
Adjusted Weight-Balanced Binary Tree for IP Routing Table

Lookup*
Tsern-Huei Lee† and Pau-Chuan Ting‡
†Institute of Communication Engineering

‡Institute of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, Taiwan 300
Republic of China

†thlee@atm.cm.nctu.edu.tw, ‡bcding@csie.nctu.edu.tw

Abstract
Various algorithms have recently been proposed for Internet routers to improve the

performance of routing table lookup. However, most of previous research effort does not
utilize the access frequencies of route entries. Since Internet traffic has significant temporal
localities [9]-[11], one could largely improve the performance of routing table lookup by
taking advantage of access frequencies. An example that aims at minimizing the average
lookup time can be found in [12]. Since global optimization is computationally prohibited,
the authors suggested to construct a binary tree based on a weight-balancing heuristic. We
present in this paper that the resulted weight-balanced binary tree can be adjusted with a
simple algorithm to further improve the performance. The adjustment algorithm is so simple
that it basically does not increase the complexity in constructing the binary tree. Through
analysis, we found that the improvement can be as large as 25% for a tree with four leaf nodes.
For a tree of arbitrary size, the improvement could be larger than 12.5%.

Keywords  Routing table lookup, Weight-balanced tree, temporal locality.

1. Introduction
Because of the explosive growth of Internet traffic, the performance of IP routing table

lookup is becoming critical for high-speed routers to provide satisfactory services. As such,
many researches developed in the past few years new algorithms to accomplish high-speed
routing table lookup [1]-[10]. Some of the algorithms compress the routing table with
sophisticated data structures so that a processor can perform routing table lookup in its cache
[1]-[7] and some others use simple data structures with special hardware to assist in routing
table lookup [8]-[10]. In general, sophisticated data structure renders difficulty in table
update and simple data structure requires a large amount of memory.

Unfortunately, most of previous research effort does not consider access frequencies of

*This work was supported in part by the Industrial Technology Research Institute in Taiwan, under
contract T2-91034-4.

route entries. Recent studies of Internet traffic [9]-[11] demonstrate the existence of
significant temporal locality in the packet streams. In other words, the average performance
of IP routing table lookup can be significantly improved if an algorithm is developed with a
data structure that considers access frequencies. The authors of [12] argued that Huffman
encoding [13] is not applicable to routing table lookup and proposed to use a weigh-balancing
procedure to generate a binary tree to represent the routing table. It was shown that the
average table lookup time could be largely reduced with the weight-balanced binary tree.

In this paper, we present an adjustment scheme that can be applied to the
weight-balanced binary tree to further improve the average performance. The adjustment is
simple and thus basically it does not increase the complexity in constructing the binary tree.
We show through analysis that the improvement could be larger than 12.5%. For a tree with
only four leaf nodes, the maximal improvement is 25%.

The rest of this paper is organized as follows. In Section 2, we briefly review the
concept of weight-balanced binary tree proposed in [12]. In Section 3, we present our
adjustment algorithm. Section 4 contains analysis of the maximal achievable gain with the
adjustment algorithm. Finally, we draw conclusion in Section 5.

2. The Weight-Balanced Binary Tree
The IP routing lookup problem can be described as follows. Given an incoming

packet’s destination IP address, find the longest matching prefix among a set of route prefixes.
Since every prefix determines an interval, one can simply use binary search to solve the IP
routing table lookup problem. In fact, binary search is deemed an efficient solution for
routing table lookup. As an example, consider the prefixes shown in Table 1. In this
example, we assume 4-bit addresses and the interval determined by prefix k is denoted by Ik.
Notice that two intervals may contain common addresses. However, if two intervals Ia and
Ib contain common addresses, then one is fully contained in the other, i.e., either Ia ⊂ Ib or Ib
⊂ Ia. Since each prefix has two end points, one can use all the end points to divide the entire
address space into elementary intervals (see Fig. 1(a)). Clearly, under the longest matching
prefix criterion, an elementary interval uniquely determines a prefix. For example, prefix
000∗ is matched if a destination address falls in elementary interval [0000, 0001]. Having
the elementary intervals, one can easily construct a binary tree for table lookup. Figure 1(b)
illustrates the binary tree for the prefixes listed in Table 1. In this binary tree, each leaf node
corresponds to an elementary interval. It is clear that the binary tree shown in Fig. 1(b)
gives good worst-case performance. However, the average performance can be improved if
access frequencies are taken into consideration. For example, Gupta, et al. [12] suggested to
use the weight-balanced binary tree to take advantage of access frequencies to reduce the
average lookup time. The weight-balanced binary tree is described below.

Assume that there are l elementary intervals. Let wi denote the access frequency (or
weight) of elementary interval i and [w1 w2 … wl] the set of weights for all elementary
intervals. The left sub-tree of the weight-balanced binary tree contains elementary intervals
1, 2, …, n (and the right sub-tree contains elementary intervals n+1, n+2, …, l) if and only if n
satisfies

=−∑ ∑
= +=

n

i

l

ni
ii ww

1 1
.min

111 ∑∑
+==

<≤
−

l

ki
i

k

i
ilk

ww (1)

A tie can be broken arbitrarily. The same procedure applies recursively to both the left
and the right sub-trees until every sub-tree contains a single elementary interval. For
convenience, the procedure for generating the weight-balanced binary tree is referred to as the
weight-balancing procedure. Note that the weight-balanced binary tree is easy to construct.
Besides, compared with a tree which does not take into account access frequencies, the
average search time could be significantly reduced. However, we found that the average
performance can be further improved with simple adjustment of the weight-balanced binary
tree. The adjustment algorithm is presented in the following section.

11011100110*P6

111110001*P5

010101010101P4

00010000000*P3

011100000*P2

11110000*P1

EndStartPrefix

11011100110*P6

111110001*P5

010101010101P4

00010000000*P3

011100000*P2

11110000*P1

EndStartPrefix

I1: 0000~1111
I2: 0000~0111
I3: 0000~0001
I4: 0101
I5: 1000~1111
I6: 1100~1101

Table 1. Routing table example with 4-bit prefixes and the corresponding intervals I1 …I6.

0001

0100

0111

P3

1011

P2

1101

P6

P5

P4 P5

>

≤

≤

≤

≤

≤

>

>

> >

0101

P2

≤ >

Figure 1. (a) Elementary Intervals and (b) Corresponding binary tree for the prefixes listed
in Table 1.

0000 0010 0101 0111 1011 1101 1111

I2

I5
I3

I4

I1

Elementary Intervals

I6

0001 0100 0110 1000 1100 1110

(a) (b)

I1: 0000~1111
I2: 0000~0111
I3: 0000~0001
I4: 0101
I5: 1000~1111
I6: 1100~1101

Table 1. Routing table example with 4-bit prefixes and the corresponding intervals I1 …I6.

I1: 0000~1111
I2: 0000~0111
I3: 0000~0001
I4: 0101
I5: 1000~1111
I6: 1100~1101

Table 1. Routing table example with 4-bit prefixes and the corresponding intervals I1 …I6.

0001

0100

0111

P3

1011

P2

1101

P6

P5

P4 P5

>

≤

≤

≤

≤

≤

>

>

> >

0101

P2

≤ >

Figure 1. (a) Elementary Intervals and (b) Corresponding binary tree for the prefixes listed
in Table 1.

0000 0010 0101 0111 1011 1101 1111

I2

I5
I3

I4

I1

Elementary Intervals

I6

0001 0100 0110 1000 1100 1110

(a) (b)

0001

0100

0111

P3

1011

P2

1101

P6

P5

P4 P5

>

≤

≤

≤

≤

≤

>

>

> >

0101

P2

≤ >

Figure 1. (a) Elementary Intervals and (b) Corresponding binary tree for the prefixes listed
in Table 1.

0000 0010 0101 0111 1011 1101 1111

I2

I5
I3

I4

I1

Elementary Intervals

I6

0001 0100 0110 1000 1100 1110

(a) (b)

3. Adjusted Weight-Balanced Tree

For ease of description, consider a binary tree consisting of four leaf nodes with weight
vector [w1 w2 w3 w4]. There are five possible binary tree patterns with four leaf nodes as
shown in Table 2. Let lT(i) denote the distance of leaf node i from the root on tree T. For

comparison purpose, we define the total lookup time of tree T as () ()∑
=

=
4

1i
Ti ilwTW . Notice

that () ∑
=

4

1i
iwTW represents the average lookup time. As listed in Table 2, the total lookup

time for tree pattern a is equal to 2(w1 +w2 +w3 +w4) and that for pattern b is equal to w1 +2(w2

+w3) +w4. Thus, pattern b is better than pattern a in terms of average lookup time if and only
if w1 > w2 +w3. In Table 2, we also provide the criteria for each tree pattern to be the
optimum (i.e., least total lookup time) among the five tree patterns.

The weight-balancing procedure, unfortunately, does not always results in the optimal
tree pattern. For example, assume that the weight vector is [23 5 2 27]. Figures 2(a) and
2(b) show, respectively, the weight-balanced binary tree and the optimal binary tree. They
are different and the gain, which is defined as the difference of total lookup times, of the
optimal binary tree is 20. From a different viewpoint, the average lookup time of the
weight-balanced binary tree is 114/57 = 2 and that of the optimal tree is 94/57 = 1.6491. The

Table 2. The possible tree patterns, the total lookup time required, and the criteria for
optimality over the complete binary tree of depth 2.

a b c d e

Tree Pattern

Total
Lookup
Time

++ 21(2 ww
)43 ww +

++ 41 2ww
)(3 32 ww +

++ 412 ww
)(3 32 ww +

++ 21 2ww
)(3 43 ww +

++ 34 2ww
)(3 21 ww +

Criteria for
optimality










+<
+<
+<
+<

214

431

324

321

www
www
www
www

 



≤<
<+

142

132

www
www





≤<
<+

413

432

www
www





<
<+
 24

143

ww
www





<
<+
 31

421

ww
www

w1 w2

w3

w4
w1

w2 w3

w4 w1

w2 w3

w4 w1

w2

w3 w4

w1 w2 w3 w4

following Proposition shows that, if tree pattern a, d or e is optimal, then the weight-balanced
binary tree is identical to the optimal pattern.

Proposition 1. If tree pattern a, d or e is optimal, then the weight-balancing procedure results
in the optimal pattern.
Proof: For tree pattern a to be optimal, it must hold that











+<
+<
+<
+<

).pattern n better tha is (pattern
and),pattern n better tha is (pattern
),pattern n better tha is (pattern
),pattern n better tha is (pattern

214

431

324

321

eawww
dawww
cawww
bawww

The third inequality, i.e., w1 < w3 + w4, implies that the left sub-tree of the weight-balanced
binary tree contains at least two leaf nodes. Similarly, the fourth inequality implies that the
right sub-tree contains at least two leaf nodes. As a result, both the left sub-tree and the right
sub-tree contain exactly two leaf nodes. In other words, the weight-balanced binary tree is
identical to pattern a.

For tree d to be the optimal pattern, it must hold that











+<+
+<

<
<+

).pattern n better tha is (pattern 2 2
 and),pattern n better tha is (pattern 2

),pattern n better tha is (pattern
),pattern n better tha is (pattern

2143

214

24

143

edwwww
cdwww
bdww

adwww

The first inequality, i.e., w3 + w4 < w1, implies that the weight-balanced binary tree is either
pattern b or d. It has to be pattern d because of the inequality w4 < w2. The Proof for
pattern e is similar. This completes the proof of Proposition 1. �

Proposition 2 below states that the weight-balancing procedure might result in pattern a
if the optimal pattern is either b or c. As a result, one may have adjustment gain by altering
pattern a to the optimal pattern. Besides, according to Proposition 1, this is the only

523 2 27 23

5 2

27

Figure 2. (a) A weight balanced binary tree and (b) the corresponding optimal binary tree.

(a) (b)

523 2 27 23

5 2

27

23

5 2

27

Figure 2. (a) A weight balanced binary tree and (b) the corresponding optimal binary tree.

(a) (b)

possibility for adjustment gain. Since the criteria for optimality is quite simple, adjustment
can be easily done without much effort.

Proposition 2. If pattern b (or pattern c) is optimal, then the weight-balancing procedure
results in pattern a or b (pattern a or c).
Proof: For pattern b to be optimal, it must hold that











<+
<
<

<+

).pattern n better tha is (pattern 2
 and),pattern n better tha is (pattern

),pattern n better tha is (pattern
),pattern n better tha is (pattern

143

42

14

132

ebwww
dbww
cbww
abwww

The first inequality, i.e., w2 + w3 < w1, implies that the weight-balanced binary tree is either
pattern a, b or d. Since w2 < w4, pattern d will not be generated by the weight-balancing
procedure. To show that the weight-balancing procedure may result in pattern a, it suffices
by giving an example. Consider a weight vector [x 1 1 x-1] with x > 2. It is clear that the
corresponding optimum tree is pattern b. However, the weight-balancing procedure
generates pattern a. Therefore, the weight-balancing procedure could result in tree pattern a
or b if b is the optimal pattern. The Proof for pattern c is similar. This completes the proof
of Proposition 2. �

One can generalize the concept of adjustment to a tree with an arbitrary number of leaf
nodes. However, the number of possible tree patterns grows explosively as the number of
leaf nodes becomes large. Let ni denote the number of possible tree patterns when there are i

leaf nodes. It is not difficult to show that ∑
−

=
−=

1

1

i

j
jiji nnn with n1 = n2 = 1. As an example,

we have n8 = 429. Because of the complexity, we will focus on adjusting trees with four leaf
nodes. In other words, a tree or a sub-tree is adjusted after the weight-balancing procedure is
executed for every two steps. Proposition 3 below proves that the adjusted tree always gives
a better average performance than the non-adjusted tree.

Proposition 3. Given a weight balanced binary tree T. Let T̂ be the adjusted weight-

balanced binary tree. We have () ()TWTW ≤ˆ .

Proof: Define the weight of an internal node as the sum of the weights of all leaf nodes
under it. Recall that the weight-balancing procedure is recursively applied to derive the
weight-balanced tree. As a result, before the weight-balancing procedure terminates, there
are “leaf nodes” that can be further expanded. For convenience, we call such a tree a
partially expanded tree. We will prove that, for all “corresponding” partially expanded trees,
the total lookup time with adjustment is smaller than or equal to that without adjustment.

According to Propositions 1 and 2, after the first two steps of expansion, the total lookup

time for the partially expanded tree with adjustment is smaller than or equal to that for the
partially expanded tree without adjustment. The proof is completed if there is no leaf node
of the partially expanded tree that can be further expanded, i.e., if the partially expanded tree
is actually fully expanded. So, consider the case that there is at least one leaf node that can
be further expanded. Let T1, T2, T3, and T4 denote the four leaf nodes of the partially

expanded tree without adjustment. Similarly, let 1̂T , 2̂T , 3̂T , and 4̂T denote the four leaf

nodes of the partially expanded tree with adjustment. A key point for the proof is that the
adjustment algorithm only alters tree pattern. It does not change the weight of any (internal)

node. In other words, Ti is identical to iT̂ , except that they might be in different levels.

Let l(Ti) and ()iTl ˆ denote the levels of nodes Ti and iT̂ , respectively. Further, let
iTW and

iTW ˆ represent the total weight of leaf nodes under nodes Ti and iT̂ , respectively. As

mentioned above, we have
iTW =

iTW ˆ , for all i.

Without loss of generality, assume that the leftmost leaf node, i.e., T1 (or 1̂T), can be

further expanded. To avoid trivial cases, we assume that the node can be further expanded
by at least two steps. According to the adjustment algorithm, the tree is adjusted after two
steps of expansion. Let T11, T12, T13, and T14 denote the leaf nodes under T1 after two steps
of expansions. Also, let l(T1i) denote the distance from node T1i to node T1. As a result, for
the new partially expanded tree without adjustment, the total lookup time becomes

() () ()()∑∑
==

++
4

1
11

4

2
1

j
jT

i
iT TlTlWTlW

ji
. Similarly, let ()iTl 1̂ denote the distance of node iT1̂ to

node 1̂T . The total lookup time of the new partially expanded tree with adjustment

becomes ()∑
=

4

2
ˆ

ˆ
i

iT TlW
i

+ () ()()∑
=

+
4

1
11ˆ
ˆˆ

1
j

jT TlTlW
j

. Since the adjustment algorithm guarantees that

()≤∑
=

4

1
1ˆ
ˆ

1
j

jT TlW
j

 ()∑
=

4

1
1ˆ
ˆ

1
j

jT TlW
j

. Thus, we have

() () ()() () () ()()∑∑∑∑
====

++≤++
4

1
11

4

2

4

1
11ˆ

4

2
ˆ 11

ˆˆˆ
j

jT
i

iT
j

jT
i

iT TlTlWTlWTlTlWTlW
jiji

.

In other words, the total lookup time of the partially expanded tree with adjustment is
smaller than or equal to that of the partially expanded tree without adjustment. The same
arguments can be applied repeatedly until the tree is fully expanded. This completes the
proof of Proposition 3. �

4. Adjustment Gain
Consider a tree T with n leaf nodes. Let [w1 w2 …wn] be the weight vector. Further, let

()TGT
ˆ denote the gain obtained by altering tree T to tree T̂ and is defined as

() () () () ()TWTWilwilwTG
n

i
Ti

n

i
TiT

ˆˆ
1

ˆ
1

−=−= ∑∑
==

, (2)

The ratio of ()TGT
ˆ to ()TW , called the gain ratio, represents the percentage of

improvement in average lookup time.

Based on Proposition 1 we know that, for a tree with four leaf nodes, the only possible
adjustment is to alter from pattern a to either pattern b or c. Since patterns b and c are
symmetric, we can focus on altering from pattern a to pattern b.

For n = 4, the maximum gain ratio is given by (x-2)/2(2x+1), where x is a non-negative
integer greater than or equal to 2. It is achieved by altering tree pattern a to tree pattern b
when the weight vector is [x 1 1 x-1]. This can be derived as follows. When a tree is

altered from pattern a to pattern b, the gain ratio is given by ()() ∑
=

+−
4

1
321 2

i
iwwww . To

maximize the gain ratio, w2 and w3 have to be as small as possible. That is, we should have
w2 = w3 = 1. Since the weight-balanced binary tree must be of pattern a, w1 and w4 cannot
differ by more than 1. Therefore, the weight vector which maximizes the gain ratio is [x 1 1
x-1]. It is obvious that as x increases, the maximum gain ratio increases and the limiting
value is 1/4. Another weight vector which also results in a limiting gain ratio of 1/4 is [x 1 1
x]. For ease of description, we will use this vector for the rest of this section.

A tree is said to be a k-level tree if the longest distance from root to any leaf node is k.
For examples, in Table 2, pattern a is a 2-level tree and all the other patterns are 3-level trees.
One can easily show that pattern a is the only 2-level tree that can be adjusted for
performance improvement. We call a k-level tree which results in the largest gain ratio the
worst pattern of level k. For example, pattern a in Table 2 is the worst pattern of level 2.

Let us consider the maximum adjustment gain for a 3-level tree. The left sub-tree of a
3-level tree is either a level-1 or a level-2 tree. Therefore, the left sub-tree must be the worst
pattern of level 2 to achieve the maximum adjustment gain. Similarly, in order to achieve
the maximum adjustment gain, the right sub-tree is also the worst pattern of level 2. As a
consequence, the worst patterns of level 3 must have eight leaf nodes and its left sub-tree and
right sub-tree are the worst patterns of level 2. Figure 3 shows the worst pattern of level 3
and its corresponding tree after adjustment. Note that, for the weight-balancing procedure to
generate the complete binary tree as shown in Figure 3, the total weight under the left sub-tree
equals that under the right sub-tree. That is, the weight vector for the worst pattern of level 3

should be [x 1 1 x x 1 1 x]. The maximum gain ratio for a 3-level tree is thus given by
(x-2)/(2(x+1)).

Consider a 4-level tree now. One might guess that the maximum gain ratio is achieved
for a complete 4-level tree where the left and the right sub-trees are the worst patterns of level
3. This is not correct. Notice that the maximum gain ratio for the worst pattern of level 2
is larger than that for the worst pattern of level 3. Therefore, to achieve the maximum gain
ratio, one of the two sub-trees should be the worst pattern of level 2 and the other the worst
pattern of level 3, as illustrated in Figure 4. Again, for the weight-balancing procedure to
generate the tree shown in Figure 4, we have to assign appropriate weights. Basically, the
total weight of the left sub-tree is equal to that of the right sub-tree. As a result, the weight
vector should be [2x+1 1 1 2x+1 x 1 1 x x 1 1 x] and the maximum gain ratio is equal to
(4x-5)/(28x+28).

Similarly, to achieve the maximum gain ratio for a 5-level tree, the tree should have a
worst pattern of level 2 as a sub-tree and a worst pattern of level 4 as another sub-tree.
Again, the weights have to be appropriately assigned. After some calculations, it can be
determined to be [4x+3 1 1 4x+3 2x+1 1 1 2x+1 x 1 1 x x 1 1 x] and thus the maximum gain
ratio is equal to (8x-4)/(60x+60).

Let us consider now k-level trees. Without loss of generality, we assume that the left
sub-tree is always shorter than the right sub-tree. From the above discussions, we know that,

Figure 4. An example of 4-level binary tree that results in the maximum gain ratio.

After adjustment

2x+1 1 1 2x+1

x 1 1 x x 1 1 x

2x+1

1 1

x

1 1

x

2x+1 x

1 1

x

2-level sub-tree

3-level sub-tree

Figure 4. An example of 4-level binary tree that results in the maximum gain ratio.

After adjustment

2x+1 1 1 2x+1

x 1 1 x x 1 1 x

2x+1 1 1 2x+1

x 1 1 x x 1 1 x

2x+1

1 1

x

1 1

x

2x+1 x

1 1

x

2x+1

1 1

x

1 1

x

x

1 1

x

2x+1 x

1 1

x

x

1 1

x

2-level sub-tree

3-level sub-tree

x 1 1 x x 1 1 x

x

1 1

x

x

1 1

x

After adjustment

1 11 1
Figure 3. The worst pattern of level 3 and its corresponding tree after adjustment.

Figure 5. The k-level worst pattern tree.

Level

k-1

3

2

k-2

M

k

O

1

2

3

3−k

2−k 1−k

Figure 5. The k-level worst pattern tree.

Level

k-1

3

2

k-2

M

k

O

1

2

3

3−k

2−k 1−k

Figure 5. The k-level worst pattern tree.

Level

k-1

3

2

k-2

M

k

O

1

2

3

3−k

2−k 1−k

Level

k-1

3

2

k-2

M

k

O

1

2

3

3−k

2−k 1−k

O

1

2

3

3−k

2−k 1−k

to achieve the maximum gain ratio, it should have the 2-level worst pattern tree as the left
sub-tree and the (k-1)-level worst pattern tree as the right sub-tree. Figure 5 shows the
recursive construction of the k-level worst pattern tree. Clearly, the k-level worst pattern tree
consists of k-1 2-level worst pattern sub-trees (see Figure 4 for an example of k = 4). Let us

number these 2-level worst pattern sub-trees from left to right. After some calculations, for
a k-level worst pattern tree, the weight vector of the n-th 2-level worst pattern sub-tree is
[2k-n-2(x+1)-1 1 1 2k-n-2(x+1)-1]. Hence the maximum gain ratio is given by

()()() ()

()() ()
() ()

()() .
142

1312

12212

22112

1

2

2

1

1

2

1

2

+−
−−+

=
++++

−+−−+

+

−

−

=

−−

−

=

−−

∑

∑
x

kx

kxnx

xx

k

k

k

n

nk

k

n

nk

 (3)

As x goes to infinity, the maximum gain ratio is equal to ())4(28
1

−−− k .

5. Conclusion
We have presented in this paper a simple adjustment algorithm for the weight-balanced

binary tree to improve the average performance in IP routing table lookup. Through analysis,
we showed that the improvement could be as large as 25% for a 2-level tree or larger than
12.5% for an arbitrary k-level tree. Since the gain decreases as the level of a tree increases,
in practice one should focus on adjusting the leaf nodes that are within a short distance (say, 8)
from the root. One possible further research topic, which is currently under investigation, is

to apply the weight-balancing procedure with adjustment to multi-field packet classification.

6. References
[1]. M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding Tables for Fast

Routing Lookups,” in Proceedings of ACM SIGCOMM’97, 1997.

[2]. P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” in Proceedings of
ACM SIGCOMM’99, pp. 147-160, 1999.

[3]. V. Srinivasan and G. Varghese, “Fast IP Lookups Using Controlled Prefix Expansion,” in
ACM TOCS, vol. 17, pp. 1-40, Feb. 1999.

[4]. B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using Multiway and Multicolumn
Search,” in IEEE/ACM Transactions on Networking, Vol. 7, No. 3, pp. 324-334, June 1999.

[5]. P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups in hardward at Memory Access
Speeds,” in Proceedings of INFOCOM’98.

[6]. S. Sikka and G. Varghese, “Memory-Efficient State Lookups with Fast Updates,” in
Proceedings of SIGCOMM’00, 2000.

[7]. S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,” in IEEE Journal on
Selected Areas in Communications, Vol. 17, pp. 1083-1092, June 1999.

[8]. C. Pratridge, “Locality and Route Caches,” in Proceedings of NSF Workshop on Internet
Statistics Measurement and Analysis, 1996.
(http://www.caida.org/ISMA/Positions/partridge.html)

[9]. T. Chiueh and P. Pradhan, “High Performance IP Routing Table Lookup Using CPU
Caching,” in Proceedings of IEEE INFOCOM, April 1999.

[10]. T. Chiueh and P. Pradhan, “Cache Memory Design for Network Processors,” in Proceedings
of High-Performance Computer Architecture, 2000, pp. 409-418.

[11]. G. Cheung and S. McCanne, “Optimal Routing Table Design for IP Address Lookups under
Memory Constraints,” in Proceedings of IEEE INFOCOM, 1999.

[12]. P. Gupta, B. Prabhakar, and S. Boyd, “Near-Optimal Routing Lookups with Bounded Worst
Case Performance,” in Proceedings of IEEE INFOCOM, 2000.

[13]. C. L. Liu, Elements of Discrete Mathematics, McGraw-Hill, 1986.
[14]. T-Y.C. Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” in

Proceedings of IEEE INFOCOM, 2000, pp. 1213-1222.

[15]. V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification Using Tuple Space Search,”
in ACM Computer Communication Review, 1999.

[16]. T.V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Using
Efficient Multi-Dimensional Range Matching,” in Proceedings of ACM SIGCOMM’98,
1998.

