
Using Remote Memory to Stabilise Data EÆciently on

an EXT2 Linux File System

Francisco Brasileiro, Walfredo Cirne, Erick Passos, and Tatiana Stanchi

Universidade Federal da Para��ba

Coordena�c~ao de P�os-Gradua�c~ao em Inform�atica

Av. Apr��gio Veloso, s/n, Bodocong�o

58109-970, Campina Grande, PB, Brazil

Tel: (+55) 83 310 1123 Fax: (+55) 83 310 1124

ffubica,walfredo,edricg@dsc.ufpb.br tatiss@svn.com.br

Abstract

Stable storage is an important requirement for many applications. It is usually

implemented over traditional �le systems via synchronous write operations to disk.

However, due to the small throughput and high latency of disks, writing data syn-

chronously decreases the performance of applications. A workaround is to use UPS

devices to prevent data cached in volatile memory from being lost after the occurrence

of system software or power supply failures, obviating the need for synchronous write

operations. This strategy, however, may not tolerate hardware failures, i.e. proces-

sor, memory, controllers, etc. This paper presents an implementation of stable storage

over a �le system that substitutes synchronous write operations by remote replication

of data locally cached, therefore removing slow disk operations from the critical path

of storing data in stable storage. The implementation does not rely on any special

hardware and is resilient to both hardware and system software faults. Our prelimi-

nary performance evaluation has shown that replicating data remotely can be nearly

11 times faster than writing data synchronously to disk.

Keywords: Stable storage; replication; �le system recovery; fault tolerance; Linux.

1 Introduction

Many fault-tolerant applications require the availability of part of their state after a failure

occurs. For these applications, stable storage is a fundamental building block [Jal94]. Stable

storage o�ers a service that guarantees that data stored is not destroyed or corrupted by

failures. Checkpointing [Jal94] and transactions [Jal94] are two classical examples of fault

tolerance mechanisms that are normally implemented with the support of a stable storage

service.



Due to their non-volatility, disks are the preferred devices to implement stable storage.

Although disks are reasonably reliable, more demanding applications might require stable

storage to be implemented over redundant disks [PGK88], or via carefully replicated oper-

ations over a single disk [Jal94]. For the sake of simplicity, in this paper we assume that

disks are reliable enough to ful�ll the dependability requirements of applications. Neverthe-

less, our system can be easily adapted to a scenario where disks and write operations are

replicated to tolerate disk faults and data corruption. Our main concern, therefore, is with

the performance gains that the �le system implementation presented in this paper brings to

storing data in a stable way.

Over the years disk technologies have evolved faster in increasing storage capacity than

in reducing access time. As a result, disks remain rather slow devices, specially when their

throughput and latency are compared to that achieved by other devices such as main memory,

processors and networks. Thus, the performance of current �le systems is largely inuenced

by caching mechanisms.

Caching improves performance by maintaining in main memory information that is likely

to be accessed in the near future. However, unless UPS (Uninterruptible Power Supply)

devices [APC96] are used, information kept in main memory will be lost in the event of

a power supply failure. If data kept in memory has not yet been updated to disk, then

inconsistencies arise. Further, even when UPS devices are available, hardware failures and

system software bugs may also be sources of unreliability for the operation of the �le system.

This is because, when such failures occur, it might not be possible to perform a controlled

warm re-boot that preserves the contents of main memory [CNC+96, CS01].

To overcome the unreliability problem discussed above, most �le systems provide more

reliable operation modes at the expenses of a decrease in the performance. Normally this is

implemented by a mechanism that bypasses the caching mechanism whenever an operation

that changes the state of the �le system is performed. That is, by performing a synchronous

write operation directly to the disk whenever there is a state change.

While disk speed has been improving slowly, network speed keeps advancing at a fast

pace. This state of a�airs has prompted many researchers into investigating how memory

of remote machines can be used to improve �le system performance, a trend that has been

encouraged by evidences that ample amounts of memory are available in a typical local

network [AS99]. In this paper we present an implementation of a stable storage service,

based on the Linux EXT2 �le system. It uses replication protocols that allow local data to

be reliably stored at remote hosts [BCPS01]. By taking the disk I/O out of the critical path

of writing to stable storage, performance can be increased [LGG+91, PLP98, IMS98].

The remaining of the paper is structured in the following way. Section 2 discusses related

work on the use of remote memory and on the implementation of eÆcient stable storage

services. In Section 3 we present the Salius approach to stable storage, and discuss the general

behavior of the replication protocols that are behind the stable storage service proposed.

Section 4 is devoted to the discussion of the implementation of a Salius �le system based on

a Linux EXT2 �le system. Then, in Section 5 we analyse the performance of the prototype

implemented. Finally, Section 6 concludes the paper with our �nal remarks.



2 Related Work

A signi�cant part of the work done so far uses remote memory to enhance the reading cache

of a �le system, by allowing requests not satis�ed by a machine's local cache to be satis�ed

by the cache of another machine, in what has been termed cooperative caching [DWAP94,

SH96, KPR99]. Dahlin et al. propose various schemes to perform cooperative caching and use

trace-driven simulations to investigate the performance of such schemes [DWAP94]. Sarkar

and Hartman propose a decentralized algorithm for cooperative caching based on inexact

information (hints) that provides performance comparable to that of existing centralized

algorithms [SH96]. Korupolu et al. explore algorithms for cooperative caching in a hierar-

chical network under some assumptions for �le access and machine characteristics [KPR99].

Since a Salius �le system focus in the write performance of a reliable �le system, the work

in cooperative caching is complementary to our own.

Distributed �le systems are another line of research that explores remote memory as

means to improve �le system performance [FMP+95, ADN+95, HO95]. Distributed �le

systems are a replacement for traditional �le system, being often implemented as part of a

distributed operating system. The major advantages are the low overhead and the ability

to integrate paging into the �le system design, allowing for fast virtual memory, which is

backed by remote memory. The main disadvantage is that distributed �le systems typically

do not provide support for stable storage. Rather, they use the same delayed-write technique

of traditional �le systems, trading therefore reliability for performance.

Harp [LGG+91] is close in spirit to a Salius �le system. Harp, however, is more concerned

in providing high availability through the replication of the �le system, leading to more

complex and costly algorithms.

The work by Plank, Li and Puening on diskless checkpointing [PLP98] and that by

Ioannidis, Markatos, and Sevaslidou on transaction-based systems [IMS98] also use remote

memory to avoid the performance penalty of writing data to disk. A Salius �le system uses

remote memory available in the local network to provide eÆcient and highly-reliable stable

storage. Our approach is to provide a more generic service upon which other higher level

services, such as conventional checkpointing and transactional services, can be implemented

without the performance burden normally associated to them.

A di�erent approach to increase the performance of stable storage is to use UPS devices

to preserve data stored in main memory after a crash, eliminating the need of synchronously

writing data to disk. In this way, stable storage can be totally [CS01] or partially [CNC+96]

implemented in main memory. The Rio �le cache [CNC+96] uses a sophisticated mechanism

that prevents the main memory from being reset after a warm re-boot and then restores the

�le system via the information that has been kept safe in memory. Cunha and Silva [CS01]

follow a similar approach to implement a diskless stable storage service for embedded systems.

However, in contrast with the Salius approach, these approaches do not tolerate failures that

require an o�-line maintenance procedure to be executed.



3 The Salius Approach to Stable Storage

As mentioned in the Introduction, most �le systems are able to operate in two di�erent

modes which enable the application to trade in performance for reliability. In the best

performing mode, a caching mechanism implemented in the volatile main memory is used to

temporarily store data that are latter written to disk asynchronously. To increase reliability,

an alternative operation mode is used, which forces data to be synchronously written to disk.

Figure 1 illustrates these operation modes.

require−

reliability

synchronous write

disk

caching
read/write

caching
read

asynchronous write

performance

application

ment?

Figure 1: Operation Modes of a Conventional File System

The Salius approach to provide reliable semantics is based on the replication of data that

are stored in the volatile cache of the machine that hosts the �le system (from now on we

will use the expression local host when referring to this machine) in the memory of remote

machines that fail independently (see Figure 2). This procedure obviates the need to perform

synchronous write operations.

The Data Replication Service (DRS) is the core of a Salius �le system. It implements the

protocol which guarantees that enough information will be stored remotely, so that, in the

event of a crash of the local host, the state of the �le system that was stored in the cache

and had not been stabilised in disk will be successfully restored.

Due to the higher throughput and smaller latency of networks, and the fact that a Salius

�le system is also able to use a read/write caching mechanism, reliability can be achieved

with a much smaller performance penalty, when compared to the conventional strategy based

on writing data synchronously to disk (we will discuss this issue in detail in Section 5).

We say that a Salius �le system has crashed when the information that is kept in the

caching mechanism of the local host is permanently lost. This can be caused by events such

as power supply failures, processor crashes, operating system hangs, etc. When a Salius

�le system crashes the following procedure must be executed: �rst the local host has to be



require−

disk

caching
read/write

asynchronous write

performance reliability

read/update
operations

Salius
replication
mechanism

Data Replication Service (DRS)

ment?

application

remote
hostsupdate

operations

Figure 2: Operation Modes of a Salius File System

brought back into operation (e.g. via a re-boot); and then a Disk Recovery Procedure (DRP)

is executed in the local host. The DRP implements a protocol that allows it to obtain from

the DRS the information required to restore the crashed �le system. Thus, implementing a

Salius �le system requires the implementation of both a DRS and a DRP.

In the above discussion we have implicitly assumed that the DRS is reliable and always

available. Obviously, if all remote machines that implement the DRS crash at the same

time that a Salius �le system crashes, then it might be impossible to recover the �le system.

Likewise, if the network experiences a partition preventing the local host from communicating

with the remote machines that implement the DRS, then a reliable �le system operation

might be delayed for a long time, until the partition heals. Notice that the part of the DRS

that executes on the local host will only allow the reliable �le system operation to return

to the application when it has a guarantee that enough remote hosts have received the data

sent.

A reliable and available implementation of the DRS can only be achieved when the

network does not partition and the number of replicas is high enough so that the probability

of all replicas crashing while the �le systems crashes is negligibly small [Cri91]. For most

applications a relatively small number of replicas (up to 3) is enough to guarantee their

dependability requirements. On the other hand, partition-free networks are rare. Thus, to

avoid long delays caused by partitions, the part of the DRS that executes in the local host

must detect network partitions and circumvent this problem. When a network partition is

detected all cached data that have been modi�ed and have not been written to disk must

be synchronously written to disk. Any subsequent update operation executed while the

network is partitioned must be performed by a synchronous write operation to disk. Since

network partitions are uncommon events, performance is not too harmed by the infrequent

synchronous write operations they cause. Figure 3 illustrates the structure of a Salius �le



system that is able to handle network partitions.

require−

partition?

disk

caching
read/write

asynchronous write

performance

application

ment?

DRS

reliability

no yes

synchronous write

caching
read

Figure 3: Operation Modes of a Partition-Aware Salius File System

The execution of the DRP after a crash of the �le system must guarantee that the

�le system stored in disk will be left in a consistent state. This is to say that the data

manipulated by all successfully completed operations executed through the reliable interface

of the �le system will be eventually stored in disk in a stable way.

Whenever a reliable �le system operation that changes the state of the �le system is

executed, then data are sent to the remote hosts that implement the reliable DRS. These

data must carry enough information so that, if required, the DRP will be able to leave the

�le system in a state that is equivalent to what would be achieved had the operations been

synchronously written to disk at the time they were issued.

Notice that the recovery procedure must be idempotent. Thus, even if the local host

crashes during the execution of the DRP, the procedure can be restarted as many times as

required, and the �nal result achieved by a successful execution of the DRP will be the same

no matter how many times it needed to be restarted.

4 An Implementation of a Salius File System

In the previous section we have outlined the main requirements to implement the DRS and

DRP of a Salius �le system. Although a Salius �le system can be implemented from scratch,

we believe that the most e�ective way to attain such a �le system is to modify an existing one

by introducing a suitable DRS and developing a matching DRP. If the original �le system

already provides a reliable operation mode, then its interface need not be changed.



In [BCPS01] we have introduced the Salius service for stable storage and, as a proof of

concept, implemented it at the library level. That approach, however, has the disadvantage

of the bigger overhead of accessing the network at user level and all the penalties imposed

by the scheduler. In this paper we present a Salius implementation based on the Linux

EXT2 �le system. We conduct such implementation at the kernel level, i.e. we implement

a clone of the Linux EXT2 �le system augmenting it with the extra functionalities of the

DRS. To use such functionalities one can mount any EXT2 partition as a Salius �le system

by executing the Linux mount command specifying the �le system type with the option -t

salius.

The modi�cations in the VFS module of the kernel to register the Salius �le system

required less than 50 lines of code. This modi�cations were necessary to: i) set general

assembly macros for bit operations shared by some �le systems implementations; iii) initialize

the Salius module; and iii) bind the socket used for messages transmission. The Salius

�le system is based on the EXT2 implementation found in late 2.2.x Linux kernels. To

this base implementation we have added extra code to control the �le access mode, send

replication messages, receive acknowledgments and validate them. This implementation

required approximately 300 extra lines of C code.

4.1 System Model

Our target system environment is formed by a local area network of machines executing the

Linux operating system. Thus, we assume a system model based on the timed asynchronous

system model [CF99]. In the context of this paper, such model comprehends the following

assumptions:

Assumption 1: processors fail only by crashing1;

Assumption 2: correct processors have access to a datagram communication service that

does not corrupt messages, in other words, messages can only be arbitrarily delayed,

lost or duplicated;

Assumption 3: correct processors have access to physical clocks that advance within a

linear envelope of real time and that can be used to measure time-outs;

Assumption 4: there is an unreliable bound Æ used to de�ne performance failures for com-

munication links.

The DRS that allows the recovery of a crashed �le system is implemented by n processors,

from which, one is the local host. We assume that only f processors can fail and that f < n.

Thus, in the worst case, when n = f +1, if all remote hosts fail, then the �le system will not

crash; on the other hand, if the �le system crashes, then at least one remote host will not

fail and the information it holds will be used by the DRP to restore the crashed �le system.

Since Æ is an unreliable bound, the message transmission delay between two correct

processors can be arbitrarily large. However, Æ is chosen in such a way that, most of the

1As indicated before, a processor is considered crashed, when the information that it holds in main
memory is permanently lost; this in turn can be caused by both hardware and system software faults.



time, message transmission delays between correct processors fall within Æ. We say that the

local host is partitioned from a processor P when the round trip message transmission delay

between the local host and P exceeds 2 � Æ. Thus, the local host can use time-outs to detect

partitions.

4.2 The Interface

The Linux kernel o�ers a generic, POSIX compliant, �le system interface called VFS (Virtual

File System). Each �le system implementation contains speci�c code which is accessed via

the VFS interface. The Salius �le system o�ers reliable operation mode via two functions,

namely: salius open �le, and salius �le write. The VFS interface directs every call to the

open and write functions to the salius open �le and salius �le write functions respectively.

In the following, we briey describe these functions.

fd = salius open �le(struct inode *inode, struct �le *fp) This function is used to

open an existing �le or to create and open a new one. The function returns a �le

descriptor that can be later used to issue other operations to the �le that has been

opened. The struct inode speci�es the disk i-node allocated to the �le being opened.

The parameter ags in this i-node holds information that is used to control the oper-

ation of the function. In particular, if the O SYNC bit of the parameter ags is set,

then future write operations issued to the �le associated to the fp structure must be

carried out in a stable way. Two other bits of the ags parameter are important for the

reliability of the recovery operation: O CREAT and O TRUNC. When the O CREAT

ag is set, the �le should be created if it does not already exist. If the �le already

exists, then this ag is simply ignored. Also, when the O TRUNC ag is set, the �le

should be truncated. Finally, the parameter mode of the i-node is only used when the

ag O CREAT is set; it is used to specify the access permissions associated to the �le

that is being created.

written = salius �le write(struct �le *fp, const char *buf, size t n, lo� t *p)

This function is used to write the \n" bytes stored in the memory positions starting

at address \buf" to the �le associated to the �le structure pointed by fp. The function

returns the number of bytes that have been e�ectively written. When the struct fp is

associated to a �le that has been opened with the O SYNC ag set, the replicated ag

indicates that the writing of data must be carried out in a stable way. In the standard

implementation of the EXT2 �le system, this is achieved via a synchronous write op-

eration to disk, i.e. the blocks associated to that �le in the bu�er cache are marked

as dirty and then stored on disk. Our Salius implementation uses the non-reliable

operation mode of the EXT2 �le system to increase performance and data replication

to achieve reliability.

4.3 The DRS

The functionalities of the DRS are implemented by the Salius �le system and thus run in

the kernel. The replication servers execute as daemons at each of the remote hosts.



Whenever a call to the open function with the O SYNC ag set is performed over a disk

partition mounted as a Salius �le system, all subsequent calls to the write function will use

the DRS functionalities to achieve stable storage.

All invocations of the write function will yield the following steps to be taken. First,

the write operation is performed asynchronously. Note that if the write operation cannot

be performed (for instance, because the disk is full), then a negative number is returned.

Moreover, if the �le has been opened with the O SYNC ag set, then a message is sent to

the remote hosts. This message contains the following �elds:

time-stamp: which contains the current reading of the local physical clock;

�le: which contains the umask, uId, gId, pathname, ags, and mode �elds of the entry of

the table of stable �les associated with the pair (calling process identi�cation, �le

descriptor passed as parameter to the write function);

nbytes: which contains the number of bytes actually written; and

bytes: which contains the sequence of bytes that has actually been written; and

o�set: which contains the read/write o�set of the �le, indicating the point within the �le

from where the bytes started to be written.

Then, the bit O TRUNC of the �eld ags of the �le struct inside the kernel address

space is unset (as will be seen shortly, this avoids the �le being wrongly truncated during

a recovery). Finally, the system call only returns after one of the following two conditions

is met: i) f remote hosts have acknowledged the reception of the message; or ii) a 2 � Æ

time-out has expired. In the latter case, just before returning, a synchronisation operation

is executed to clear all dirty bu�er related to this �le on the cache to avoid loosing data.

If the local host fails, then it is guaranteed that no more than f � 1 remote hosts will

fail. By waiting for the \ack" of f remote hosts, the local host guarantees that in the case

of a �le system crash, at least one correct remote host will hold a copy of every reliable

operation performed. In the event of a failure all operations can be retrieved, and by using

the associated time-stamp, the DRP can re-execute them in the correct order.

Since partitions and faults are rare, most of the time reliable invocations of the write

function will return after the reception of f \acks", i.e. the time-out will seldom expire.

Further, since messages are always sent to the remote replication servers, as soon as a

partition heals, synchronous write operations to disk will stop being issued.

On the other hand, if n is set to its minimal value, i.e. n = f +1, then after the failure of

a single remote host, all subsequent invocations of reliable functions will require synchronous

write operations to disk. If hosts do not recover from failures, or if this recovery can take

an arbitrarily long time, the performance penalty depicted in the above scenario can be

eliminated by increasing the number of replicas. In particular, if n is set to be greater or

equal to 2 � f + 1, then synchronous write operations will only be required when a network

partition occur.

The functioning of the remote replication servers is very simple. They start an in�nite

loop waiting for messages sent by the local host. Three types of messages are possible: i)



replication messages; ii) start recovery messages; and iii) re-transmission recovery message.

Whenever a replication message is received, an \ack" message containing the time-stamp

of the received message is sent back. A start recovery message is replied with a message

that contains the number of replication messages currently stored in the local log. Finally, a

re-transmission recovery message is replied with a copy of the corresponding message stored

in the log. (We detail the recovery procedure in the next subsection.)

To keep the log of the remote replication servers �nite, the following mechanism is used.

Whenever a replication message is received, the replication server reads its local clock and

adds a second time-stamps to the message. Let us call this time-stamp the reception time.

Every message that has a reception time-stamp that is k � � units of time smaller than the

largest reception time-stamp issued, can be discarded, where � is the maximum time interval

that a \dirty block"2 can stay in the cache of the local host before being written to disk

(for many implementation of EXT2 �le systems, the default value for this time interval is 30

seconds). The k coeÆcient is used to compensate clock drifts, disk latency and any transient

unavailability of the kernel to write a dirty block to disk within the � bound (due to a burst

of unexpected interruptions, for example). In our prototype implementation we have used

k = 2.

4.4 The DRP

The DRP works in a very simple way. The �rst thing it does is to send to all remote

hosts a recovery message. Then it waits for n � f replies. (Remember that every reply

contains the number of replication messages stored by the corresponding remote host.) After

that, it sends as many re-transmission recovery messages as needed to receive all replication

messages stored by the n� f remote hosts that replied to its recovery message. It uses the

time-stamp �eld of the replication messages received to detect and discard any duplicated

message received. Finally, the remaining messages are ordered in increasing order of time-

stamps and their corresponding operations are re-executed in that order.

As presented in the previous subsection, the operation contained in a replication message

is characterised by the following �elds: �le, nbytes, bytes, and o�set. Furthermore, the �le

�eld is formed by the following sub-�elds: umask, uId, gId, pathname, ags, and mode. An

operation is re-executed by executing the following calls in succession:

umask(�le.umask)

fd = open(�le.pathname, �le.ags, �le.mode)

lseek(fd, o�set, SEEK SET)

write(fd, bytes, nbytes)

fchown(fd, �le.uId, �le.gId)

fchmod(fd, �le.mode)

close(fd).

Note that, the umask, fchown, fchmod and close operations are naturally idempotent.

Likewise, open operations are also idempotent, as the O CREAT ag is ignored when an

open operation with the O CREAT ag set is executed over a �le that already exists and the

2A \dirty block", is a block that contain data that has been changed, but has not yet been written to
disk.



O TRUNC �eld may only be set in the �rst write operation executed on a �le that has been

opened with the O TRUNC ag set. Also, since the lseek operation is always executed with

an absolute value for the current o�set, its execution is idempotent. Further, since there are

no read operations during the recovery procedure, write operations are also idempotent. In

summary, as each individual operation executed during the recovery procedure is idempotent,

the whole execution of the DRP is idempotent.

5 Performance Evaluation

5.1 Description of the Environment

Our experiments were executed on a local area network of PCs. The PCs were connected

via an isolated 100 Mbps shared Ethernet bus. Each PC has the following con�guration: a

Pentium III, 800 MHz processor; 192 Mbytes of RAM with average access time of 5 ns; and

a 20 Gbytes IDE disk with average access time of 5:5 ms.

Each PC was executing the Linux 2.2 kernel. No other network services were executed

by the PCs, which only run the evaluation applications. To arti�cially control the load on

the network we used the version 0.0.1 of the traÆc load generator3.

5.2 Description of the Experiments

To evaluate the performance of our Salius implementation we used the version 3.71 of the

ioZone benchmarking application4. We measured the performance of synchronous writes

and rewrites of data using both conventional EXT2 and Salius implementation with variable

record sizes.

The ioZone is a micro-benchmark tool that measures the time spent by each individual �le

system operation and delivers a summarized report of the results. The write test measures

the cost of stable storage of a new �le as well as the encapsulated cost of disk block allocation

for synchronous operations. The rewrite test uses a �le with all the necessary blocks already

allocated and tries to overwrite data on it avoiding the performance penalties su�ered by

the EXT2 implementation on the previous test. For this reason we expect Salius to achieve

its best performance gains over EXT2 in write operations.

Before executing the application, a brand new EXT2 �le system was created. Thus, the

application was always executed to create a �le in a �le system with the same initial state;

in particular, at the beginning of the application execution the fragmentation percentage of

the �le system was 0%.

We executed two sets of experiments. In the �rst set, the network load was kept to a

minimum, since no other application, but the Salius �le system, used the network. In the

second set, a network traÆc generator was used to arti�cially load the network. Further, we

measured the performance of the �le system in four di�erent scenarios:

3available at http://traÆc.sourceforge.net/.
4available at http://www.iozone.org/.



sync: In this scenario we used the standard implementation of the EXT2 �le system, based

on synchronous write and rewrite operations;

Salius(2,1): In this scenario we used the Salius implementation with n = 2 and f = 1;

Salius(3,2): In this scenario we used the Salius implementation with n = 3 and f = 2; and

Salius(3,1): In this scenario we used the Salius implementation with n = 3 and f = 1.

5.3 Results and Analysis

Figure 4 shows the average write throughput for an unloaded network. As we can see,

increasing the number of replicas and faults to be tolerated has little impact over the per-

formance of our implementation. This is due to the use of UDP multicast when replicating

data and the small size of the acknowledgment responses from the DRS servers running on

remote machines. Our current Salius implementation can be nearly 11 times faster than an

EXT2 synchronous �le system when writing new data into a �le.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 10

W
ri
te
th
ro
u
g
h
p
u
t
(K
b
y
te
s/
se
c)

Record size (Kbytes)

Salius(2,1) Salius(3,2) Salius(3,1) Sync

Figure 4: Average write throughput for an unloaded network

When trying to rewrite data in existent �les the performance of Salius is not a�ected. On

the other hand, the throughput of the standard implementation increases (see Figure 5). This

is expected since Salius operation is virtually the same in both scenarios, while the standard

implementation does not need to stabilise meta-data when rewriting data. Nevertheless, for

our experiments Salius was up to 6:5 times faster.

In our �nal experiment we have analysed the impact of network traÆc. Figure 6 shows

the results for write throughput, and Figure 7 displays the results for rewrite throughput.

We observe that network traÆc has more impact over the performance than the increase in

the number of replicas. Even though, when compared to the standard implementation of

the EXT2 �le system, Salius is still 5 times faster in average, in a heavily loaded network.

Figure 8 attempts to summarize our results by showing the performance �gures of three

scenarios: Synchronous EXT2 (the baseline), Salius (2,1) without network traÆc (the best

scenario for Salius), and Salius (3,2) with network traÆc (the toughest scenario for Salius).



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 10

R
ew
ri
te
th
ro
u
g
h
p
u
t
(K
b
y
te
s/
se
c)

Record size (Kbytes)

Salius(3,2) Salius(3,1)Salius(2,1) Sync

Figure 5: Average rewrite throughput for an unloaded network

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10

W
ri
te
th
ro
u
g
h
p
u
t
(K
b
y
te
s/
se
c)

Record size (Kbytes)

Salius(2,1) Salius(3,2) Salius(3,1) Sync

Figure 6: Average write throughput for a heavily loaded network

It is clear that Salius performs better than the traditional EXT2 synchronous operations

in all tested scenarios. In our tests di�erent �le sizes have had little inuence over the

performance results. This is because the target partition used for write and rewrite tests is

always unfragmented. In a fragmented disk, we expected synchronous operations to su�er

more performance penalties than Salius because of the head positioning overhead. These

penalties can be easily increased by concurrent accesses to the disk resulting in a far worse

performance for conventional EXT2 �le systems.

It should also be noted that the performance results change in function of the record

size because of the overhead imposed by each separate operation when writing/rewriting

memory bu�ers to disk/network. The bigger the record size, the smaller the overhead and

in consequence bigger throughput is achieved.



0

1000

2000

3000

4000

5000

6000

7000

8000

1 10

R
ew
ri
te
th
ro
u
g
h
p
u
t
(K
b
y
te
s/
se
c)

Record size (Kbytes)

Salius(2,1) Salius(3,2) Salius(3,1) Sync

Figure 7: Average rewrite throughput for a heavily loaded network

Salius(3,2) loaded

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 10

W
ri
te
th
ro
u
g
h
p
u
t
(K
b
y
te
s/
se
c)

Record size (Kbytes)

SyncSalius(2,1) unloaded

Figure 8: Average write throughput

6 Conclusion

We have presented an alternative implementation of stable storage. Instead of relying on

synchronous write operations to disk, a Salius �le system uses a fast network connection to

replicate data at remote hosts. The information kept safe at the remote hosts can latter be

used to recover a crashed �le system.

Our Salius implementation based on the Linux EXT2 �le system has shown that it can

be nearly 11 times faster than its standard implementation based on synchronous write

operations. Further, our experiments indicate that the increase in the number of replicas,

and therefore the reliability of the �le system, does not impact its performance substantially.

Moreover, even when the network load is intense, the Salius implementation is considerably

faster than its traditional counterpart.

It is important to mention that the reliable operation mode of a POSIX-compliant �le

system, like the Linux EXT2, only guarantees stability for the data written. Changes to

the meta-data associated to a �le that has been opened with the O SYNC bit set are not



guaranteed to be stabilised in disk. For the sake of simplicity, our Salius implementation

has kept the same semantics. However, implementing stable storage of meta-data in a Salius

�le system is a trivial task. It suÆces to add the required data replication code at every

function that changes the contents of the meta-data associated to a �le.

References

[ADN+95] T. Anderson, M. D. Dahlin, J. Neefe, D. Paterson, D. Roselli, and R. Wang. Server-

less network �le systems. In Proceedings of the 15th Symposium on Operating System

Principles, pages 109{126, Copper Mountain Resort, Colorado, Dec 1995.

[APC96] The power protection handbook. American Power Conversion, Technical Report, 1996.

[AS99] A. Acharya and S. Setia. Availability and utility of idle memory in workstation clusters.

In Measurement and Modeling of Computer Systems, pages 35{46, 1999.

[BCPS01] F. V. Brasileiro, W. Cirne, E. B. Passos, and T. S. Stanchi. EÆcient stable

storage through data replication. Technical Report UFPB/CCT/DSC/LSD, 2001.

http://www.dsc.ufpb.br/~fubica/hp/publicacoes/relatorios/BCPS01.ps (submitted to

publication).

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE

Transactions on Parallel and Distributed Systems, 10(6):642{657, Jun 1999.

[CNC+96] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell. The Rio

�le cache: surviving operating system crashes. ACM SIGPLAN Notices, 31(9):74{83,

1996.

[Cri91] F. Cristian. Understanding fault-tolerant distributed systems. Communications of the

ACM, 34(2):56{78, Feb 1991.

[CS01] J. C. Cunha and J. G. Silva. Software-implemented stable storage in main memory. In

Brazilian Symposium on Fault Tolerance, Florian�opolis, Brazil, Mar 2001.

[DWAP94] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching:

Using remote client memory to improve �le system performance. In Proceedings of the

First Symposium on Operating Systems Design and Implementation, pages 267{280,

Nov 1994.

[FMP+95] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, and C. A. Thekkath.

Implementing global memory management in a workstation cluster. In Symposium on

Operating Systems Principles, pages 201{212, 1995.

[HO95] J. H. Hartman and J. K. Ousterhout. The Zebra striped network �le system. ACM

Transactions on Computer Systems, 13(3):274{310, 1995.

[IMS98] S. Ioannidis, E. P. Markatos, and J. Sevaslidou. On using network memory to improve

the performance of transaction-based systems. In International Conference on Parallel

and Distributed Processing Techniques and Applications, 1998.

[Jal94] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 1994.



[KPR99] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Placement algorithms for hierar-

chical cooperative caching. In SODA: ACM-SIAM Symposium on Discrete Algorithms

(A Conference on Theoretical and Experimental Analysis of Discrete Algorithms), 1999.

[LGG+91] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replica-

tion in the Harp �le system. In Proceedings of the 13th ACM Symposium on Operat-

ing Systems Principles, pages 226{38. Association for Computing Machinery SIGOPS,

1991.

[PGK88] D. Patterson, G. Gibson, and R. Katz. The case for RAID: Redundant arrays of

inexpensive disks. In Proceedings of the ACM SIGMOD Conference, pages 106{113,

Chicago, IL, May 1988.

[PLP98] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Transactions on

Parallel and Distributed Systems, 9(10):972{986, Oct 1998.

[SH96] P. Sarkar and J. Hartman. EÆcient cooperative caching using hints. In Proceedings of

the Second Symposium on Operating Systems Design and Implementation, 1996.


