trigger theonClose function associated with
the communication channel passed as a parameter, and close its connection. Finally, function
alua.send has been changed to accept not only an agent’s name, but also a communication
channel as its first parameter.

In order to illustrate the use of communication channels, Figure 2 presents a simple multi-
channel ALua program.

In this example, we show a client/server application, where the server basically sends the
string “Hello!” through a communication channel. The ALua server creates theClient agent
and sends through the control channel a message initializing some of its variables, followed by
the code the client is going to execute (lines 24-29). Functionalua.spawn is asynchronous
and its second parameter is a callback function that will be executed only after the new agent is
created and properly running. This prevents that messages are sent before the new agent is ready
to receive them, without making the server wait for the client’s creation to continue executing
its code.

The server will then create a server TCP channel and define functionConnectFunc as the
connect callback on this channel (lines 32-37). When the client creates a new connection, this
will triggered functionConnectFunc on the server. When this happens, a new communica-
tion channel will be set up between server and client, and the server will finally send the string
“Hello!” through this channel. After this, the server will again wait for a communication or
control event.

On the other side, when the client receives its code (lines 4-13), it will create a TCP con-
nection to the server and associate functionreadFunc as the read callback on this channel.
When the communication channel is ready for reading, functionreadFunc will be called and
the stringClient received Hello! will be displayed on the screen (line 6) and, using the control
channel, the client will send the codeExit() to the server (line 8), so that the server can
terminate the program execution.

The new architecture makes ALua appropriate for applications which must transfer large
streams of data because the receiver can invoke potentially blocking input operations inside a
callback that is triggered only when there is data available to be read. This avoids the need for
blocking on IO operations.

4 USING MULTIPLE CHANNELS

ALua’s communication model, in which messages are regarded as chunks of Lua code, provides
support for what is sometimes calledweak code mobility [2]: the ability of an execution unit in
a site to be bound dynamically to code coming from a different site.

A major asset provided by code mobility is servicecustomization [16]. In conventional
distributed systems that follow the client-server paradigm, servers provide an a priori fixed set
of services accessible through a statically defined interface. It is often the case that these sets of
services, or their interfaces, are not suitable for unforeseen client needs. A common solution to

1 PORT = 6020
2
3 client_code = [[
4 do
5 local readFunc = function(ch, buffer)
6 print("Client received " .. buffer)
7 alua.close_channel(cchannel)
8 alua.send(alua.myparent,"Exit()")
9 end
10 cchannel = alua.new_channel(HOSTNAME, PORT,
11 readFunc, nil)
12 print("Client is ready.")
13 end
14]]
15
16 function Exit(hosts)
17 alua.close_channel(schannel)
18 alua.exit_all()
19 print(’The End’)
20 exit()
21 end
22
23 do
24 alua.spawn({"Client"}, function (hosts)
25 local defines=format("PORT = %d; HOSTNAME = ’%s’",
26 PORT, alua.localhost)
27 alua.send("Client", defines)
28 alua.send("Client", client_code)
29 end)
30
31 -- Server Code
32 local ConnectFunc = function(ch)
33 alua.send(ch,"Hello!")
34 alua.close_channel(ch)
35 end
36 schannel = alua.new_srvchannel(PORT, ConnectFunc,
37 nil, nil, nil)
38 print("Server is ready.")
39 end

Figure 2: A simple multi-channel ALua program.

this problem is to upgrade the server with new functionality, thus increasing both its complexity
and its size without increasing its flexibility.

The ability to request the remote execution of code helps to increase server flexibility with-
out affecting the size and complexity of the server. In this case, in fact, the server actually
provides very simple and low-level services that seldom need to be changed. The client can
compose services to obtain a customized high-level functionality that meets its specific needs
[16].

In the same way, components that are able to link code dynamically can extend the types of
interaction they support, increasing system flexibility. TheCode on Demand paradigm enables
the components to retrieve code from other remote components, providing a flexible way to
extend dynamically the behavior of a component [2].

Active networks is one area that can benefit from this type of flexibility [17]. One of its
primary goals is to facilitate network evolution [18]. The ability to inject new code into de-
vices, possibly built on top of a set of existing services, provides systems with the flexibility of
evolving in unanticipated ways.

In ALua, the agents are able to link code dynamically, extending the types of interaction they
support. As we discussed in the previous section, when a channel is created in ALua, the user
can associate callbacks with some events. Any agent can dynamically change these callbacks.
This ability adds to the system a flexible and powerful configuration mechanism. One agent
can send to other agent(s) a chunk of code, defining a function, and the code to associate this
new function with a channel callback. In this way, it can change the behavior of the channel to
which it is connected, according to its needs.

In order to illustrate dynamic redefinition of callbacks in ALua, we present in Figures 3 and
4 a client-server application that sorts a sequence of numbers. Due to space restrictions, we left
the initialization code of the agents out.

In Figure 3, the server creates a TCP channel and defines functionsConnectFunc,Read-
Func, andWriteFunc as the connect, read and write callbacks on this channel (lines 40-41).
A new client connection will trigger functionConnectFuncon the server. When this happens,
a new communication channel is set up between server and client, and the server initializes some
data structures to manage the data exchange in that channel (lines 2-3). The server also defines
a default sort function that will be used to sort the data exchanged via this channel (line 4). The
client can change this function at any moment (as we will show later).

Whenever the client sends some data over the new channel, functionReadFunc will be
triggered on the server. This function will insert the received data in the set associated with this
channel (ch.dataSet), unless an EOS (end of sequence) terminator is received. In this case,
the server will sort the data received in that channel and set a flag (ch.haveData) indicating
that the sequence is already ordered (lines 7-15).

Whenever a channel is immediately available for writing, the function associated with write
events is called. In our example, functionWriteFunc will start to send the sorted sequence
back to the client, one number at time, after the flagch.haveData is set. When there is no
number left to be sent, the server closes the channel (lines 17-25).

Figure 4 presents the client code. The client creates a TCP connection to the server and
defines functionsReadFunc, WriteFunc, andFinalFunc as the read, write and close
callbacks on this channel. The client also sets the sorting algorithm that will be used on the
server. In our implementation, we use three sorting algorithms. The first one, implemented in
the server, is an exchange sort implementation. The two others are mergesort and quicksort

1 function ConnectFunc(ch)
2 ch.haveData = nil
3 ch.dataSet = {}
4 ch.Sort = sort
5 end
6
7 function ReadFunc(ch, data)
8 local value = tonumber(data)
9 if (value ~= EOS) then
10 tinsert(ch.dataSet, value)
11 else
12 ch.Sort(ch.dataSet, 1, getn(ch.dataSet))
13 ch.haveData = 1
14 end
15 end
16
17 function WriteFunc(ch)
18 if (ch.haveData) then
19 alua.send(ch, tostring(ch.dataSet[1]))
20 tremove(ch.dataSet, 1)
21 if (getn(ch.dataSet) == 0) then
22 alua.close_channel(ch)
23 end
24 end
25 end
26
27 function sort(a, low, high)
28 local minv, pos
29 for i = 1, high do
30 minv = a[i]; pos = i
31 for j = i, high do
32 if (a[j] < minv) then
33 minv = a[j]; pos = j
34 end
35 end
36 a[i], a[pos] = a[pos], a[i]
37 end
38 end
39
40 server = alua.new_srvchannel(port, ConnectFunc,
41 ReadFunc, WriteFunc, nil)
42 print("Server is ready")

Figure 3: Sorting a sequence of numbers: Server code

[19, 20]. The client chooses the sorting algorithm based on the value of thesortalg variable,
which receives a random value when the master agent creates each client. ThedataSet
variable contains the sequence to be sorted, while theordSet variable will contain the ordered
sequence sent by the server.

Before sending the sequence of numbers to the server, the client decides whether it is going
to redefine the server’s default sorting algorithm or not (based onsortalg). Depending on the
value of the variablesortalg, the client will choose a new sort algorithm among mergesort,
quicksort in ascending order or quicksort in descending order (lines 30, 33, and 36).

The quicksort algorithm is implemented to sort the sequence in ascending order, but the
client can redefine thecompare function to sort the sequence in descending order (lines 37-
39).

To redefine the sorting function of a channel, the client uses functionalua.addFunction
(lines 31, 34, and 40). This function is to be executed in the server and receives four parameters.
The first two are the Internet address (IP) and the port that identifies this channel. The third pa-
rameter is the field of this channel that is to be redefined, and the last parameter is a string that
defines the new function.

If the client decides to change the sorting algorithm for its channel, it will send a control
message to the server with the corresponding code (line 43-45).

When a write event happens, theWriteFunc function will be trigged and the client will
send a number of the sequence to the server (lines 5-14). After the whole sequence has been
sent (line 8), the client sends a EOS (end of sequence) value to the server (line 9) and sets a
terminator indicating the end of the sequence (line 10). When the communication channel is
ready for reading, functionReadFunc will be trigged and the value received from the channel
will be saved in theordSet variable (line 2). Finally, when the communication channel is
about to be closed, functionFinalFunc will be trigged and the values kept in theordSet
variable will be printed (lines 16-23).

We can extend the ideas used in this small example to a more realistic setting in the context
of a multimedia application. To do this, we report to the work of Baldi and colleagues [21],
who investigate the benefits that mobile code and active networks may bring to the application
domain of videoconferences. The architecture they propose relies on three points in order to
provide customization and scalability. The first of these points, and the one most related to
mobile code facilities, is enabling the user to “upload” application code into the server, thus
changing its behavior andcustomizing it to her needs. This facility would be directly available
in any application developed with ALua: The multiple channel architecture allows different
code and behavior to be defined by each client that connects to the server. The possibility of
defining new functions to be used for reading and writing data to sockets allows even buffering
and discarding to be defined on a per-channel basis.

Although the other points in Baldi’s architecture are not strongly related to the focus of
this paper, it is interesting to observe how ALua stands in regard to them. The second point,
more related to active networks, is running the server on intermediate nodes of the network,
where it can use the information managed by the device to become aware of the status of the
network andadapt to it; doing this in ALua would, of course, depend on support for running
Lua at intermediate nodes. Lua would be an appropriate tool for this purpose, since it is small
and has a small memory footprint. Besides, Lua is extremely easy to interface with existing
services, and can be used as a glue language between predefined components [10]. Also, the
event-driven nature of ALua makes it convenient to write applications that receive notifications

1 function ReadFunc(ch, data)
2 tinsert(ordSet, data)
3 end
4
5 function WriteFunc(ch)
6 if (haveData) then
7 alua.send(ch, tostring(dataSet[i]))
8 if (i == getn(dataSet)) then
9 alua.send(ch, tostring(EOS))
10 haveData = nil
11 end
12 i = i + 1
13 end
14 end
15
16 function FinalFunc()
17 local str = format("%d", ordSet[1])
18 for i = 2, getn(ordSet) do
19 str = format("%s, %d", str, ordSet[i])
20 end
21 print(format("sorted array [%s]", str))
22 alua.exit()
23 end
24
25 dataSet = {310, 285, 179, 652, 351, 423, 861, 254, 450, 520, 310}
26 i = 1; ordSet = {}; haveData = 1
27 ch = alua.new_channel(host, port, ReadFunc, WriteFunc, FinalFunc)
28
29 local code; local ip, p = ch:getsockname()
30 if (sortalg == "quicksort") then
31 code = format("alua.addFunction(’%s’, %d, ’Sort’, %s)",
32 ip, p, quicksortDef)
33 elseif (sortalg == "mergesort") then
34 code = format("alua.addFunction(’%s’, %d, ’Sort’, %s)",
35 ip, p, mergesortDef)
36 elseif (sortalg == "qsm") then
37 code = [[compare = function(a, b)
38 return a < b
39 end]]
40 code = code..format("alua.addFunction(’%s’, %d, ’Sort’, %s)",
41 ip, p, quicksortDef)
42 end
43 if (code) then
44 alua.send(server, code)
45 end

Figure 4: Sorting a sequence of numbers: Client code

about necessary adaptations. The third point in Baldi’s design principles is enabling the server
to migrate to a different node as a consequence to adaptation. Although ALua processes cannot
explicitly migrate, it is easy to write an application in which the server sends its state and code
to another ALua process.

5 EXPERIENCE WITH RTP

To experiment with Multi-channel ALua, we have integrated an RTP library to it. RTP (Real-
time Transport Protocol) was developed in the Audio-Video Working Group of the IETF, and
has been published as an RFC [22]. RTP provides end-to-end network transport functions
suitable for applications transmitting real-time data, such as audio, video or simulation data,
over multicast or unicast network services. RTP does not address resource reservation and does
not guarantee quality-of-service for real-time services. The data transport is augmented by a
control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large
multicast networks, and to provide minimal control and identification functionality [22].

We used an RTP library that was developed at Lucent Technologies and is freely distributed
[23]. The library provides a high level interface for developing applications that make use of
RTP and offers a large number of functions. Only a few of those have been incorporated in this
first experiment with Multi-channel ALua.

The RTP functions we added to ALua include functions for initializing the library, setting up
addresses on which RTP data should be sent and received, and actually sending and receiving
data. The core functionality of the protocol is implemented by functions which receive as a
parameter the data that has been read from a socket. In our ALua+RTP agent, the read callback
function associated with an RTP socket reads the data from the socket and then invokes the
appropriate RTP library function. In this way, the RTP library functions, originally designed to
be invoked in a synchronous environment, and the ALua programming model were integrated.

This integration of RTP into ALua environment enables the agents to exchange real-time
data with each other. To experiment with Multi-channel ALua and RTP, we have set up a
sample video application. This application involves servers, which hand out JPEG streams
obtained in real time, clients, which receive such streams and display them on the screen, and
proxies, which are clients that are capable of forwarding the received data to other clients.

A master ALua agent controls the application. As execution progresses, this agent spawns
ALua agents on participating machines and configures them, using the control channel, to act
as servers, clients, or proxies.

The servers obtain real time JPEG streams from a SunVideo subsystem [24]. The SunVideo
subsystem is a real-time video capture and compression subsystem for Sun SPARCstations,
which captures, digitizes, and compresses video signals from video sources such as video cam-
eras. It is designed to work closely with applications that use the facilities of the XIL Imaging
Library, which in turn provides functions to decompress and display video [25].

In our experiments we are using JPEG baseline sequential. The agents are running in Sun
and Linux platforms. The agent configured as server captures the video, compresses it and
sends it across the network to other agents. The clients receive the data and use XIL routines
to decompress and display the data, reconstructing the image. Besides displaying the received
data, the clients can forward the data, acting as proxies. We are using unicast communication
to transfer the data flows between the agents.

Figure 5 shows a diagram of the architecture used in this experiment. We have not shown
the control channels, as they are always available between any two agents. We have yet to

investigate this application further, tackling situations that demand more of the flexibility it
offers and measuring performance. However, this initial experiment showed that the new multi-
channel architecture results in an easy-to-use distributed programming tool that fits in well with
real time video applications.

JPEG

XIL functions

JPEG
datadata

+ XIL functions + display
SUNVideo card

client agentserver agent

client agent

proxy agent

XIL functions
+ display

JPEG
data

RTP session

RTP session

RTP session

Figure 5: Agents exchanging control information and RTP messages.

6 PERFORMANCE OF MULTI-CHANNEL ALUA

To get a rough estimate of the performance of Multi-channel ALua, we ran a very simple ex-
periment, in which an ALua program downloads a file from a server written in C and writes
the received data to a new file. We compared the execution time of this ALua program to that
of an equivalent program written in C and also to that of a third program written in standard
(sequential) Lua.

We measured the execution time for this program and its C and Lua counterparts, down-
loading a file with approximately 80 megabytes. The results are shown in Table 1.

The observed performance of the ALua agent was very good. The average running time of
the ALua program is less than 10% more than that of its C counterpart. The overhead of the
event-driven model, in which a callback function is invoked each time new data is detected on
the socket, is also very small, as can be seen by comparing the execution times of the sequential
Lua program to that of the ALua agent.

Average (sec) Standard Deviation
C 26.3 0.3

Sequential Lua 27.9 0.2
ALua 28.7 0.3

Table 1: Execution times for clients downloading an 80Mb file.

As mentioned in the beginning of this section, this is a simple experiment and can only give
us a general idea of Multi-channel ALua’s performance. We must now extend our performance
measures, mainly conducting experiments with more realistic settings, involving multimedia
applications such as the one we described in Section 5.

7 FINAL REMARKS

In this work we discussed an architecture that allows a single-threaded application to deal con-
currently with different streams of information and control. The implementation of the Multi-
channel ALua system follows this architecture, associating the flexibility of transmitting Lua
code through a main control channel to that of allowing the programmer to define functions for
handling data streams on secondary channels.

The ability of an ALua agent to link code dynamically and redefine callbacks associated
with channels adds to the system a flexible and poweful configuration mechanism. The user can
change channel behavior and, in this way, customize the service according to her necessities.
The customization can take place at different levels: The programmer may define a specific
behavior for each channel or a single behavior to be used by the agent in any of the channels it
establishes.

The integration of Multi-channel ALua with an RTP library allowed us to experiment with
the architecture we proposed and observe its suitability in a multimedia application. The per-
formance of Multi-channel ALua, although observed only in a preliminary experiment, appears
to be quite promising.

We are now working on more elaborate experiments involving Multi-channel ALua and
RTP. The development of different multimedia applications exploiting the potential of code mo-
bility in terms of user customization will allow us both to conduct more elaborate performance
measures and to evaluate the current programming interface.

REFERENCES

[1] A. Oram, Ed.,Peer-to-Peer : Harnessing the Power of Disruptive Technologies, O’Reilly,
2001.

[2] A. Carzaniga, G. Picco, and G. Vigna, “Designing distributed applications with a mo-
bile code paradigm,” inProceedings of the 19th International Conference on Software
Engineering, 1997.

[3] U. Saif and D. Greaves, “Communication primitives for ubiquitous systems or RPC con-
sidered harmful,” inProceedings of the International Workshop on Smart Appliances and
Wearable Computing (IWSAWC), Mesa, Arizona, 2001, Held in conjunction with the 21st
IEEE Intl Conf. on Dist. Computing Systems.

[4] J. Ousterhout, “Tcl: an embeddable command language,” inProc. of the Winter 1990
USENIX Conference. USENIX Association, 1990.

[5] V. Paxson and C. Saltmarsh, “Glish: a user-level software bus for loosely-coupled dis-
tributed systems,” in1993 Winter USENIX Technical Conference, 1993.

[6] E. Denti, A. Natali, and A. Omicini, “On the expressive power of a language for pro-
grammable coordination media,” 1998.

[7] G. Cabri, L. Leonardi, and F. Zambonelli, “Reactive Tuple Spaces for Mobile Agent Coor-
dination,” inProceedings of the 2nd International Workshop on Mobile Agents, K. Rother-
mel and F. Hohl, Eds. 1998, vol. 1477, pp. 237–248, Springer-Verlag: Heidelberg, Ger-
many, citeseer.nj.nec.com/cabri98reactive.html.

[8] B. Johanson and A. Fox, “Tuplespaces as coordination infrastructure for interactive
workspaces,” inProceedings of UbiTools’01 Workshop, 2001, Held in conjunction with
the Ubiquitous Computing Conference (UBICOMP).

[9] C. Ururahy and N. Rodriguez, “ALua: An event-driven communication mechanism for
parallel and distributed programming,” inPDCS’99, Fort Lauderdale, Florida, 1999.

[10] R. Ierusalimschy, L. Figueiredo, and W. Celes, “Lua—an extensible extension language,”
Software: Practice and Experience, vol. 26, no. 6, pp. 635–652, 1996.

[11] L. Leite, R. Alves, G. Lemos, and T. Batista, “DynaVideo - a dynamic video distribution
service,” in6th Eurographics Workshop on Multimedia, Manchester, UK, 2001.

[12] V. Barbosa,An Introduction to Distributed Algorithms, The MIT Press, 1996.

[13] G. Andrews, “Paradigms for process interaction in distributed programs,”Computing
Surveys, vol. 23, no. 1, pp. 49–90, 1991.

[14] G. Andrews and A. Schneider, “Concepts and notations for concurrent programming,”
1983.

[15] D. Nehab, “Luasocket: IPv4 sockets support for the lua language,”http://www.
tecgraf.puc-rio.br/~diego/luasocket/.

[16] G. Vigna,Mobile Code Technologies, Paradigms, and Applications, Ph.D. thesis, Politec-
nico di Milano, Milano, Italy, Feb 1998.

[17] K. Psounis, “Active networks: Applications, security, safety, and architectures,”IEEE
Communications Surveys, pp. 1–16, First Quarter 1999.

[18] M. Hicks and S. Nettles, “Active networking means evolution (or enhanced extensibility
required),” inSecond International Working Conference on Active Networks (IWAN 2000),
Tokyo, Japan, Oct. 2000, pp. 16–32, Springer-Verlag, LNCS 1942.

[19] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms, McGraw-Hill, 1997.

[20] D. Knuth, The Art of Computer Programming - v. 3 Sorting and Searching, Addison-
Wesley, 1998.

[21] M. Baldi, G. Picco, and F. Risso, “Designing a Videoconference System for Active Net-
works,” in Proceedings of Mobile Agents: 2nd International Workshop MA’98. 1998, pp.
273–284, Springer-Verlag, LNCS 1477.

[22] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacoson, “RTP: A transport protocol for
real-time applications,” RFC 1889, Jan 1996.

[23] “Rtplib,” http://www.bell-labs.com/project/RTPlib/.

[24] Sun Microsystems Computer Corporation,Sun Video User’s Guide, Aug 1994.

[25] “Xil imaging library,” http://www.sun.com/software/imaging/XIL/xil.
html.

