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Abstract 
Various algorithms have recently been proposed for Internet routers to improve the 

performance of routing table lookup.  However, most of previous research effort does not 
utilize the access frequencies of route entries.  Since Internet traffic has significant temporal 
localities [9]-[11], one could largely improve the performance of routing table lookup by 
taking advantage of access frequencies.  An example that aims at minimizing the average 
lookup time can be found in [12].  Since global optimization is computationally prohibited, 
the authors suggested to construct a binary tree based on a weight-balancing heuristic.  We 
present in this paper that the resulted weight-balanced binary tree can be adjusted with a 
simple algorithm to further improve the performance.  The adjustment algorithm is so simple 
that it basically does not increase the complexity in constructing the binary tree.  Through 
analysis, we found that the improvement can be as large as 25% for a tree with four leaf nodes.  
For a tree of arbitrary size, the improvement could be larger than 12.5%. 

Keywords  Routing table lookup, Weight-balanced tree, temporal locality. 

1. Introduction 
Because of the explosive growth of Internet traffic, the performance of IP routing table 

lookup is becoming critical for high-speed routers to provide satisfactory services.  As such, 
many researches developed in the past few years new algorithms to accomplish high-speed 
routing table lookup [1]-[10].  Some of the algorithms compress the routing table with 
sophisticated data structures so that a processor can perform routing table lookup in its cache 
[1]-[7] and some others use simple data structures with special hardware to assist in routing 
table lookup [8]-[10].  In general, sophisticated data structure renders difficulty in table 
update and simple data structure requires a large amount of memory.  

Unfortunately, most of previous research effort does not consider access frequencies of 
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route entries.  Recent studies of Internet traffic [9]-[11] demonstrate the existence of 
significant temporal locality in the packet streams.  In other words, the average performance 
of IP routing table lookup can be significantly improved if an algorithm is developed with a 
data structure that considers access frequencies.  The authors of [12] argued that Huffman 
encoding [13] is not applicable to routing table lookup and proposed to use a weigh-balancing 
procedure to generate a binary tree to represent the routing table.  It was shown that the 
average table lookup time could be largely reduced with the weight-balanced binary tree. 

In this paper, we present an adjustment scheme that can be applied to the 
weight-balanced binary tree to further improve the average performance.  The adjustment is 
simple and thus basically it does not increase the complexity in constructing the binary tree.  
We show through analysis that the improvement could be larger than 12.5%.  For a tree with 
only four leaf nodes, the maximal improvement is 25%. 

The rest of this paper is organized as follows.  In Section 2, we briefly review the 
concept of weight-balanced binary tree proposed in [12].  In Section 3, we present our 
adjustment algorithm.  Section 4 contains analysis of the maximal achievable gain with the 
adjustment algorithm.  Finally, we draw conclusion in Section 5. 

2. The Weight-Balanced Binary Tree  
The IP routing lookup problem can be described as follows.  Given an incoming 

packet’s destination IP address, find the longest matching prefix among a set of route prefixes.  
Since every prefix determines an interval, one can simply use binary search to solve the IP 
routing table lookup problem.  In fact, binary search is deemed an efficient solution for 
routing table lookup.  As an example, consider the prefixes shown in Table 1.  In this 
example, we assume 4-bit addresses and the interval determined by prefix k is denoted by Ik.  
Notice that two intervals may contain common addresses.  However, if two intervals Ia and 
Ib contain common addresses, then one is fully contained in the other, i.e., either Ia ⊂ Ib or Ib 
⊂ Ia.  Since each prefix has two end points, one can use all the end points to divide the entire 
address space into elementary intervals (see Fig. 1(a)).   Clearly, under the longest matching 
prefix criterion, an elementary interval uniquely determines a prefix.  For example, prefix 
000∗ is matched if a destination address falls in elementary interval [0000, 0001].  Having 
the elementary intervals, one can easily construct a binary tree for table lookup.  Figure 1(b) 
illustrates the binary tree for the prefixes listed in Table 1.  In this binary tree, each leaf node 
corresponds to an elementary interval.  It is clear that the binary tree shown in Fig. 1(b) 
gives good worst-case performance.  However, the average performance can be improved if 
access frequencies are taken into consideration.  For example, Gupta, et al. [12] suggested to 
use the weight-balanced binary tree to take advantage of access frequencies to reduce the 
average lookup time.  The weight-balanced binary tree is described below. 



Assume that there are l elementary intervals.  Let wi denote the access frequency (or 
weight) of elementary interval i and [w1 w2 … wl] the set of weights for all elementary 
intervals.  The left sub-tree of the weight-balanced binary tree contains elementary intervals 
1, 2, …, n (and the right sub-tree contains elementary intervals n+1, n+2, …, l) if and only if n 
satisfies 
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A tie can be broken arbitrarily.  The same procedure applies recursively to both the left 
and the right sub-trees until every sub-tree contains a single elementary interval.  For 
convenience, the procedure for generating the weight-balanced binary tree is referred to as the 
weight-balancing procedure.  Note that the weight-balanced binary tree is easy to construct.  
Besides, compared with a tree which does not take into account access frequencies, the 
average search time could be significantly reduced.  However, we found that the average 
performance can be further improved with simple adjustment of the weight-balanced binary 
tree.  The adjustment algorithm is presented in the following section. 
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111110001*P5

010101010101P4

00010000000*P3
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11110000*P1

EndStartPrefix
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I1: 0000~1111 
I2: 0000~0111  
I3: 0000~0001     
I4: 0101
I5: 1000~1111  
I6: 1100~1101

Table 1. Routing table example with 4-bit prefixes and the corresponding intervals I1 …I6. 
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Figure 1. (a) Elementary Intervals and (b) Corresponding binary tree for the prefixes listed 
in Table 1. 
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3. Adjusted Weight-Balanced Tree 

For ease of description, consider a binary tree consisting of four leaf nodes with weight 
vector [w1 w2 w3 w4].  There are five possible binary tree patterns with four leaf nodes as 
shown in Table 2.  Let lT(i) denote the distance of leaf node i from the root on tree T.  For 

comparison purpose, we define the total lookup time of tree T as ( ) ( )∑
=

=
4

1i
Ti ilwTW .  Notice 

that ( ) ∑
=

4

1i
iwTW  represents the average lookup time.  As listed in Table 2, the total lookup 

time for tree pattern a is equal to 2(w1 +w2 +w3 +w4) and that for pattern b is equal to w1 +2(w2 

+w3) +w4.  Thus, pattern b is better than pattern a in terms of average lookup time if and only 
if w1 > w2 +w3.  In Table 2, we also provide the criteria for each tree pattern to be the 
optimum (i.e., least total lookup time) among the five tree patterns. 

The weight-balancing procedure, unfortunately, does not always results in the optimal 
tree pattern.  For example, assume that the weight vector is [23 5 2 27].  Figures 2(a) and 
2(b) show, respectively, the weight-balanced binary tree and the optimal binary tree.  They 
are different and the gain, which is defined as the difference of total lookup times, of the 
optimal binary tree is 20.  From a different viewpoint, the average lookup time of the 
weight-balanced binary tree is 114/57 = 2 and that of the optimal tree is 94/57 = 1.6491.  The 

Table 2. The possible tree patterns, the total lookup time required, and the criteria for 
optimality over the complete binary tree of depth 2. 

 
a b c d e 

Tree Pattern 

     

Total 
Lookup 
Time 

++ 21(2 ww
)43 ww +  

++ 41 2ww
)(3 32 ww +   

++ 412 ww
)(3 32 ww +  

++ 21 2ww  
)(3 43 ww +  

++ 34 2ww
)(3 21 ww +  

Criteria for 
optimality 










+<
+<
+<
+<

214

431

324

321

www
www
www
www

 



≤<
<+

142

132

www
www

 




≤<
<+

413

432

www
www





<
<+
     24

143

ww
www

 




<
<+
     31

421

ww
www

w1 w2 

w3 

w4
w1 

w2 w3 

w4 w1

w2 w3

w4 w1

w2 

w3 w4 

w1 w2 w3 w4 



following Proposition shows that, if tree pattern a, d or e is optimal, then the weight-balanced 
binary tree is identical to the optimal pattern. 

Proposition 1. If tree pattern a, d or e is optimal, then the weight-balancing procedure results 
in the optimal pattern.  
Proof:  For tree pattern a to be optimal, it must hold that 
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The third inequality, i.e., w1 < w3 + w4, implies that the left sub-tree of the weight-balanced 
binary tree contains at least two leaf nodes.  Similarly, the fourth inequality implies that the 
right sub-tree contains at least two leaf nodes.  As a result, both the left sub-tree and the right 
sub-tree contain exactly two leaf nodes.  In other words, the weight-balanced binary tree is 
identical to pattern a. 

For tree d to be the optimal pattern, it must hold that 
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The first inequality, i.e., w3 + w4 < w1, implies that the weight-balanced binary tree is either 
pattern b or d.  It has to be pattern d because of the inequality w4 < w2.  The Proof for 
pattern e is similar.  This completes the proof of Proposition 1.                       � 

Proposition 2 below states that the weight-balancing procedure might result in pattern a 
if the optimal pattern is either b or c.  As a result, one may have adjustment gain by altering 
pattern a to the optimal pattern.  Besides, according to Proposition 1, this is the only 
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Figure 2. (a) A weight balanced binary tree and (b) the corresponding optimal binary tree.
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possibility for adjustment gain.  Since the criteria for optimality is quite simple, adjustment 
can be easily done without much effort. 

Proposition 2. If pattern b (or pattern c) is optimal, then the weight-balancing procedure 
results in pattern a or b (pattern a or c).  
Proof:  For pattern b to be optimal, it must hold that  
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The first inequality, i.e., w2 + w3 < w1, implies that the weight-balanced binary tree is either 
pattern a, b or d.  Since w2 < w4, pattern d will not be generated by the weight-balancing 
procedure.  To show that the weight-balancing procedure may result in pattern a, it suffices 
by giving an example.  Consider a weight vector [x 1 1 x-1] with x > 2.  It is clear that the 
corresponding optimum tree is pattern b.  However, the weight-balancing procedure 
generates pattern a.  Therefore, the weight-balancing procedure could result in tree pattern a 
or b if b is the optimal pattern.  The Proof for pattern c is similar.  This completes the proof 
of Proposition 2.                                                            � 

One can generalize the concept of adjustment to a tree with an arbitrary number of leaf 
nodes.  However, the number of possible tree patterns grows explosively as the number of 
leaf nodes becomes large.  Let ni denote the number of possible tree patterns when there are i 

leaf nodes.  It is not difficult to show that ∑
−

=
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jiji nnn with n1 = n2 = 1.  As an example, 

we have n8 = 429.  Because of the complexity, we will focus on adjusting trees with four leaf 
nodes.  In other words, a tree or a sub-tree is adjusted after the weight-balancing procedure is 
executed for every two steps.  Proposition 3 below proves that the adjusted tree always gives 
a better average performance than the non-adjusted tree.  

Proposition 3. Given a weight balanced binary tree T.  Let T̂  be the adjusted weight- 

balanced binary tree.  We have ( ) ( )TWTW ≤ˆ .  

Proof:  Define the weight of an internal node as the sum of the weights of all leaf nodes 
under it.  Recall that the weight-balancing procedure is recursively applied to derive the 
weight-balanced tree.  As a result, before the weight-balancing procedure terminates, there 
are “leaf nodes” that can be further expanded.  For convenience, we call such a tree a 
partially expanded tree.  We will prove that, for all “corresponding” partially expanded trees, 
the total lookup time with adjustment is smaller than or equal to that without adjustment.   

According to Propositions 1 and 2, after the first two steps of expansion, the total lookup 



time for the partially expanded tree with adjustment is smaller than or equal to that for the 
partially expanded tree without adjustment.  The proof is completed if there is no leaf node 
of the partially expanded tree that can be further expanded, i.e., if the partially expanded tree 
is actually fully expanded.  So, consider the case that there is at least one leaf node that can 
be further expanded.  Let T1, T2, T3, and T4 denote the four leaf nodes of the partially 

expanded tree without adjustment.  Similarly, let 1̂T , 2̂T , 3̂T , and 4̂T  denote the four leaf 

nodes of the partially expanded tree with adjustment.  A key point for the proof is that the 
adjustment algorithm only alters tree pattern.  It does not change the weight of any (internal) 

node.  In other words, Ti is identical to iT̂ , except that they might be in different levels.  

Let l(Ti) and ( )iTl ˆ  denote the levels of nodes Ti and iT̂ , respectively. Further, let 
iTW  and 

iTW ˆ  represent the total weight of leaf nodes under nodes Ti and iT̂ , respectively. As 

mentioned above, we have 
iTW =

iTW ˆ , for all i. 

Without loss of generality, assume that the leftmost leaf node, i.e., T1 (or 1̂T ), can be 

further expanded.  To avoid trivial cases, we assume that the node can be further expanded 
by at least two steps.  According to the adjustment algorithm, the tree is adjusted after two 
steps of expansion.  Let T11, T12, T13, and T14 denote the leaf nodes under T1 after two steps 
of expansions.  Also, let l(T1i) denote the distance from node T1i to node T1.  As a result, for 
the new partially expanded tree without adjustment, the total lookup time becomes 
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In other words, the total lookup time of the partially expanded tree with adjustment is 
smaller than or equal to that of the partially expanded tree without adjustment.  The same 
arguments can be applied repeatedly until the tree is fully expanded.  This completes the 
proof of Proposition 3.                                                        � 



4. Adjustment Gain 
Consider a tree T with n leaf nodes. Let [w1 w2 …wn] be the weight vector. Further, let 

( )TGT
ˆ  denote the gain obtained by altering tree T to tree T̂  and is defined as  
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The ratio of ( )TGT
ˆ  to ( )TW , called the gain ratio, represents the percentage of 

improvement in average lookup time.  

Based on Proposition 1 we know that, for a tree with four leaf nodes, the only possible 
adjustment is to alter from pattern a to either pattern b or c.  Since patterns b and c are 
symmetric, we can focus on altering from pattern a to pattern b. 

For n = 4, the maximum gain ratio is given by (x-2)/2(2x+1), where x is a non-negative 
integer greater than or equal to 2.  It is achieved by altering tree pattern a to tree pattern b 
when the weight vector is [x 1 1 x-1].  This can be derived as follows.  When a tree is 

altered from pattern a to pattern b, the gain ratio is given by ( )( ) ∑
=

+−
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maximize the gain ratio, w2 and w3 have to be as small as possible.  That is, we should have 
w2 = w3 = 1.  Since the weight-balanced binary tree must be of pattern a, w1 and w4 cannot 
differ by more than 1.  Therefore, the weight vector which maximizes the gain ratio is [x 1 1 
x-1].  It is obvious that as x increases, the maximum gain ratio increases and the limiting 
value is 1/4.  Another weight vector which also results in a limiting gain ratio of 1/4 is [x 1 1 
x].  For ease of description, we will use this vector for the rest of this section. 

A tree is said to be a k-level tree if the longest distance from root to any leaf node is k.  
For examples, in Table 2, pattern a is a 2-level tree and all the other patterns are 3-level trees.  
One can easily show that pattern a is the only 2-level tree that can be adjusted for 
performance improvement.  We call a k-level tree which results in the largest gain ratio the 
worst pattern of level k.  For example, pattern a in Table 2 is the worst pattern of level 2. 

Let us consider the maximum adjustment gain for a 3-level tree.  The left sub-tree of a 
3-level tree is either a level-1 or a level-2 tree.  Therefore, the left sub-tree must be the worst 
pattern of level 2 to achieve the maximum adjustment gain.  Similarly, in order to achieve 
the maximum adjustment gain, the right sub-tree is also the worst pattern of level 2.  As a 
consequence, the worst patterns of level 3 must have eight leaf nodes and its left sub-tree and 
right sub-tree are the worst patterns of level 2.  Figure 3 shows the worst pattern of level 3 
and its corresponding tree after adjustment.  Note that, for the weight-balancing procedure to 
generate the complete binary tree as shown in Figure 3, the total weight under the left sub-tree 
equals that under the right sub-tree.  That is, the weight vector for the worst pattern of level 3 



should be [x 1 1 x x 1 1 x].  The maximum gain ratio for a 3-level tree is thus given by 
(x-2)/(2(x+1)). 

Consider a 4-level tree now.  One might guess that the maximum gain ratio is achieved 
for a complete 4-level tree where the left and the right sub-trees are the worst patterns of level 
3.  This is not correct.  Notice that the maximum gain ratio for the worst pattern of level 2 
is larger than that for the worst pattern of level 3.  Therefore, to achieve the maximum gain 
ratio, one of the two sub-trees should be the worst pattern of level 2 and the other the worst 
pattern of level 3, as illustrated in Figure 4.  Again, for the weight-balancing procedure to 
generate the tree shown in Figure 4, we have to assign appropriate weights.  Basically, the 
total weight of the left sub-tree is equal to that of the right sub-tree.  As a result, the weight 
vector should be [2x+1 1 1 2x+1 x 1 1 x x 1 1 x] and the maximum gain ratio is equal to 
(4x-5)/(28x+28). 

Similarly, to achieve the maximum gain ratio for a 5-level tree, the tree should have a 
worst pattern of level 2 as a sub-tree and a worst pattern of level 4 as another sub-tree.  
Again, the weights have to be appropriately assigned.  After some calculations, it can be 
determined to be [4x+3 1 1 4x+3 2x+1 1 1 2x+1 x 1 1 x x 1 1 x] and thus the maximum gain 
ratio is equal to (8x-4)/(60x+60).    

Let us consider now k-level trees.  Without loss of generality, we assume that the left 
sub-tree is always shorter than the right sub-tree.  From the above discussions, we know that, 
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After adjustment

2x+1 1  1   2x+1

x   1  1  x  x  1 1 x

2x+1

1 1

x

1 1

x

2x+1 x

1 1

x

2-level sub-tree

3-level sub-tree

Figure 4. An example of 4-level binary tree that results in the maximum gain ratio.

After adjustment

2x+1 1  1   2x+1

x   1  1  x  x  1 1 x

2x+1 1  1   2x+1

x   1  1  x  x  1 1 x

2x+1

1 1

x

1 1

x

2x+1 x

1 1

x

2x+1

1 1

x

1 1

x

x

1 1

x

2x+1 x

1 1

x

x

1 1

x

2-level sub-tree

3-level sub-tree

x 1 1 x x 1 1 x 

x

1 1

x

x 

1 1 

x 

After adjustment 

1 11 1
Figure 3. The worst pattern of level 3 and its corresponding tree after adjustment. 



 

Figure 5. The k-level worst pattern tree. 
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to achieve the maximum gain ratio, it should have the 2-level worst pattern tree as the left 
sub-tree and the (k-1)-level worst pattern tree as the right sub-tree.  Figure 5 shows the 
recursive construction of the k-level worst pattern tree.  Clearly, the k-level worst pattern tree 
consists of k-1 2-level worst pattern sub-trees (see Figure 4 for an example of k = 4).  Let us  

 
number these 2-level worst pattern sub-trees from left to right.  After some calculations, for 
a k-level worst pattern tree, the weight vector of the n-th 2-level worst pattern sub-tree is 
[2k-n-2(x+1)-1 1 1 2k-n-2(x+1)-1].  Hence the maximum gain ratio is given by 
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As x goes to infinity, the maximum gain ratio is equal to ( ))4(28
1

−−− k .  

5. Conclusion 
We have presented in this paper a simple adjustment algorithm for the weight-balanced 

binary tree to improve the average performance in IP routing table lookup.  Through analysis, 
we showed that the improvement could be as large as 25% for a 2-level tree or larger than 
12.5% for an arbitrary k-level tree.  Since the gain decreases as the level of a tree increases, 
in practice one should focus on adjusting the leaf nodes that are within a short distance (say, 8) 
from the root.  One possible further research topic, which is currently under investigation, is 



to apply the weight-balancing procedure with adjustment to multi-field packet classification. 

6. References   
[1]. M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding Tables for Fast 

Routing Lookups,” in Proceedings of ACM SIGCOMM’97, 1997. 

[2]. P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” in Proceedings of 
ACM SIGCOMM’99, pp. 147-160, 1999. 

[3]. V. Srinivasan and G. Varghese, “Fast IP Lookups Using Controlled Prefix Expansion,” in 
ACM TOCS, vol. 17, pp. 1-40, Feb. 1999.  

[4]. B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using Multiway and Multicolumn 
Search,” in IEEE/ACM Transactions on Networking, Vol. 7, No. 3, pp. 324-334, June 1999. 

[5]. P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups in hardward at Memory Access 
Speeds,” in Proceedings of INFOCOM’98. 

[6]. S. Sikka and G. Varghese, “Memory-Efficient State Lookups with Fast Updates,” in 
Proceedings of SIGCOMM’00, 2000. 

[7]. S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,” in IEEE Journal on 
Selected Areas in Communications, Vol. 17, pp. 1083-1092, June 1999. 

[8]. C. Pratridge, “Locality and Route Caches,” in Proceedings of NSF Workshop on Internet 
Statistics Measurement and Analysis, 1996. 
(http://www.caida.org/ISMA/Positions/partridge.html) 

[9]. T. Chiueh and P. Pradhan, “High Performance IP Routing Table Lookup Using CPU 
Caching,” in Proceedings of IEEE INFOCOM, April 1999. 

[10]. T. Chiueh and P. Pradhan, “Cache Memory Design for Network Processors,” in Proceedings 
of High-Performance Computer Architecture, 2000, pp. 409-418. 

[11]. G. Cheung and S. McCanne, “Optimal Routing Table Design for IP Address Lookups under 
Memory Constraints,” in Proceedings of IEEE INFOCOM, 1999. 

[12]. P. Gupta, B. Prabhakar, and S. Boyd, “Near-Optimal Routing Lookups with Bounded Worst 
Case Performance,” in Proceedings of IEEE INFOCOM, 2000. 

[13]. C. L. Liu, Elements of Discrete Mathematics, McGraw-Hill, 1986. 
[14]. T-Y.C. Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” in 

Proceedings of IEEE INFOCOM, 2000, pp. 1213-1222. 

[15]. V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification Using Tuple Space Search,” 
in ACM Computer Communication Review, 1999. 

[16]. T.V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Using 
Efficient Multi-Dimensional Range Matching,” in Proceedings of ACM SIGCOMM’98, 
1998. 


