
Issues in Designing Network Management Systems based on
Mobile Autonomous Agents

Hendrik Teixeira Macedo*, Geber Lisboa Ramalho, Carlos A. G. Ferraz

Federal University of Pernambuco
Center of Computer Science, PO. Box: 7851,50732-970

Recife - PE, Brazil
Phone: +55 81 271.8430, ext. 4325
{htm,glr,cagf}@cin.ufpe.br

Abstract

The use of mobile agents for network management has increased in the last years as
an alternative to client/server-based approaches, which exhibit problems due to
centralization. Some authors claim that agent’s properties, such as autonomy
(reasoning) and coordination, could be useful on the network management context.
However, there are not yet any guidelines on how to put together these properties,
nor an effective evaluation of the impact of this integrated approach. In this paper,
we discuss some issues in endowing agents with these properties in the context of
developing network management solutions. Considering some metrics (processing
time, CPU consumption, disk space, etc.), we present an evaluation of different
multi-agent organizations varying the levels of agents’ autonomy, agent’s mobility
and number of agents. The experiments have been carried out by means of a
simulator we have built, taking as case study the disk space management problem in
UNIX/NFS networks. The results reveal some guidelines to the design of
management systems based on mobile autonomous agents.
Keywords: network management, mobile agents, autonomous agents

1. INTRODUCTION

The automation of network management is necessary as some its activities are repetitive,
exhaustive and require prompt reactions from humans. In fact, interruptions of computational
resources and services, or inconsistencies in the state of network transactions, can cause
disturbances to network systems.

The last years witnessed important advances in the network management automation,
however the mainstream tools are not yet fully adequate. One of the main problems is that
most management systems are built according to the client-server model, which yields to a
rather centralized management. In these systems, sensors (called Agents), located in the
devices to be managed, verify the state of the device periodically and send messages to the
network management station (NMS). This station is responsible for monitoring the devices,
identifying fortuitous problems, and executing actions to correct any sudden undesirable
change. Such centralization may overload the NMS, increasing the network traffic and
confining the management flexibility.

The use of more sophisticated agents in network management tools could minimize the
effects of centralization [4, 15, 20]. Such sophistication could be achieved by two main

* Supported by CNPq (1999-2001) / CAPES (2002): BEX 0753/01-7

properties, namely mobility and autonomy. Mobile agents [1] can move their own code and
execution states to other networked machines in order to process data locally, minimizing
network bandwidth consumption, communication delays and failures. Autonomous agents are
capable of making decisions based on their reasoning mechanisms, without the interference of
humans [6]. Moreover, the combination of mobility and autonomy should help decentralize
the management activity, as discussed in this paper.

Unfortunately, the works that try to implement more sophisticated agents present the
following problems: little profit has been taken from the combination mobility-autonomy; the
solutions are still based on the centralized control, instead of being more distributed; there is
no methodology concerning when and how to endow agents of mobility and autonomy; there
is no effective evaluation of the impact of using mobile autonomous agents in network
management tasks.

This paper presents an original study on some important issues that arise in designing
network management systems based on mobile autonomous agents. Should one use mobile or
static agents? What is the adequate autonomy degree? How many agents should be used?
How different should the agents be? Answering these questions would be the first step for
setting up precise guidelines for agent-based solutions to network management. Indeed, these
answers could help define parameters to assess the potential advantages and disadvantages of
each agent’s implementation aspect for a given management problem.

To find some answer to those issues, we have considered some metrics (processing time,
CPU consumption, disk space, etc.) in order to evaluate different multi-agent organizations
varying the levels of agents’ autonomy, agents’ mobility and number of agents. The
experiments have been carried out by means of a simulator we have built, taking as case study
the disk space management problem in UNIX/NFS networks. The results reveal some
guidelines to the design of management systems based on mobile autonomous agents.

The remainder of this paper is structured as follows. Section 2 classifies approaches for
network management based on agents. Section 3 discusses some open issues regarding the
implementation of those aspects in agent-based management systems. Section 4 shows the
steps we have followed from the definition of some agent types to the implementation of a
simulator. The experiments and their results are shown in section 5. Section 6 draws some
conclusions and indicates directions for future work.

2. AGENT-BASED NETWORK MANAGEMENT APPROACHES

This section discusses two current approaches in automating network management. The first
one, based on a simplified notion of agents, is consolidated as the basis of several commercial
tools [21,22]. The second one, based on more sophisticated agents, is rather related to
academic research efforts [23,24].

2.1. Simplified agents

The most used approach for network management, proposed by IETF (Internet Engineering
Task Forces), is based on the Simple Network Management Protocol (SNMP) [8]. This
approach follows the widely used client-server model where a centralized managing entity
(NMS – Network Management Station, operated by a human manager) interacts with SNMP
agents running on the devices of the network. Each SNMP agent stores the device’s
information in a local information base called management information base (MIB) [9]. The
NMS acts as client of such agents, requesting information about the network devices’ status

using some SNMP protocol primitives for exchanging messages. SNMP agents possess
simple structures and they do not execute management actions in its local device. The
maximum action that they take is the dispatch of messages to the NMS when a specific event
happens (for example, the sudden change in the status of a component from “active” to
“inactive”). It is the NMS that is responsible for executing the action chosen by the human
manager. That typical client-server interaction leads to the generation of high network traffic
and NMS overload. Furthermore, solutions based on such approach have poor flexibility and
scalability [7].

2.2. More Sophisticated Agents

The approach mentioned before uses a simplistic concept of agents, which are basically
sensors. It is believed that endowing them with properties such as mobility, autonomy, and
coordination, agents could give a larger contribution for a distributed, flexible and less
laborious management.

Mobile agents (MA) are computational processes capable of migrating their own execution
code, the processed data and even the execution status from one device to another. The idea is
to migrate the program to the place where the data are located. This approach potentially
reduces the network traffic, increases system robustness, saves disk space and provides a
larger flexibility, since a certain service is not statically tied up to a specific machine [4].

Autonomous agents use deductive and/or inductive inference mechanisms to choose the
most appropriate actions according to their perceptions, goals and knowledge [6,10]. The
ability of reasoning is an important characteristic in order to provide a larger autonomy
degree to the agent. Indeed, autonomy can improve the benefits of agents’ mobility in the
network management [4]. For example, a mobile agent can make dynamic decisions such as
finding the next destination, optimizing the travel plan, and detecting link failures, as the
agent travels throughout the network. Moreover, if an agent is able to solve complex
problems locally, and not just simple ones, there is no need to use the network to ask someone
else to help.

Following the current decentralization tendency in network management systems [7], it is
necessary to distribute the tasks among a group of agents, a multi-agent system [10]. These
agents will coordinate their actions to solve problems more efficiently and more effectively.

The three characteristics described above (mobility, autonomy and distribution) have been
studied in the academic domain to be used in the modeling, development and/or usage of
more sophisticated agents in the network management field [12,13,14]. However, despite the
potential of agents, most current research works are not fully satisfactory: little profit has
been taken from the combination of mobility and autonomy; the solutions are still based on
centralized control instead of being more distributed; there is no methodology concerning
when and how to endow agents of mobility and autonomy; there is no effective evaluation of
the impact of using mobile autonomous agents in network management tasks [15].

3. OPEN ISSUES

Considering that network management should be as distributed as possible [7], the use of
more sophisticated agents, as discussed in the previous section should be encouraged.

Motivated by this new paradigm, we started a couple of years ago some implementations
of mobile autonomous agents for network management tasks. Unfortunately, despite the
interesting results [3], we have realized how complicated is to design and evaluate such

approach. There is no a priori answer to several key questions. When to use static or mobile
agents? Which is the ideal degree of mobility? How complex, in terms of reasoning
capabilities, should the agent be? Which is the ideal number of agents in the solution? Should
the agents communicate?

Of course, the answers to those questions cannot be given superficially. They depend on
various factors such as the network configuration and size, the machines’ processing power
and disk space, the robustness of the network, and the management task.

For instance, concerning mobility, when management actions are not required frequently,
does the use of mobility compensate the effort of installing and maintaining the mobility
middleware? When the status of the managed devices varies too much, or when the detected
problems are too simple, is the use of mobility still suitable? Which degree of network
instability requires mobile agents? What should be done when some devices need to be
managed more frequently than other ones?

Regarding autonomy, a high degree of autonomy is only achieved by complex agents,
which are difficult to implement and, if they are mobile, use larger bandwidth than simple
ones. In this context, should all agents have the same capabilities? Which are the specific
capabilities required by the management tasks? Can these tasks be broken into simpler
activities?

With respect to distribution, given that the more numerous are the agents, the more
complex is their coordination, which network configuration and operational conditions do
require a larger number of agents? In the case they are mobile, should these agents be
restricted to a given set of networked machines?

4. WORK METHODOLOGY

The issues discussed above show how difficult it is the design and development of agent-
based systems for distributed network management. In order to clarify some of these issues,
we have adopted an experimental methodology which consists of the following steps: the
definition of some agent types and organizations, the establishment of comparisons criteria,
the choice of a case study, and the implementation of a simulator to carry out the experiments.
In the rest of this section, we discuss these steps.

4.1. Defining Agent Types

The previous discussion has shown that there are two properties to be taken into account
when developing an individual agent model for management tasks: mobility and autonomy.

With respect to mobility, we have decided to consider 3 possible agents: an agent may be
mobile, static-local or static-connected. Static-local means that the agent is fixed in a device
and its actions are strictly local. Static-connected means that the agent is fixed in a device but
may be connected to other devices through remote calls.

The identification of different levels of autonomy is a complicated task. We have then
chosen the following types of agents regarding autonomy: an agent may hold the whole
management knowledge or be specialized in perception, decision making or action execution.
Fig. 1 shows 12 different types of agents obtained from the Cartesian product of mobility and
autonomy possible values.

Mobility

Autonomy

Mobile

Static
local

Static
connected

complete perception decision execution

Entire Sentinel Decide Doit

MobEntire MobSentinel MobDecide MobDoit

FarEntire FarSentinel FarDecide FarDoit

Fig. 1 - Types of individual agents considering mobility and autonomy

4.2. Defining Agent Organizations

Agent organizations can be obtained by combining different types of agents. Since the
number of combinations may be very large, we have restricted the organizations to be studied
for those that make sense. For instance, it is useless to consider organizations containing only
perception, only decision-making or only execution agents. Furthermore, as far as the
definition of organizations is concerned, we do not take into account the number of agents of
the same type. An organization composed of two MobEntire agents has the same label as
another one containing ten MobEntire ones. Only at the test step, this difference is
considered.

Fig. 2 illustrates three possible organizations: MobMonoComplete (η MobEntire),
MobTwoSpec (η MobDecideMobDoit coupled with κ MobSentinel), and ConnectThreeSpec
(η FarDecide coupled with κ FarSentinels and with µ FarDoit). In MobMonoComplete
organization, a MobEntire agent migrates between the machines, indefinitely. Since it is
complete, it does not only detect problems in machines, but also chooses the actions to solve
the problems and executes them. The MobDecideMobDoit agent, in the MobTwoSpec
organization, it is possible to make decisions and execute the actions. MobSentinel detects the
problems and ask for help from MobDecideMobDoIt accordingly. In ConnectThreeSpec
organization, there are three Far agents, each one with a functionality. The FarSentinel
detects the problems of the machines and asks for help from FarDecide, responsible for
making decisions, which in turn, asks for help from FarDoit to execute the actions.

FDFD FDo

FDFD

S

 FDe

FS

ME

ME

ME

ME

MS
MDMD

MDMD

MS
MDMD

MDMD

Fig. 2 - Three different multi-agent compositions: MobMonoComplete, MobTwoSpec and Con-
nectThreeSpec, respectively.

Besides the 3 organizations discussed above, we have defined 7 other possibly useful ones,
as shown on Table 1.

Organizations of agents Types of Agents
LocalMonoComplete Entire
MobMonoComplete MobEntire
ConnectMonoComplete FarEntire
LocalThreeSpec Sentinel, Decide, Doit
MobThreeSpec MobSentinel, MobDecide, MobDoit
ConnectThreeSpec FarSentinel, FarDecide, FarDoit
MobConnectMixed1 FarSentinel, MobDecideMobDoit
MobConnectMixed2 MobSentinel, FarDecideFarDoit
MobLocalMixed Sentinel, MobDecideMobDoit
MobTwoSpec MobSentinel, MobDecideMobDoit

Table 1. 10 different organizations of agents

4.3. Case Study: Disk Space Management in UNIX/NFS Networks

We have chosen a particular problem of the Accounting Management OSI Functional Area
[15] to perform the tests. The disk space management is an important activity for the good
operation of a corporative network, because several applications and network services, such
as logging and e-mail services, are highly dependent on storage space in disk. Furthermore,
disk space management is not complex to model.

Activity Modeling

The automation of this activity consists of checking the utilization percentage of a partition,
determining whether the partition has surpassed the threshold previously specified,
determining the appropriate correction actions, and applying them. Usually, these actions are
operations on the existing files. Files may be removed, compacted or moved to another,
possibly remote, partition. The operation must be chosen according to some criteria such as
the file size and leisure time (the time the file has not been accessed), as well as file type (i.e.,
temporary, e-mail, executable, image, text, etc.).

Adapting the Types of Agents

We have divided the disk management into 5 sub-tasks: partition classification, utilization
checking, file classification, action choice, action execution. The 12 types of agents
introduced in section 4.1 have been adapted to the case study. Depending on their
functionality, agents are responsible for executing one or various sub-tasks. Fig. 3 shows the
architectures of the MobEntire agent and the MobSentinel agent.

MobEntire

sensors partitions

effectors

PCUC

FC

goal:
available
space in
partitions

KB

AE

SU

yes

no

Time (t)

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

next
machine

migrate

AC

d
i
s
k

MobEntire

sensors partitions

effectors

PCUC

FC

goal:
available
space in
partitions

KB

AE

SU

yes

no

Time (t)

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

next
machine

migrate

AC

MobEntire

sensors partitions

effectors

PCUC

FC

goal:
available
space in
partitions

KB

AE

SU

yes

no

Time (t)

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

next
machine

migrate

AC

d
i
s
k

MobSentinel

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

sensors

efectors

PC

UC

SU

yes

no
FC

disk

partitions

next
machine

migrate

D
e
c
i
s
i
o
n

a
g
e
n
t
s

a
n
d

e
x
e
c
u
t
i
o
n

a
g
e
n
t
s

Fig. 3 - The architectures of a MobEntire agent and MobSentinel agent, respectively. PC = partition
classification, UC = utilization checking, FC = file classification, AC = action choice, AE = action
execution. Note that the files classification takes place only if the partition is super-utilized (SU).

It is important to notice that the ‘action choice’ sub-task was formalized using
approximately 30 first order logic rules [6]. These rules have been codified in the JEOPS
inference engine [16]. Fig. 4 illustrates some of such rules.

∀p,f Partition(p) ∧ File(f) ∧ (Type(f)= CORE) ⇒ Remove(f)
∀p,f Partition(p) ∧ File(f) ∧ (LifeTime(f) > 5) ∧ (Type(f)= TMP) ⇒ Remove(f)
∀p,f Partition(p) ∧ File(f) ∧ (Size(f)> 5000000) ∧ (Type(f)= MAIL) ∧ (Type(p)= EXPORT) ⇒ Remove(f)
∀p,f Partition(p) ∧ File(f) ∧ (Type(p)= VAR) ∧ (Type(f)= LOG) ⇒ Compact(f) ∧ CreateEmpty(f)
∀p,f Partition(p) ∧ File(f) ∧ (Type(p)= VAR) ∧ (Type(f)= IMAGE) ⇒ Compact(f)

Fig. 4 - Some production rules for choosing correction actions.

The fourth rule, for example, specifies that for each partition and its respective files, if it is
a /VAR partition and the file is a LOG file, then compress (compact) the file and create an
empty one with the same former name. In the same manner, the fifth rule specifies that if it is
a /VAR partition and the file is an IMAGE file, then compress (compact) the file. Fig. 5 below
shows the JEOPS implementation for these two rules.

 rule image_var {
 declarations
 Filesystem f;
 Archive a;
 preconditions
 f.isSuperUtil();
 a.getType() == Type.IMAGE;
 f.getType() == Type.VAR;
 actions
 a.setSituation(Situation.COMPACT);
 retract(a);
 modified(f);
 }
 ...

}

public ruleBase AgentBase {
 ...
 rule log_var {
 declarations
 Filesystem f;
 Archive a;
 preconditions
 f.isSuperUtil();
 a.getType() == Type.LOG;
 f.getType() == Type.VAR;
 actions
 a.setSituation(
 Situation.COMPACT_CREATE
);
 retract(a);
 modified(f);
 }

Fig. 5 – Two rules of the agent’s KB in the JEOPS format

4.4. The AgsAge Simulator

In order to better accomplish a larger number of experiments and in a more controlled way,
we have developed a management simulator. In fact, the difficulty in obtaining full access and
exclusiveness of a network, the instability of the network and the lack of control of problems,
services and demands on the network, could compromise the results. The simulator allows the
composition of different network scenarios as well as the measurement of the performance of
each multi-agent organization in terms of the cost of operations such as remote messages,
local messages, code migration, messages multicast, CPU consumption, processing time, disk
space consumption, etc.

Organization and Operation.

AgsAge [17] is an object-oriented system that works independently of the network
management application. Its classes work as an API for the creation of a whole simulation
environment for any management activity. The API allows the designer to define
organizations of agents, types of agents, and the types of devices. The API super classes
SArchitecture, SDevice, SAgent define attributes and methods for the definition of
organizations of agents, devices, and agents, related to the desired management activity. Fig.
6 illustrates the classes’ diagram of the disk space management activity. For the API complete
modeling see [17].

LocalMonoComplete ConectMonoComplete MobMonoComplete MobLocalMixed

Entire

FarEntire

MobEntire

Sentinel

MobDecideMobDoit

MobTwoSpec

KBAgents

MobSentinel

Thread

SArchitecture

SDevice

SAgent

Disk

Archive

Partition

Fig. 6 – Classes’ diagram of the simulator.

The simulator operation for the disk space management activity consists of three main
steps:

1. Addition of machines. One must specify the type of each machine according to the us-
age level of it;

2. Selection of the agents organizations. There are five different organizations of agents as
illustrated in figure 6. One may choose one of them for each turn;

3. Distribution of the agents. Agents, belonging to the selected organization, should be
distributed in the machines.

Fig. 7 shows two simulation environments. The one on the left is composed of several Senti-
nels and two MobDecideMobDoit agents, and the one on the right is composed of one Mo-
bEntire agent. The machine images with a black screen represent machines with super utiliza-
tion problems.

Fig. 7 – Two simulation environments. On the left: Several Sentinels and two MobDecideMobDoit agents; on

the right: one MobEntire agent.

Calibration

In order to guarantee the reliability of the results of our experiments, we have calibrated the
simulator using data collected from real tests on the network. In other words, we have
implemented and run agents to perform each sub-task described in Section 4.3. Then we have
measured the actual costs of each sub-task in terms of processing time and CPU consumption,
etc. Finally, the measurements have been introduced in the simulator. Each sub-task or
operations have been achieved or executed 100 times.

The sub-tasks have been implemented in three different ways: local execution, remote
execution through UNIX Remote Shell (rsh) and remote execution through CORBA remote
objects (see Table 2). The Java code lines bellow show how the rsh execution is handled for
listing host partitions, listing files of a directory, getting file information, and removing a file,
respectively.

Process p = Runtime.getRuntime().exec("ssh "+host+" /bin/df -kl");
Process p = Runtime.getRuntime().exec("ssh "+host+" /bin/ls -lAc " +path);
Process p = Runtime.getRuntime().exec("ssh "+host+" /bin/file " + file);
Process p = Runtime.getRuntime().exec("ssh "+host+" rm "+file);

The CORBA remote objects have been implemented using Borland Visibroker [18] with

IDL compiler for Java. The costs of agents’ migration and agents’ inter-communication have
also been measured (see Table 3). The cost is different for agents with knowledge base, i.e.
capable of making decisions, and without knowledge base. An agent with a knowledge base is
heavier than an agent that does not have a knowledge base. The mobility middleware used
was ObjectSpace Voyager [19].

Local Execution Remote Objects Remote Shell Sub-tasks
time (msec) CPU time (msec) CPU time (msec) CPU

Partitions classification 9.0 1% 90.0 1% 399.0 1%
Partitions utilization checking 1.0 1% 110.0 1% 698.0 1%
Files classification 111.0 12% 325.0 15% 1896.0 14%
Actions choice 0.36 2% 13.3 9% 0.36 2%
Actions execution 125.0 3% 259.0 3% 160.0 3%

Table 2. Processing time and CPU consumption average for 3 different implementations of the sub-tasks

Migration Communication
KB without KB Unicast Multicast
Time CPU time (msec) CPU time (msec) CPU time (msec) CPU
430 10% 120 6% 306.0 1% 145.0 4%

Table 3. Processing time and CPU consumption average for agents migration (KB = knowledge base) and com-
munication interchange.

Voyager CORBA Operations
time (msec) CPU time (msec) CPU

Platform initialization 5399.0 10% 2977.0 8%
Object Binding - - 2855.0 8%

Table 4. Platform’s initialization and object binding

Such values are represented by static constants of the class Parameters. Fig. 8 shows the
definitions of some of these constants. The first two ones refer, respectively, to the average
time and the CPU consumption for the Voyager platform initialization. The other
measurements are represented on the same way.

public class Parameters implements ISParameters {

public static final int TIME_INIT_VOYAGER = 5399;

public static final int CPU_INIT_VOYAGER = 10;

public static final int TIME_INIT_CORBA = 2977;

public static final int CPU_INIT_CORBA = 8;

...

public static final int TIME_CPART_OR = 90;

public static final int CPU_CPART_OR = 1;

...

public static final int TIME_CFILES_LOCAL = 111;

public static final int CPU_CFILES_LOCAL = 12;

...

public static final int TIME_MULTICAST = 145;

public static final int CPU_MULTICAST = 4;

...

}

Fig. 8 – Constants of the Parameter class

For understanding the accumulation process for these values during a simulation, suppose
the simulation of the MobMonoComplete architecture with one MobEntire agent as illustrated
in figure 7 (the right part). This example implies the following operations: Voyager platform
initialization, partitions classification, utilization checking, files classification, actions choice,
actions execution, KB-agent migration.

For each of such operations, a specific variable accumulates the total processing time. The
pseudo-code below shows how this process is done:

initSimulation() {
tot_init_voyager Ä Parameters.TIME_INIT_VOYAGER
Inicia thread de execução do agente MobEntire
While the simulation is not finished:

tot_cpart_local Ä Parameters.TIME_CPART_LOCAL x NP
tot_checkUtil_local Ä Parameters.TIME_CHECKUTIL_LOCAL x NP
For each partition with super-utilization problem

Insert the partition in the KB
For each file of the partition

tot_cfiles_local Ä Parameters.TIME_CFILES_LOCAL
Insert the file in the KB

Insert a call counter in the KB
Insert a counter for decisions taken in the KB
Execute KB
tot_decision_local Ä Parameters.TIME_DECISION_LOCAL x C
tot_exec_local Ä Parameters.TIME_EXEC_LOCAL x D

Calls migration()
}

migration() {
tot_KBmigration Ä Parameters.TIME_KBMIGRATION

}

/* where,
NP = number of partitions in the machine where it is executing
tot_... = variable that accumulates the times defined in the class Parameters

KB = Knowledge Base of the agent

*/

5. EXPERIMENTS AND RESULTS

We have performed many experiments with five different multi-agent organizations
(LocalMonoComplete, MobMonoComplete, ConnectMonoComplete, MobLocalMixed,
MobTwoSpec), varying the number of agents and the scenario (i.e., different number of
machines with different levels of disk usage. In all cases, we have fixed a limit time for the
simulation. We use the term “visit” to indicate that the sub-tasks partition classification,
utilization checking and files classification of a machine have been done, either by mobile or
static agents.

We have initially simulated a network with 30 machines without super-utilization
problems to verify how well the machines have been visited. During the given experiment
timespan, the organization ConnectMonoComplete (either in rsh or Remote Object
implementation) have visited only 50% of the machines. This undesirable behavior is due to
the high costs of frequently network access of FarEntire agents (agents that solve the whole
problem remotely). On the other hand, the organizations LocalMonoComplete and
MobLocalMixed have visited all machines more than the necessary times, since the Sentinel
agents perform “visits” continuously (Fig. 9). The other two organizations have done a
satisfactory number of visits. Fig. 9 also shows that the MobTwoSpec organization with only
one MobSentinel and the MobMonoComplete organization with only one MobEntire have had
an equivalent behavior. But three MobSentinel agents have made more visits than three
MobEntire agents. This can be explained by the fact that the migration time of a MobSentinel
agent is smaller than the MobEntire one, since the former has a smaller code.

4
7

10

4
12

1080

453

0 10 20 30 40 50
A

rq
u

it
et

u
ra

s
Número de avaliações por máquina

LocalMonoComplete MobMonoComplete (1 MobEntire)
MobMonoComplete (2 MobEntire) MobMonoComplete (3 MobEntire)
MobLocalMixed (1 MobDecideMobDoit) MobTw oSpec (1 MobSentinel, 1 MobDecideMobDoiit)
MobTw oSpec (3 MobSentinel, 1 MobDecideMobDoiit)

A
rc

h
it

ec
tu

re
s

Evaluations (per machine)Visits (per machine)

4
7

10

4
12

1080

453

0 10 20 30 40 50
A

rq
u

it
et

u
ra

s
Número de avaliações por máquina

LocalMonoComplete MobMonoComplete (1 MobEntire)
MobMonoComplete (2 MobEntire) MobMonoComplete (3 MobEntire)
MobLocalMixed (1 MobDecideMobDoit) MobTw oSpec (1 MobSentinel, 1 MobDecideMobDoiit)
MobTw oSpec (3 MobSentinel, 1 MobDecideMobDoiit)

A
rc

h
it

ec
tu

re
s

Evaluations (per machine)Visits (per machine)
LocalMonoComplete,
MobTwoSpec,
MobLocalMixed,
MobMonoComplete (3 MobEntire),
MobMonoComplete (2 MobEntire),
MobMonoComplete (1 MobEntire),
LocalMonoComplete

Fig. 9 - Number of visits in a 30-machine network without of super-utilization problems

In networks with low rates of super-utilization problems, organizations that implement
static agents have obviously high visit rate per machine, consuming too much CPU. On the
other hand, organizations containing mobile agents face the problem of high number of
unnecessary migrations on the network. Fig. 10 shows the results of an experiment in a 15-
machine network, where 4 machines had super utilization problems. It is important to notice
that increasing the number of MobEntire agents in the organization MobMonoComplete, the
processing time and the management latency (the average time super-utilized machines
remain unmanaged) decrease, as it was expected. However, in this case, the number of
migrations in the network increases in a higher proportion. This means that there was a great
growth in the number of unnecessary visits (machines without problem).

Arquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msg

Fig. 10 - Results for a 15-machine network where 4 machines had super-utilization problems.
Time = necessary processing time for finishing management, latency = management latency av-
erage, suc = percentage of machines that has been visited, migKB = migrations number of KB-
agents, mig = migrations number of agents, msg = number of messages between agents

In organizations such as MobLocalMixed, the action of Sentinels agents located in each
machine optimizes the management since they are responsible for the sub-task files
classification (the most time costly operation) while MobDecideMobDoit agents are working
on actually solving problems. In organizations with MobEntire agents such as the
MobMonoComplete one, such agent has to process all the operations; there is no previous
processing. However, the communication overhead is much larger in that then it is in this one:
as soon as the Sentinels accomplishes the sub-task files classification, they begin to make
multicast messages for MobDecideMobDoit agents until they are heard. Increasing the
number of agents MobDecideMobDoit in the organization it is clear the reduction in the
number of messages, due to the larger availability of such agents.

The last four combinations of the MobTwoSpec organization have presented performance
gains in terms of processing time and management latency, related to the first composition,
but they had had similar performance results between themselves. A larger number of
MobSentinel agents in relation to the number of MobDecideMobDoit agents in the
organization, causes a great growth in the number of messages, since there is not enough
agents of such type to get the calls in time. We may also notice that if the number of
MobSentinel agents is very big in relation to the number of machines with super utilization
problems, there will be a high number of unnecessary migrations.

We have noticed the influence of the number of agents on the performance of an
organization when we increase the number of MobEntire agents in a MobMonoComplete
organization, for example. For the specific case of networks with a great number of machines
with super-used partitions, 4 MobEntire agents have solved the problem of all machines in
65,6% of the limiting time while 2 of those agents have solved none. It was observed,
however, that there had had many more migrations in the first case than in the last one (Fig.
11).

As an example of the influence of the mobility, the autonomy degree and the properties
correlation, the results obtained with the MobTwoSpec organizations have shown that an
increase in the number of MobSentinel agents causes a great increase in the number of
migrations and in the number of multicast messages unless there is an increase in the number
of MobDecideMobDoit agents, likewise. A balanced number of MobSentinel and
MobDecideMobDoit agents have seemed to be quite functional. We have also noticed that an
increase in the number of MobDecideMobDoit agents optimizes the processing time of the
activity despite the large communication overhead, while a larger number of MobSentinel
agents decreases the average management latency.

Arquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 82 0,41 100,00
ConectMonoCompleteOR 500 4,35
ConectMonoCompleteRSH 500 4,35
MobMonoComplete (1 MobEntire) 500 237,60 47,80 11
MobMonoComplete (2 MobEntire) 500 229,58 82,60 28
MobMonoComplete (4 MobEntire) 328 132,50 100,00 119
MobLocalMixed (2 MobDecideMobDoit) 488 251,08 100,00 23 102764
MobLocalMixed (4 MobDecideMobDoit) 301 163,37 100,00 23 98501
MobLocalMixed (8 MobDecideMobDoit) 234 144,96 100,00 23 54677
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 500 215,61 73,90 18 18 2792
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 342 150,00 100,00 23 138 5044
MobTwoSpec (2 MobDecideMobDoit, 5 MobSentinel) 280 132,96 100,00 23 464 15362
MobTwoSpec (5 MobDecideMobDoit, 5 MobSentinel) 146 70,70 100,00 23 244 7416
MobTwoSpec (5 MobDecideMobDoit, 2 MobSentinel) 266 166,88 100,00 23 85 1720

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 82 0,41 100,00
ConectMonoCompleteOR 500 4,35
ConectMonoCompleteRSH 500 4,35
MobMonoComplete (1 MobEntire) 500 237,60 47,80 11
MobMonoComplete (2 MobEntire) 500 229,58 82,60 28
MobMonoComplete (4 MobEntire) 328 132,50 100,00 119
MobLocalMixed (2 MobDecideMobDoit) 488 251,08 100,00 23 102764
MobLocalMixed (4 MobDecideMobDoit) 301 163,37 100,00 23 98501
MobLocalMixed (8 MobDecideMobDoit) 234 144,96 100,00 23 54677
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 500 215,61 73,90 18 18 2792
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 342 150,00 100,00 23 138 5044
MobTwoSpec (2 MobDecideMobDoit, 5 MobSentinel) 280 132,96 100,00 23 464 15362
MobTwoSpec (5 MobDecideMobDoit, 5 MobSentinel) 146 70,70 100,00 23 244 7416
MobTwoSpec (5 MobDecideMobDoit, 2 MobSentinel) 266 166,88 100,00 23 85 1720

architectures time latency suc(%) migKB mig msg

Fig. 11 - Results for a 23-machine network. All machines have super-utilization problems

The MobMonoComplete organization with 1 and 2 MobEntire agents have solved the
problem of 47.8% and 82.6% of machines in network in the limit time, respectively. Folding
the number of MobEntire agents to 4, the total processing time for resolution of the problem
of all the 23 machines was 328 seconds. It can be noticed that the number of migrations have
grown sufficiently in relation to the two previous situations. This results from the saturation
effect in the management. That is, the bigger the number of agents, more quickly the total
management in the network is made, but when there are not any more machines to be
managed, the free agents will migrate more quickly between machines.

Comparing the performance results of three different MobLocalMixed organizations (with
2, 4 and 8 MobDecideMobDoit agents) we could see the relationship between the number of
agents, the mobility and the autonomy. We have noticed that there was an improvement in the
processing time and in the average management latency when we increased the number of
MobDecideMobDoit agents. However, the improvement rate seems to tend to stabilization
with the increase in the number of these agents (see graphs bellow).

488

301
234

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Number of MobDecideMobDoit agents

P
ro

ce
ss

in
g

 T
im

e 251,08

163,37
144,96

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Number of MobDecideMobDoit agents

A
ve

ra
g

e
M

an
ag

em
en

t
L

at
en

cy

Fig. 12 - Stabilization trend for both processing time and average management latency with the increase of the
number of MobDecideMobDoit agents.

The experiments results show that the usage of mobility in agents should be motivated,
depending on the provided autonomy degree. Mobile agents with total autonomy had a good
processing time but had a management latency on average larger than an organization with
specialized agents (static or mobile ones) for monitoring, decision and execution. More
details in [17].

6. CONCLUSIONS

In this work, we have made an original analysis of some agent’s properties, in particular
mobility, autonomy and distribution, for the network management field. Agents seem to be a
promising approach. However a great amount of research effort must yet be done in order to
conclude on how and when use this approach, as well as to obtain a precise evaluation of its
potential advantages and limitations.

We are already working to adapt the agent types and organizations, as well as the simulator,
to different management problems, in order to propose a specific methodology of agent-based
approaches to network management. Considering the results we have had, we also intend to
build a distributed agent-based system for disk space management. Finally we plan to include
learning capabilities to the agent models, in order to achieve adaptive behavior in deciding
when to visit a device and what to expect, in terms of pitfalls, in a given visit. This adaptation
would provide various improvements, such as avoiding unnecessary visits.

REFERENCES

1 Harrison, C. G., Chess, D. M., Kershenbaum, A. (1996) Mobile agents: Are they a good idea? Technical
report, IBM Research Division.

2 Berson, A. (1996) Client-Server Architecture, 2nd edition. McGraw-Hill.
3 Andrade, R. de C., Macedo, H. T., Ramalho, G. L., Ferraz, C. A. G. (2001) Distributed Mobile Autonomous

Agents in Network Management. To appear in: Proceedings of International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’2001). Las Vegas, USA.

4 Bieszczad, A., Pagurek, B., White, T. (1998) Mobile Agents for Network Management. In: IEEE Commu-
nications Surveys.

5 Puliafito, A., Tomarchio, O. (1999) Advanced Network Management Functionalities through the use of
Mobile Software Agents. In: 3rd International Workshop on Intelligent Agents for Telecommunication Ap-
plications (IATA’99). Stockholm, Sweden.

6 Russel, S. and Norvig, P.: Artificial Intelligence (1995) A Modern Approach. Prentice Hall.
7 Baldi, M., Gai, S., Picco, G. P. (1997) Exploiting Code Mobility in Decentralized and Flexible Network

Management. In: Proceedings of Mobile Agents 97 (MA97).

8 Case, J., Fedor, M., Schoffstall, M. L., Davin, C. (1990) Simple Network Management Protocol (SNMP).
RFC 1157.

9 McCloghrie, K., Rose, M. T. (1991) Management Information Base for Network Management of TCP/IP
based internets, MIB-II. In: Internet Request for Comments Series RFC 1213.

10 Mitchell, T. (1997) Machine learning. McGraw-Hill.
11 Lesser, V. R. (1999) Cooperative Multi-agent Systems: A Personal View of the State of the Art. IEEE

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1.
12 Bieszczad, A., Pagurek, B. (1998) Network Management Application-Oriented Taxonomy of Mobile Code.

In: IEEE/IFIP Network Operations and Management Symposium (NOMS’98). New Orleans, Louisiana.
13 Minar, N., Kramer, K. H., Maes, P. (1999) Cooperating Mobile Agents for Mapping Networks. In: Proceed-

ings of the First Hungarian National Conference on Agent Based Computation.
14 Puliafito, A., Tomarchio, O. (1999) Advanced Network Management Functionalities through the use of

Mobile Software Agents. In: 3rd International Workshop on Intelligent Agents for Telecommunication Ap-
plications (IATA’99). Stockholm, Sweden.

15 Cheikhrouhou, M. M., Conti, P., Labetoulle, J. (1998) Intelligent Agents in Network Management a State-
of-the-Art. Network and Information System Journal. Volume 1, no. 1, 9-38.

16 Figueira Filho, C., Ramalho, G. (2000) Jeops – the java Embedded Object Production System. In: M.
Monard e J. Sichman (eds). Advances in Artificial Intelligence. Lecture Notes on Artificial Intelligence Se-
ries, vol. 1952, pp 52-61. London: Springer-Verlag.

17 Macedo, H. T. (2001) Mobility, Autonomy and Distribution in Agents for the Management of Corporate
Systems. Master’s Thesis, CIn/UFPE.

18 Object Management Group (1998) The Common Object Request Broker: Architecture and Specification
(CORBA), Framingham, MA.

19 Object Space Voyager. http://www.objectspace.com/products/voyager/
20 Silva, A., Ferraz, C., Ramalho, G. & Souza, J. (2001) Proactive Network Management Based on Mobile

Agents and Fuzzy Logic. In Proceedings of the International Conference on Telecommunications -
ICT’2001. Bucharest.

21 Hewlard Packard. Hp openview. http://www.hp.com/openview/index.html
22 Tivoli. http://www.tivoli.com/products/index/
23 Minar, N., Kramer, K. H. & Maes, P. (1999). Cooperating Mobile Agents for Mapping Networks. In Pro-

ceedings of the First Hungarian National Conference on Agent Based Computation.
24 Cheiknrouhou, M. M., Conti, P. & Labetoulle, J. (1998). Intelligent Agents in Network Management a

State-of-the-Art. Networking and Information Systems Journal. Volume 1 – no 1/1998, pp 9-38.
25 Rational Software Corporation. Unified Modeling Language (UML). http://www.rational.com

