
Enhancing Performance of the Bluetooth Wireless Channel

Through Dynamic Segmentation
*

Carlos M. Cordeiro and Dharma P. Agrawal

Center for Distributed and Mobile Computing, ECECS

University of Cincinnati, Cincinnati, OH 45221-0030 - USA

{cordeicm, dpa}@ececs.uc.edu

Abstract

The emergence of Bluetooth as a default radio interface has allowed handheld

electronic devices to be instantly interconnected as ad hoc networks. Recent studies

show that since the Bluetooth standard operates in the unlicensed 2.45 GHz ISM

(Industrial-Scientific-Medical) frequency band, the presence of multiple piconets in

the vicinity creates interference on signal reception which, in turn, degrades the

overall throughput of the network. This type of interference generated by Bluetooth

piconets themselves is called intermittent interference, and it is a representative

source of error in the Bluetooth channel. In order to cope up with this interference

source, this paper proposes a sophisticated interference aware Bluetooth

segmentation algorithm, where Bluetooth packet types are selected depending on the

packet success probability, which is calculated based on the interference generated

by multiple piconets. Such a segmentation algorithm is based on a precise analytical

model, which is then compared with extensive simulation results. Among other

things, we show that when the number of bridge nodes are larger than five the

propagation delay between piconets increases rapidly. We have also observed a

drastic overhead in the current Bluetooth piconet switching procedure and conclude

that future enhancements to this procedure are crucial to efficiency of Bluetooth-

based ad hoc networking.

Keywords: Wireless Communication, Mobile Computing, Bluetooth, Ad hoc

Networks, Performance Evaluation.

1. Introduction

Bluetooth [1] is wireless communication technology that provides short-range, semi-

autonomous radio network connections in the 2.4GHz ISM (Industrial-Scientific-Medical)

band, and can establish ad-hoc networks, called piconets. This reduces any need for putting

wires between personal devices such as computers, keyboards, printers, mobile phones,

LANs, etc, within a small distance (up to 10m), hence offering added potential for a new

range of applications. It was also chosen to serve as the baseline of the IEEE 802.15.1

standard for wireless personal area networks (WPANs) [17], which can support both

synchronous traffic such as voice, and asynchronous data communications. As of this writing,

the development of the final standard is in its final stages.

The Bluetooth standard defines different packet types to adjust to different application

requirements. Those range from single unprotected 1-slot packet to FEC (Forward Error

Correction) encoded 5-slot packets. Ultimately, the application is responsible for selecting the

* This work has been supported by the Ohio Doctoral Enhancement Funds and the National Science Foundation

under grant No. CCR-0113361.

packet type which is best suited for its requirements, for instance, specifying its quality of

service parameters. In case of a real-time application FEC encoded packets could be chosen,

whereas in a non real-time application unprotected packets are the best option since they

provide higher effective throughput. It is the Bluetooth adaptation layer responsible to receive

messages from upper layers and segment them into small pieces of data to fit into a Bluetooth

standard packet for best utilization. Ideally, the adaptation layer should choose the best

suitable packet for transmission, both based on the application requirements and the wireless

channel condition. Furthermore, as per the current Bluetooth specification, this choice cannot

be static for the entire message due to dynamic nature of a wireless channel.

Recent studies [2, 13, 19] show that the presence of multiple piconets in the vicinity

creates interference on signal reception. Based on an analytical and simulation study, a

mathematical model for the packet success probability per Bluetooth slot has been derived

[2], which takes into account factors such as the network load, propagation-loss law and

shadowing, and showed that interference is a limiting factor in Bluetooth piconet throughput.

Furthermore, with increased transceiver sensitivity, it is likely that the number of piconets that

may interfere with each other will increase dramatically. This kind of interference, which has

on nearby piconets as its main source, is hereby defined as intermittent interference. Such a

definition is due to the frequency-hoped nature of the Bluetooth radio that generates

interference in an intermittent fashion.

This work draws on the results of [2] to elaborate and propose an algorithm called

IBLUES (Interference aware BLUEtooth Segmentation). IBLUES dynamically switches

between Bluetooth packet types as packet success probability, due to interference, increases

or decreases. This algorithm relies on the fact that packet success probability is inversely

proportional to interference levels in a short-rage wireless technology such as Bluetooth [2].

Moreover, as it will be shown later, it is the interference that is taken into account in deciding

the best suitable packet type. The rationale behind this algorithm is that a large packet

outperforms a small packet in a low error rate channel (low interference level) since it

possesses low overhead. On the other hand, small packets are best suitable when in a high

error rate channel (high interference level) once they are less likely to be corrupted. In order

to devise an accurate switching mechanism, IBLUES also takes into consideration

interference from an environment consisting of multiple piconets. As far as the authors know,

this is the first study that proposes a solution to mitigate and improve performance in face of

interference.

The remainder of this paper is organized as follows. Section two provides an introduction

to the Bluetooth technology highlighting its adaptation layer functionally. Next, section three

elaborates on the IBLUES algorithm through the development of an intermittent interference

model. Evaluation of the proposed algorithm through simulation is then given in section four.

Finally, this paper is concluded in section five.

2. Bluetooth Overview

The entire Bluetooth protocol architecture is defined in [1]. A brief summary will be given

here with special emphasis on its adaptation layer design issues. Bluetooth operates in a

Master-Slave concept whereby a device that is selected by the master may transmit whereas

others must wait for their turn. A message transmitted by any device is segmented into small

packets. The basic unit of segmentation is a 625msec long slot (see Figure 1), and, with a

1Mbps Bluetooth symbol rate, a slot can carry up to 625 bits. A TDD (Time Division Duplex)

scheme is employed where a Master and at most seven Slaves alternatively transmit, with the

Master transmitting in even numbered of slots and the Slaves in odd numbered slot, where

slots are numbered according to the master clock. In Bluetooth, the adaptation layer is located

at the L2CAP (Logical Link Control and Adaptation Protocol), which, in turn, resides in the

data link layer. As long as L2CAP is transmitting packets, it adopts a channel communication

model representing a data flow among L2CAP remote devices. Such channels may be

connection oriented or connectionless. The Bluetooth specification defines two distinct types

of links for the support of voice and data applications, namely, SCO (Synchronous

connection-oriented) and ACL (Asynchronous connectionless). The first link type supports

point to point voice switched circuits while the latter supports symmetric as well as

asymmetric data transmission. This work mainly considers the use of ACL links since the

L2CAP specification has been defined only for this link type [1]. Besides, most data

applications are expected to use this kind of link.

The ACL link allows the use of 1, 3, and 5-slot data packets with the optional use of FEC

(Forward Error Correction). Figure 1 shows the 1, 3 and 5-slot packet transmission in

Bluetooth. These ACL packet times are further distinguished whether they carry or not FEC

coding. DMx (data medium-rate) packets provide a 2/3 FEC Hamming code and DHx (data

high-rate) packets carry no FEC coding at all, where x = 1, 3, or 5, depending on the number

of slots it occupies. On one hand, DMx packets trade data efficiency for a greater probability

of successful transmission and can be useful in interference affected channels. On the other

hand, for more efficient transmission, Bluetooth defines DHx packets. Among these, DH5

packets are the most data efficient ones since they carry the largest amount of data for the

same amount of overhead (higher number of information bits per slot). Table 1 presents the

possible ACL link packet types with their respective maximum user information, whether or

not it carries FEC and the throughput achieved in both symmetric and asymmetric links.

Figure 1 – Packet transmission in Bluetooth

Table 1. ACL Packet Overview
Type User Payload

(bytes)

FEC Symmetric

(Kbps)

Asymmetric

(Kbps)

DM1 0-17 Yes 108.0 108.8 108.8

DH1 0-27 No 172.8 172.8 172.8

DM3 0-121 Yes 256.0 384.0 54.4

DH3 0-183 No 384.0 576.0 86.4

DM5 0-224 Yes 286.7 477.8 36.3

DH5 0-339 No 432.6 721.0 57.6

In our prior work [2], we have proposed a model to determine the packet success

probability between these packet types and the number of slot it occupies. Depending on the

success probability of the wireless channel, different packets lead to different performance

parameters. In a highly reliable channel (high success probability), we may start by using

DH5 packets since they offer the best throughput for the least cost. As the success probability

starts decreasing, DH3 packets might be more suitable once the packet error rate for DH5

packets increases faster than for DH3 packets. If the level of interference decreases, we may

go back to using DH5 packets, whereas if it increases we have to consider using DH1 packets

since they have a higher probability of success for higher error rates. In order to make this

scheme feasible, we have to define thresholds where the adaptation layer would switch to

625msec

1-slot packet

3-slot packet

5-slot packet

different packet types dynamically either according to the packet error rate or to the packet

success probability. Section 3 elaborates on this issue, where we consider both the network

load and the distance between the master and the slave of a piconet as parameters for our

adaptation algorithm.

Two other schemes have been proposed to adjust packet types based on the channel

condition. A mechanism is proposed [3] that chooses between FEC and non-FEC encoded

packets. In this work, we consider not only the use of FEC, but a rather broader approach to

switch between different slot packets according to error rate levels due to interference. A

more general scheme introduced in [4] considers different packet types, with switching

decisions based on only static parameters, and disregards interference influence on packet

success probability [2]. Furthermore, the evaluation was conducted for a single piconet case

only and multiple piconets environments were not considered. As we show later, our new

algorithm takes into account interference effects on packet success probability and, therefore,

provides an accurate and dynamic operation. The interference model we use takes into

account environments where interference arises from multiple piconets operating in the

vicinity. In accordance to that, the packet success probability is calculated based on the load

and the distance between the transmitter (e.g., master of the piconet) and the receiver (e.g.,

slave), which has been shown [7] to critically affect packet error rates.

3. The IBLUES Algorithm

3.1 Intermittent Interference Model

In Bluetooth, packet transmissions depend on the master’s clock and frequency hopping

sequences regardless of the state of other piconets operating nearby. As we have mentioned

earlier, our goal is to propose an interference aware algorithm, called IBLUES, which could

provide an ideal switching mechanism between packet types as the channel conditions varies

with time. The major goal of IBLUES is to optimize the number of slots used for the

transmission of a given message, thereby efficiently utilize the scarce bandwidth available in

the wireless channel. Large packets offer a high data rate but suffer from a higher error

probability and may be inappropriate for use due to frequent retransmissions. On the other

hand, small packets offer a lower data rate, however the success probability for these packets

is better.

In [2], the Bluetooth wireless channel is modeled in terms of the intermittent interference

effect on throughput. This model predicts the packet success probability per slot irrespective

of FEC. In this work, the packet success probability has been found to be:

,
2

),(
),(

2

0
0

2

2

ñ
¤

¤-

-

-

= rGJ

S e
e

drGP
x

s
x

sp
x

where

.

1

2

2
),(

1

0

1

2

0

2

2

ññ
¤

--

¤

¤-

-

öö
÷

õ
ææ
ç

å
+

= h
x

s

sp
x

r

r
eb

rdre
dxrJ

x

x

As we can see from (1), the Bluetooth packet success probability (PS) depends on the

interfering traffic load G, and on the distance between the transmitter and the receiver r0,

(1)

(2)

hereafter referred simply as r. The other parameters mainly model multipath fading,

shadowing and the effect of interference into PS. In this context, x is a Gaussian random

variable with zero mean and variance s2
, h is the propagation loss exponent, and b is the

system dependent capture threshold, where both the Gaussian (log-normal) attenuation

variable x and the shadowing parameter s are given in dB. For this work, we will consider the

Bluetooth common values for these parameters [2], namely: h = 4, b = 6 dB, and s = 0 dB.

Moreover, we will also redefine PS(G, r) as equal to PS(X, G, r) where X is the Bluetooth

packet type (see Table 1). As defined in [2], PS(G, r) = PS(DH1, G, r) which turns out to be

our base case. This result of PS(X, G, r) assists us in defining a precise switching mechanism

between different packet types, according to the packet success probability. Hence, given a

Bluetooth packet X we can define

slotsizeXketslotperpac

Xitspayloadinb
Xefficiency

³+
=

)1)((

)(
)(

where payloadinbits(X) is the maximum amount of information in bits for packet type X, for X

= DM1, DH1, and so on (see Table 1), (slotsperpacket(X) + 1), as the name suggests, is the

number of slots occupied by X plus one for the acknowledgment, and slotsize is the size of a

slot. In other words, efficiency(X) measures the number of user bits per slot in comparison to

the size of the slot in bits for a given Bluetooth packet X. Table 2 lists the values, obtained

through (3), for the efficiency of different Bluetooth packet types. Equations (1) and (3)

enable us to define UB(X, G, r), the useful bandwidth for a given packet type X, as being

equal to:

dwidthnominalbanXefficiencyrGXPrGXUB S ³³=)(),,(),,(

Table 2. Bluetooth Packet Efficiencies

Packet Type Efficiency

DM1 0.10

DH1 0.17

DM3 0.39

DH3 0.59

DM5 0.48

DH5 0.72

From (4), nominalbandwidth is roughly equal to 1Mbps for Bluetooth [1], and

efficiency(X) is obtained from (3). Note that the values for efficiency(X) can be easily

calculated, however we still need to obtain PS(X, G, r) for all Bluetooth packets X. For

example, if, for a given device i, PS(DH5, Gi, ri) = 0.7 and PS(DH3, Gi, ri) = 0.8, then we have

that UB(DH5, Gi, ri) = 0.50 Mbps and UB(DH3, Gi, ri) = 0.47 Mbps considering a bandwidth

of 1 Mbps. In this case, using DH5 packets is a better choice since they offer a higher useful

bandwidth. In order to calculate PS(X, G, r) for different packet types, let us define a refined

view of it by expressing it in terms of the channel bit error rate (BER). We can define PS(X,

G, r) as:

PS(X, G, r) = (1- BER(X, G, r))
payloadinbits(X)

where payloadinbits(X) is the payload field length in bits of packet X. If we consider a long

period of time, we can assume that BER(X, G, r) is uniform for any Bluetooth packet X under

the same load G and distance r. With this assumption, we can interpolate (5) to compute the

(4)

(3)

(5)

packet success probability for a different packet Z in terms of the BER resulted. Thus, for

packet Z we have that:

PS(Z, G, r) = (1- BER(Z, G, r))
payloadinbits(Z)

= (1- BER(X, G, r))
payloadinbits(Z)

= (1- (1 - PS(X, G, r)
1/payloadinbits(X)

)
payloadinbits(Z)

= PS(X, G, r)
payloadinbits(Z)/payloadinbits(X)

Using (6), we can calculate the packet success probability of any Bluetooth packet type

based on our base case PS(G, r) = PS(DH1, G, r). This enables us to precisely define IBLUES

switching algorithm. Simply stating, IBLUES dynamically evaluates PS(X, G, r), easily

implemented in software, and then UB(X, G, r) through (6) and (4) respectively, and finally

decides whether to switch between packet types as it reaches a threshold. Our task now is to

find the adequate thresholds. One simple and efficient approach would be to define the

thresholds where UB(X, G, r) = UB(Y, G, r), for X ¸ Y. Figure 2 presents the UB curves for

suitable values of G, having the distance r = 5m. From this figure we observe that under low

interference level G (e.g., scatternet comprised of only two piconets), UB(DH5, G, r) has a

higher value compared to all the other packets types and, thus, DH5 packets should be used.

However, once G becomes higher than 0.26 and, as a consequence, the error probability

increases, the algorithm should switch to DH3 packets once they offer better performance

under such interfering traffic load. DM3 packets do offer higher useful bandwidth for certain

load and distance values.

Figure 2 – Useful bandwidth for different packet types under increasing interfering load

Figure 3 depicts the state transition diagram built from the data of Figure 2 in terms of the

packet success probability PS(X, G, r). As Figure 2 illustrates, packets DM5 and DM1 never

offer higher useful bandwidth as compared to DHx packets, and that is why they are not

included in the state transition diagram of Figure 3. On the other hand, DM3 packets showed

to offer the highest useful bandwidth when the PS(DH3, 0.61, 5) < 0.80. This result for DM3

packets is of importance since other studies [4, 5, 6], that do not take interference effects on

performance into consideration, assume they do not offer higher throughput at any instant in

time as compared to DHx packets. According to our analysis, this assertion is only true for

DM1 and DM5 packets.

(6)

Similarly to equation (4), we can obtain the aggregate useful throughput of a network

comprised of N piconets as:
1

)1)((

))()((2
1),,(),,(

-

ù
ú

ø
é
ê

è
³³+

+³
-³³=

N

CslotsizeXcketslotsperpa

XackinbitsXitspayloadinb
NrGXUBrGXAggUB

In equation (7), ackinbits(X) represents the size of the acknowledgment packet X in bits,

and C is the number of available frequency channels which, in most countries, is equal to 79

[1]. In Bluetooth, a transmission of a DMx and DHx packet is followed by an

acknowledgement from the recipient in the opposite direction. The acknowledgement

information is included in the header of the return packet, so called piggy-backing. In our

analysis, we consider the common case where acknowledgements do not carry payload

information, therefore making ackinbits(X) in equation (7) always equal to 126 bits [1]. Figure

4 illustrates the aggregate useful bandwidth for an increasing number of piconets, under load

G = 0.3 (30%) and average distance r = 5m. From Figure 4 we see that each packet type

achieves its maximum aggregate useful bandwidth (MAUB) for a different number of

piconets, what suggests and confirms our approach that different packets are best suitable

under different scenarios. For instance, we can see that DH3 packets achieve its MAUB of

approximately 8.17 Mbps when there are 61 piconets in the network. Thus, equation (7) is an

important result that enables us to obtain the aggregate useful bandwidth under any

combination of packet type, load and distance.

Figure 3 – State transition diagram for Figure 2 data

Figure 4 – Aggregate useful bandwidth under load of 30%

for an increasing number of piconets

PS(DH5) < 0.73 PS (DH3) < 0.80 PS (DM3) < 0.85

DH5 DH3 DM3 DH1

PS (DH3) > 0.51 PS (DM3) > 0.76 PS (DH1) > 0.63

(7)

3.1.1 Load and Distance Determination

We now have to address the issue of dynamically determining the interfering load G from

neighboring piconets in a given scatternet, and the distance r between the receiver (e.g., slave)

and transmitter (e.g., master), which are both used as input to the packet success probability

PS(X, G, r). In IBLUES, the master of the piconet is responsible for acquiring the neighboring

load and the distance information between itself and the selected slave, calculating the most

suitable packet type according to our model, and sequentially propagating the resulting packet

type to the slave as soon as it is polled. Two main questions arise here: first, what is the

metric used by the master to determine the load and its distance from the polled slave; and

second, how this information is relayed to the slave so that it can adhere to the adaptation

algorithm requirements.

To measure the load, the most obvious choice is the queue length. Thus, the interfering

load G in a piconet is computed by summing up the queue lengths from the devices of the

piconets which are its neighbor, and have a common bridge node interconnecting them.

IBLUES assumes that all devices have equal maximum queue lengths. In order to compute

the load, we have created a new Bluetooth link manager packet called LOAD_UPDATE. This

special packet is exchanged between piconet masters through bridge nodes. These

LOAD_UPDATE packets have a logical two-hop lifetime, that is, one hop from the piconet

master to the bridge node, and one last hop from the bridge node the respective master in the

other piconet. To illustrate this better, consider the typical scatternet of Figure 5 composed of

four piconets, where each piconet has several slaves (indicated by the letter Si,j) and one

master (indicated by the letter Mi). For example, in piconet 1, the master M1 keeps track of its

current piconet load by maintaining a weighted moving average of the past transmission loads

for each of its slaves. At each inter load-update (ILU) time (measured in seconds), it

schedules an event to send this load information encapsulated in a LOAD_UPDATE packet to

its bridge nodes S1,2 and S1,3. This event is scheduled only if there are no pending events in

the queue for S1,2 and S1,3, and is fired as soon as these slaves are polled. If this is the first

transmission of a LOAD_UPDATE packet, meaning that M1 does not yet know its bridge

nodes, it simply broadcasts the packet. Upon receiving the packet, the bridge nodes S1,2 and

S1,3 switch to piconets 2 and 4 respectively and convey the LOAD_UPDATE packet to the

corresponding masters M2 and M4. As soon as M2 and M4 receive the LOAD_UPDATE

packet, they first record the incoming address of the slaves as being bridge nodes addresses

and next retrieve the information within the packet to update its own average interfering load

G, sequentially discarding the LOAD_UPDATE packet. In other words, only direct neighbors

of a piconet receive load information. Therefore, loops are prevented and LOAD_UPDATE

packets do not roam forever, thus keeping a low overhead. Masters M2 and M4 will eventually

schedule its own LOAD_UPDATE packet which when received by M1 and M3, will enable

them to figure out who their bridge nodes are and update their load G. In case a master does

not hear LOAD_UPDATE packets from its slaves, it assumes that no scatternet is formed and

stops generating LOAD_UPDATE packets for a random time, currently of about 3 and 5

minutes. Last, but not least, an important remark has to be made about the reason behind

opting for a static ILU time instead of some dynamic mechanism. As pointed out in [18], a

device’s queue length might change rapidly and, thus, the overhead introduced by some kind

of scheme to dynamically adapt the ILU time is not worth it. Our design choice is to make

IBLUES as simple as possible by adopting a static ILU parameter, which further helps in

increasing a device’s battery life.

All masters in a scatternet follow the same procedure and exchange LOAD_UPDATE

packets periodically (at each ILU time), resulting in every master having the knowledge of the

load in its neighboring piconets. Although the load may change rapidly in a piconet before

LOAD_UPDATE packets be exchanged [18], the results to be present soon show that

maintaining a weighted moving average of past loads is a good enough estimate for a variety

of applications. The next and final issue is the distance r between a master and its slave. For

simplicity, we will assume that the slaves are uniformly distributed throughout the piconet.

Once the common Bluetooth range is 10m, we will generate r according to a uniformly

distributed random variable between 0.5m and 10m. Although this assumption introduces

some error, it is generally acceptable [16], especially in (unpartitioned) office buildings.

Nevertheless, more precise approach for determining r is a subject of ongoing research.

Figure 5 – Load information distribution within a scatternet

Next comes the question of how the master would dynamically forward to each polled

slave the information about the packet type is to be used in its subsequent transmissions, as

the network state is constantly changing. This is accomplished through the use of the same

LOAD_UPDATE packet with a special flag in its payload field. This packet is transmitted as

soon as the master polls the slave and indicates the type of packet the slave should use in its

transmission in order to increase its transmission success probability. In case the packet

success probability within the piconet increases/decreases rapidly, the master sends the slave

another LOAD_UPDATE packet. In our simulations, this event never occurred once the time

slice assigned for each device did not allow such scenario.

4. Simulation

To evaluate IBLUES, we have implemented it in the Network Simulator (ns-2) [10] and

BlueHoc [11], an open-source Bluetooth simulator provided by IBM. Since BlueHoc only

provides the basic functionality of Bluetooth, we have made considerable extensions to this

simulator in order to conduct our experiments.

4.1 Bluetooth Scatternet Environment Simulation

We have carried out an initial experiment by employing an environment comprised of

only Bluetooth devices connected in the form of a scatternet, that is, without external sources

of interference. In order to show the viability of IBLUES, our first evaluation computes the

overhead in the network associated with the exchange of LOAD_UPDATE messages by

piconet masters. As we have shown earlier, this overhead is intrinsically related to the ILU

time of transmission of LOAD_UPDATE messages, as well as the number of bridge nodes a

piconet possesses once a LOAD_UPDATE is sent to every bridge node. We have used the

scatternet topology of Figure 6 for this evaluation. In this topology, within a total area of 50m

x 50m, we have defined a core piconet, piconet 1, with eight devices where we collect

measurement data. According to the Bluetooth specification, all devices of a piconet can

function as bridge nodes, but in this simulation the master of the piconet does not assume this

role since the BlueHoc simulator does not allow masters to work as bridges. Therefore, we

have executed our simulations for up to 7 (seven) bridge nodes in piconet 1 and with different

values for the ILU time. Each simulation lasted for 300 seconds and we used exponential

sources as traffic generators. For each and every slave (eventually bridge) node in piconet 1,

there is a corresponding piconet in the scatternet of Figure 6. Figure 7 shows the relative

overhead of LOAD_UPDATE packets for ILU = 1, 5, 10, and 15 seconds, and for different

number of bridge nodes.

Figure 6 – Scatternet topology for LOAD_UPDATE overhead evaluation

As we can see from Figure 7, ILU = 1 second generates the largest overhead of up to 24%

of the total traffic within the scatternet when there are a total of 7 (seven) devices in the

piconet assuming the role of a bridge node. This is unacceptable for a wireless technology

such as Bluetooth with maximum total bandwidth of roughly 1 Mbps. Furthermore, the

energy consumption involved in the process of these large number of messages can be

excessively high. On the other hand, ILU = 1 second provides IBLUES with the ideal

situation where it has the optimal view of the network load since masters are continuously

exchanging load information. The overhead is drastically reduced when we employ ILU = 5,

10 and 15 seconds. More specifically, regardless of the number of bridge nodes, it decreases

by more than 5 (five) times, and remains below 5%. Among the values of ILU = 5, 10, and

15, there is still a significant difference in overhead, but such differences are negligible as

compared to ILU = 1. Furthermore, as it will be shown shortly, our simulations indicate that

the performance drop between ILU = 1 and ILU = 5 is not significant, however it becomes

excessive for ILU = 10 and ILU = 15.

The propagation delay analysis reveals a potential drawback in the Bluetooth design.

From Figure 8(a) we can see a slightly higher delay when ILU = 1 second as compared to the

other values of ILU since the queues are filled up with both control and data packets.

However, for other values of ILU, there is not much difference between these curves. As

Figure 8(a) also shows, the average propagation delay of packets between piconet masters

remains steady when the number of bridge nodes is less than or equal to 5. However, when

the number of bridge nodes is higher than 5 the delay increases rapidly. In all cases, the time

taken to execute the Bluetooth switching procedure for a slave to leave momentarily one

piconet and join its neighboring piconet [1] contributes most to the total delay as depicted in

Figure 8(b). More specifically, the switching procedure consumes 67, 69, 67, and 65 percent

of the total delay for ILU = 1, 5, 10, and 15, respectively, and is excessive when the number

of bridge nodes is higher than 5. Future improvements in the Bluetooth specification [1] are

necessary to optimize this procedure in case Bluetooth is to run well-known ad hoc routing

protocols such as AODV [14] and DSR [15], and real time applications which possess strict

piconet 1

piconet 2

...

piconet 7

Bluetooth device

Master

Slave

quality of service requirements. Nevertheless, as we shall see later, the simulation results of

IBLUES proved it to effectively improve the overall piconet performance even when of this

overhead is present.

Figure 7 – LOAD_UPDATE overhead

As per the previous analysis, we will consider only 1 and 5 seconds as values for the ILU

time. The choice of ILU = 1 second is because it is useful for benchmarking purposes, and

ILU = 5 seconds because it greatly reduces the overhead and does not perform much inferior

than ILU = 1. Moreover, the experiments to be conducted all assume less than 6 slave devices

working as bridge nodes, since this is a likely scenario of a typical office environment [9].

Figure 7(a) – Master-to-Master propagation delay

Figure 7(b) – Bluetooth switching procedure delay

To demonstrate the performance of both configurations of the ILU time, we perform our

study with the evaluation of IBLUES under these two scenarios, namely ILU = 1 and 5

seconds. We have considered a network topology similar to the one depicted in Figure 6, but

with two important differences. First, for this study we have considered a scatternet composed

of 30 piconets distributed in an area of 200m

x 200m, reflecting a typical office environment

[9]. Each piconet possesses 4 (four) devices and exactly two devices of each piconet are

connected to some other piconet [9]. Note that part of this non-trivial topology has been built

with the aid of a graphical interface available with the BlueHoc package that, even if it does

not support scatternet construction, at least enables the definition and code generation of basic

piconet code. The second major change is in the application layer. Each master of a piconet

establishes a CBR (Constant Bit Rate) connection with each of its slaves with a MTU

(Maximum Transfer Unit) of 500 bytes, and the transmission lasts for the entire length of 300

seconds. A total of five iterations are executed per experiment and is averaged to give the

final results.

Figures 9 and 10 show the results for both ILU = 1 and ILU = 5 seconds respectively, for

increasing interfering network load. It is instructive to compare such results with the one

obtained analytically in Figure 2 and notice that they have a similar behavior, thereby validate

each other. When ILU = 1 second, piconet masters have precise network load information and

thus can make the right switching decision at the right time. From this figure we can see that

IBLUES always seeks to attain the highest possible useful bandwidth by switching between

packet types as the load increases. In particular, we have highlighted some specific spots in

IBLUES curve that are observed to be nearly equal to the actual measured throughput for each

packet type. We found that the almost negligible difference between the measured IBLUES

throughput curve and the corresponding curves for the Bluetooth packet types are due to the

random variable we use to generate the distance between the transmitter and the receiver. As

Figure 8 shows, the propagation delay between piconet masters does not have a major impact

in our configuration of two bridge nodes. On the one hand, although the distance has some

effect on the throughput, when ILU = 1 the master continuously receives LOAD_UPDATE

packets that rapidly converges IBLUES to the optimum packet. On the other hand, from the

highlighted spots in Figure 10, we can see that the distance has a larger impact on the

measured throughput of IBLUES when ILU = 5 seconds. Nevertheless, its performance is still

nearly close to the optimal case. From the simulation results we see that ILU = 5 seconds

provided the ideal time for scheduling LOAD_UPDATE messages. In other words, when

IBLUES attempts to schedule a new LOAD_UPDATE message, the previous one has already

left the output queue shortly before the new arrival. The low overhead generated by the ILU =

5 seconds and the nearly optimal performance encouraged us to select it as the default value

for the ILU parameter in the final IBLUES implementation. In addition, our simulations for

ILU = 5 seconds offers the best trade-off between efficiency and limited overhead.

Finally, we performed another simulation to obtain the aggregate useful bandwidth under

an offered load of 30%, 4 devices per piconet, and a total of 115 piconets. Figure 11 illustrates

the collected aggregate useful bandwidth, contrasting it with the one obtained through the

analytical model. As we can see, the aggregate useful throughput increases to a certain limit

of piconets, at which time it begins to decrease. IBLUES switching mechanism seeks to

guarantee that at any instant in time, and for any configuration of interfering load, distance,

and number of piconets, the Bluetooth piconet is always operating at its maximum useful

bandwidth, and the scatternet is always operating at its maximum aggregate useful bandwidth.

5. Conclusions and Future Work

Bluetooth devices themselves are likely to be the significant interferers to the Bluetooth

technology in the very near future. This problem must be addressed by the Bluetooth

technology which operates in the ISM unlicensed band. This paper proposes a dynamic

segmentation algorithm called IBLUES for the Bluetooth technology, with piconet masters

having approximate load information from the whole scatternet. This offered load is

encapsulated into a new LOAD_UPDATE packet defined in the LMP (Link Manager

Protocol) layer of the Bluetooth protocol stack. Next, the load is used as input to a

mathematical model which indicates the packet type for the highest useful bandwidth. This

algorithm is further explored to show very satisfactory under increasing load, and under a

variety of applications. Moreover, we observed an enormous overhead in the current

Bluetooth piconet switching procedure and future improvements are crucial to enable efficient

ad hoc networking.

Figure 9 – Simulation results of the useful bandwidth for different

packet types under increasing interfering load for ILU = 1 second

Figure 10 – Simulation results of the useful bandwidth for different

packet types under increasing interfering load for ILU = 5 seconds

As our future work, we plan to devise a better way of estimating the distance between the

transmitter and the receiver Bluetooth devices. Moreover, we need to adapt our model to

consider burst errors, as well as study ways to reduce overheads and consider quality of

service parameters. We also intend to extend IBLUES to take into consideration interference

generated by IEEE 802.11 devices, since they operate in the same unlicensed ISM frequency

band as Bluetooth, as well as study the impact of mobility of Bluetooth devices on signal

reception, both at the perspective of Bluetooth itself and IEEE 802.11.

Figure 11 – Simulation result of the aggregate useful bandwidth

References

[1] Bluetooth SIG, “Bluetooth Specification”, http://www.bluetooth.com.

[2] C. Cordeiro, D. Sadok and D. Agrawal, “Piconet Interference Modeling and Performance

Evaluation of Bluetooth MAC Protocol”, in Proceedings of IEEE GLOBECOM, San Antonio,

USA, 2001.

[3] A. Das, A. Ghose, V. Gupta, A. Razdan, H. Saran, and R. Shorey, “An adaptive link-level

error recovery mechanisms in Bluetooth”, in Proceedings of IEEE International Conference

on Personal Wireless Communication, pp. 85-89, 2000.

[4] J. Kim, Y. Lim, Y. Kim, and J. Ma, “An adaptive segmentation scheme for the Bluetooth-

based wireless channel”, in Proceedings of IEEE IC3N, pp. 440-445, 2001.

[5] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey, “Enhancing the performance of

asynchronous data traffic over bluetooth wireless ad hoc networks”, in Proceedings of the

IEEE INFOCOM, vol. 1, pp. 591-600, 2001.

[6] S. Zurbes, W. Stahl, K. Matheus, and J. Haarsten, “Radio network performance of

bluetooth”, in Proceedings of the IEEE ICC, pp. 1563-1567, 2000.

[7] D. Duchamp and N. Reynold, “Measured performance of a wireless LAN”, 17
th

Conference on Local Computer Networks, Meneapolis, September 1992.

[8] N. Golmie and F. Mouveaux, “Interference in the 2.4 GHz ISM band: Impact on the

Bluetooth access control performance”, in Proceedings of the IEEE ICC’01, 2001.

[9] M. Fainberg, and D. Goodman, “Analysis of the Interference Between IEEE 802.11b and

Bluetooth Systems”, in the IEEE VTC Fall 2001, October 2001.

[10] The Network Sumulator (ns-2), http://www.isi.edu/nsnam/ns/.

[11] BlueHoc, IBM Bluetooth Simulator,

http://oss.software.ibm.com/developerworks/opensource/bluehoc/.

[12] N. Golmie, R.E. Dyck, and A. Soltanian, “Bluetooth and 802.11b interference:

simulation model and system result”, IEEE 802.15/195r0, 2001.

[13] Y. Kim, B. Zhen, and K. Jang, “The hybrid of Listen-Before-Talk and Adaptive

Frequency Hopping for coexistence of Bluetooth and IEEE 802.11 WLAN”, Samsung

Advanced Institute of Technology Report, 2001.

Analytical

Simulation

[14] C. E. Perkins and E. M. Royer, “Ad-hoc on demand distance vector routing," in IEEE

Workshop on Mobile Computing Systems and Applications (WMCSA), February 1999.

[15] D. Johnson, and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks," in

Mobile Computing (T. Imielinski and H. Korth, eds.), Kluwere Academic Publishers, 1994.

[16] T. Rappaport, S. Seidel, K. Takamizawa, “Statistical channel impulse response models

for factory and open plan building radio communicate system design”, IEEE Trans. on

Comm., Vol. 39, Number 5, May 1991, pp. 794-807.

[17] C. Bisdikian, “An Overview of the Bluetooth Wireless Technology“, IEEE

Communications Magazine, December 2001, pp.: 86-94.

[18] A. Capone, M. Gerla, R. Kapoor, “Efficient Polling Schemes for Bluetooth Piconets”,

IEEE ICC’01, Helsinki, Finland, June 2001.

[19] Y. Lim, J. Kim, S. Min, and J. Ma, "Performance evaluation of the Bluetooth-based

public Internet access point", Proceedings of 15th International Conference on Information

Networking, 2001, pp.: 643-648.

