
A Design for JTrader, an Internet Trading Federation

Marcelo d'Amorim Carlos Ferraz

fmbd, cagfg@cin.ufpe.br
Universidade Federal de Pernambuco

Centro de Inform�atica

Caixa Postal 7851, 50640-970, Recife-PE, Brazil

Abstract

By using templates for service searching, Service Discovery Protocols (SDP)

enable automatic discovery of network components, meaning less administration

for the user and service owner achieved by a plug-and-play semantics. Moreover,

the reliability of the trading system, including the service o�ers it contains, is well

handled because of availability is a common concern. Despite the fact that these

protocols were �rst concerned with connecting devices in a local scale network,

they also play an important role on information service trading which is very rel-

evant considering the Internet's large scale. This work illustrates SDP scenarios

and motivation, briey introduces current technology and �nally presents the de-

sign of JTrader, an Internet Trading Federation based on Jini Technology. This

system main purpose is to address root problems around service trading on the

Internet, like security and availability, providing a federation whereby services

could be globally localized and used.

Resumo

Protocolos de descoberta de servi�cos como SLP, Jini, UPnP e Bluetooth têm
demandado grande interesse na comunidade cient�i�ca e na ind�ustria, uma vez que
tais protocolos d~ao suporte a con�gura�c~ao dinâmica de aplica�c~oes. Usando carac-
ter�isticas dos servi�cos, esses protocolos, conhecidos como SDP (Service Discovery
Protocols), permitem a descoberta autom�atica de componentes de software em
uma rede. Isto signi�ca menos esfor�co de administra�c~ao para o usu�ario e para
o administrador, alcan�cado atrav�es de uma semântica plug-and-play. Apesar
destes protocolos terem sido concebidos para conectar dispositivos eletrônicos,
eles apresentam um importante papel para a realiza�c~ao de trading de sistemas
de informa�c~ao, o que �e relevante considerando a larga escala de uma rede como a
Internet. Este trabalho apresenta motiva�c~ao e alguns cen�arios de uso da tecnolo-
gia SDP, faz uma breve introdu�c~ao �a tecnologia atual de trading, e �nalmente
apresenta o projeto do JTrader, uma federa�c~ao de servi�cos na Internet que utiliza
Jini como ferramenta.

Palavras-chave: Jini; Internet: protocolos, servi�cos e aplica�c~oes.



1 Introduction

Currenlty, mobile communication is being considered a very promising market due to the

rapid popularization of cellular telephones and devices such as laptops and PDAs. In the near

future, it is expected a strong deployment of services in order to ful�ll this demand. Location

transparency is not a recent problem but has assumed great importance in an environment

where clients change their place very often. With service discovery protocols, devices (or

simply clients) �nd network services by its properties and services advertise their availability

in a dynamic way. On the other hand, assuming the Web moves from document to program

containment, this network will be the greatest distributed system ever seen with numerous

programs for all kinds of tasks. This diversity implies a greater number of bindings among

programs. To guarantee system's bindings stability, components must be super-reliable,

which is very hard to achieve. The alternative is to build distributed applications layered

over an intelligent service discovery framework whereby the bindings between components

can be (re)discovered at runtime, and do not have to be static [12] - this is called service

trading.

This work presents a design for an Internet service federation which help users �nd

and use global services based on its characteristics. As we will see, enterprise components

wishing to deploy their information services over the Web should notify their interest to the

global trading system by means of Internet agents. These distributed components serve as

monitors, reporting to the centralized federation every relevant event like a network failure

or some modi�cation on a remote service state. Section 2 presents some trading scenarios

and segments their use in two major blocks. The current main technology for service trading

is presented in section 3. Section 4 presents the design of JTrader, a Jini-based service

discovery system over the Internet. Finally, section 5 concludes this work.

2 Service Discovery Scenarios

Connecting services into a network and discovering these services on-the-y by means of its

characteristics form the basis of trading systems. This works discusses the use of these kind

of systems over the Internet where new services are installed every day. Service trading seems

to be very appropriate to this dynamic Internet since it is based on an asynchronous and

very decoupled distributed programming model that allows client to discover services with

very few information about it. For instance, there is no implicit order for starting compo-

nents: �rst the server; next, the clients, which would mean a diÆcult item of con�guration,

considering the Internet large scale.

On this approach, services are grouped on communities and these communities can be

federated thus growing on scale; so, users could �nd services by means of its characteristics

and would access them by its programming interface or using directly its graphical interface,

if provided. Discovering communities, joining services on these communities, and searching

for services are traders key responsibilities. Next session presents current trading technology

where these tasks are better detailed.

At a �rst glance, traders could be considered a sophisticated name server as long as it

does not need logical names to �nd distributed components, but their characteristics: service

type and properties, for example. On the other hand, traders present some features other

than location transparency:



� Software Integration (Con�guration). Discovering and binding to services without

using static and non reliable information enable unprecedent opportunity to seamlessly

software integration and dynamic con�guration in unknown environments.

� Availability and fault-tolerance. Given the Internet large scale and dynamism it is

hoped that components of such systems could negotiate on presence of failures in a

way that only running services could be accessed, services and communities �nd each

other when they start up, and service crashes occur in a smooth fashion.

� Service Independence and Interoperability. Service is the most important concept for

traders. It is an abstraction for a general capability. No matter if it is a device com-

mand interface or a simple e-mail API, traders must expose them as an interface by

which users can access. Considering the interface the service exposes is language neu-

tral, interoperability with heterogeneous programming languages could be achieved

seamlessly. But interoperability does not relate only to language, but also to commu-

nication protocols used.

� Simplicity. The programming model must also be very simple to enable the engage-

ment of new programmers on this network and also enable dealing with distributed

programming issues.

� \True" Location Transparency. To assure this property, not only the service but also

communities must be located without physical location information. There are some

alternatives to searching for services on traders other than those based on names and

URLs (Uniform Resource Locators) that we currently use.

User Interface is also a very important issue assuming there are environments with di�er-

ent constraints trying to access services. Programs searching for services in traders provide,

in general, their own user interface and access programmatically the public service API, so

the service user interface is not a concern. In contrast, when users access the trader, they

mostly search for some terminal service - a service that provides a complete user's function-

ality - and expect to interact with it by means of some particular user interface suitable to

the available device used. Figure 1 illustrates traders di�erent kinds of use.

<<user>>

<<program>>

Trader
Internet

user interface

Figure 1: Ways to access a trader

Although we describe these properties as trader responsibilities, not every trader imple-

mentation provide all of them. Also, some properties, like fault-tolerance, are not achieved

only by the middleware used but by a service, client, and trader responsibility contract.

This work makes a subtle but very relevant distinction between trader and service trad-

ing. The last represents a broad semantics for distributed computing where a programming



model lies on. The former represents a tool by which trading is achieved. For example,

when using CORBA for trading, it is likely to use a subset of services - besides the Trader

Service - in order to provide a complete solution for distributed computing with trading

semantics. Despite this di�erence, from now, this article use interchangeably both words.

The distinction between both meanings depends on the context.

The opportunity to discover services on demand makes traders distinct from other types

of distributed programming model since the dynamic nature must be considered at design

time. From now, it is discussed what kind of systems traders �t best.

2.1 Device Oriented Applications

As long as clients access services by an interface, there is no assumption on service implemen-

tation. In fact, devices must provide some support for trading, but they do not necessarily

require embedded applications. For example, a micro-wave provides a serial interface by

which it can talk to the external world; in this case, some wrapper service implementing

the micro wave common interface1 can be de�ned to access the serial interface thus, since

this service joins some client accessible community, the micro wave oven can be commanded

remotely.

There are several patterns of communication for device oriented applications. Some

patterns are likely to be more adjusted than others, depending on device's constraints and

application purpose. For example, to enable service trading on devices, the direct solution is

to install a runtime environment with support to the distribution platform, but sometimes,

these constraints do not apply to devices with lack of memory and processing capacity. With

the popularization of mobile technology some trading scenarios can be envisioned to the near

future. For example, a street walker - owner of a capable mobile telephone - could be noti�ed

to special products o�ers when passing in front of a store. Getting into the store, he could

search for some particular product by browsing the store's service through the mobile device.

2.2 Information Systems

Even with the current Internet, most software arrives at companies by means of specialized

software revenue �rms. As Internet is growing and creating opportunities, new software

commercialization approaches starts to be investigated as long as software turns into a

commodity. This means big changes in the way you acquire technology, and in the way your

company uses technology for commerce. Also, even bigger changes must be considered in the

way software is actually made in order to provide scale to this commercialization. Renting

applications is a compelling option for many companies. For every application you o�oad,

it means at least one less software system to purchase or license, maintain, and support.

It also means deployment is faster [7]. Although traders were not designed concerning this

use, its dynamics �ts well to this kind of software commercialization as client and services

are not statically bound. For example, some auctions systems and e-commerce marketplaces

products could already bene�t of its characteristics, as discussed in [7].

Traders enable high availability and fault-tolerance of services as long as there is no

static association between services and clients what means a client could bind to a di�erent

implementation after a service crash. However, to achieve this in some systems, the state

should also be very resilient and decoupled from the service, so another active implementation

1Industry leaders are de�ning standard interfaces to worldwide used devices like VCR, printers and

microwave ovens.



could catch that state and continue servicing after a failure. Implementing service persistence

on databases or non-transient blackboard systems like [11] and [13] can help to deal with

this issue.

3 General SDP Architectures

This section does not intend to present a tutorial on SDP technology, but de�nes a structural

model on which these protocols are based, thus generalizing the solution as long as it is

presented at a high abstraction level.

Analyzing trader solutions under a structural point of view, we identify three basic com-

ponents: directory agents (DA), user agents (UA) and service agents (SA). The DA compo-

nent is responsible to store service o�ers and execute queries by matching the stored o�ers

against query constraints, which can result in a set of service items. A service o�er describes

an available service implementation and can aggregate some important properties like the

service location, for example. In addition, a service o�er provides a means to access the

service implementation it describes. The o�er should store a remote reference to an object,

like CORBA [10] does; an IP address and port where the service is running, like SLP (Ser-

vice Location Protocol) [8] does; or a full-edged proxy object that directly or indirectly

implements the service interface, like Jini [1] does.

UA components are responsible to elaborate queries on behalf of users and submit these

queries to the trader which may answer with a non-deterministic 2 set of service items that

satisfy query constraints; so, it is up to this component to select the best item(s) returned.

On the other hand, while a service implementation keeps running, the SA component is in

charge to maintain service o�ers consistent on DAs. Figure 2.a shows the relationship among

these components. In order to perform these tasks, user and service agents need to �nd a

suitable DA to, respectively, search for service instances and keep available service o�ers. In

fact, a discovery protocol enable these components to �nd directory agent instances.

U.A. S.A.

S.A.S.A.

U.A.

D.A.

announcement

announcements

Figure 2: Trading architectures - (a) DA-based and (b) peer-to-peer approaches

The most common used discovery protocol version makes use of unicast communication;

however, it can leads to lack of location transparency as UA and SA components are statically

bound to a physical address where the DA instance hosts. As a way to achieve location

transparency by not addressing messages to some speci�c machine and port, some SDP

protocols implement discovery using multicast communication. Actually, multicast discovery

protocols can be active or passive. In the �rst case, a user agent start the protocol sending

a request message to some known multicast endpoint and receive callback messages that

2Depending on the query method used. Some methods are synchronous and may impose timeout bound-

aries.



running DAs, which listens to that endpoint, send. System administrators very often de�ne

groups for DA's participation as a means to segregate service categories. Since components

send the groups they are interested in request messages, only those that participate in the

informed groups will respond. In fact, unicast discovery is also a particular kind of active

discovery. On passive discovery, DAs regularly send announcement messages, also known

as \I am alive" messages, representing its availability. In this case, UAs and SAs select

among DAs instances announced, those representing some group of interest. Indeed, passive

discovery enable components to test DA's availability in a similar mechanism as the negative

acknowledgment in request-response protocols [?].

Although some SDP protocols like Jini and CORBA Trader enforce the use of DAs, in

some protocols they are optional or even do not exist, for example UPnP (Universal Plug and

Play) [9]. So this work envisions two trader con�gurations as shown on Figure 2: one using

DA (2.a) and the other (2.b) without them. We �gure out the peer-to-peer con�guration as

a re�nement of the DA-based architecture where the remaining components assume tasks of

the absent DA. On peer-to-peer con�guration SAs frequently announce their availability by

means of multicast announcement messages in a very similar approach as passive discovery.

On the other hand, UAs select only those services of interest.

Peer-to-peer is simpler than DA-based trader and, in some contexts, is also considered

more reliable since DAs introduce another failure point and also the opportunity to inconsis-

tently represent service properties. Moreover, DA represents a single communication point

which parties must contact prior to start direct communication with a target service, thus

introducing some overhead. On the other hand, regarding to communication overhead, peer-

to-peer traders span multicast messages proportionally to the number of network services. In

DA-based traders, this number is proportional to the number of DAs, which is theoretically

less than the number of services. In addition, a directory-based architecture allows direct

reach-ability of the name services by the unicast discovery protocol, which has an important

role on the current Internet where there not enough support to multicast communication.

Therefore, peer-to-peer traders are being considered well suited to small-scale networks

with a few numbers of services, like home or automobile networks. UPnP and Bluetooth

[6] are examples of peer-to-peer traders, the later being speci�c for short range wireless

networks. On the other hand, repository-based (DA) traders seems better suited to large-

scaled networks, like the Internet. [2] makes a comparison among Jini and CORBA traders,

the two main representatives of repository traders where is posed that Jini presents better

tradeo�s than CORBA in regard to Internet trading. The opportunity to download a full-

edged proxy object rather than a remote reference, and the absence of a centralized service

type repository are some arguments that justify such conclusion. Main features of currently

relevant SDP technologies are illustrated on Table 1.

The following subsection briey introduces Jini's architecture and principles.

3.1 Jini Principles and Architecture

The Jini architecture is divided into three categories: infrastructure, programming model

and services. Discovering communities, joining services on these communities and searching

for services are covered by the infrastructure layer which is responsible to provide minimal

conditions for services to get into Jini networks.

The programming model de�nes a set of API's that enables the construction of reliable

services. While the �rst layer concerns with infrastructure issues such as service availability

and location, this second layer covers application domain problems in a distributed context



Features SLP Jini UPnP CORBA

Institution IETF Sun Microsoft OMG

Net.Transport TCP/IP independent TCP/IP IIOP

Prg.Language independent Java independent independent

Code Mobility no yes no no

Attribute Search yes yes no yes

Leasing yes yes no no

Security IP based Java based IP based COS

DA optional yes no yes

Table 1: SDP features

such as fault-tolerance (Leasing Service), asynchronous communication (Events Service) and

distributed consistency (Transaction Service). Despite all these mentioned features may also

be implemented as services, the last component of this architecture holds the remaining

services that are not in the infrastructure or the programming model set of services. In fact,

some of them have already been standardized, such as the JavaSpaces service. The Jini

architecure is illustrated in Figure 3.

Network

O.S.

JVM

Events
Transaction

Discovery
Join
Lookup

Programming Model

Infrastructure

Services

Leasing

Java Spaces
...

Jini

Figure 3: Jini architecure

Within a community, services interact with one another either as clients or servers. To

support this interaction, they must get references to themselves, which is accomplished with

support from a special service, the name service, known in Jini as the Lookup Service. This

basic service de�nes the available services in a Jini community, providing operations for

service search and registration. Before invoking these operations, however, a new service

joining an existing community must get a reference to a Lookup Service in that community.

This process is de�ned by the Discovery protocol [1]. In addition, the Lookup Service also

provides an administrative interface and plays a key role in federation of Jini communities.

Services are represented in Jini Lookup Service by an identi�er, a proxy, and attributes.

The proxy concept has fundamental importance in Jini. Like stub objects produced regularly

by RMI, this object implements the service interface and are downloaded as needed to

the client's address space. In contrast, this object does not necessarily need to implement

the RMI Remote interface, but only the service interface. For example, the proxy may be

implemented to access a CORBA object backend, or it may use several di�erent remote

objects, or even it may be implemented locally since it is a full-edged regular Java object.

Thus in regard to Jini network transport independence described on Table 1, the proxy can

implement any protocol it needs, even those mentioned in that table. However, in order



to implement the discovery protocol and download a proxy, Jini's current implementation

depends on TCP unicast, multicast UDP (optionally), and RMI.

As JTrader is based on Jini, hereafter DA and \Lookup Services", also known in Jini

terminology simply as Lus, are used interchangeably.

4 JTrader Design

This section presents a design for a service trader federation over the Internet where new

services are installed every day. Traders seem to be very appropriate to this dynamic en-

vironment as it is based on an asynchronous and very discoupled distributed programming

model that allows clients to discover services with very few information about them. For in-

stance, there is no implicit order for starting components: �rst the server, next, the clients,

which would mean a diÆcult item of con�guration, considering the Internet global scale.

Furthermore, trading over large scale networks enables users and programs to use services

wherever they are - there's no locality constraint concerning the service or the clients.

Current SDP technologies resolve the problem about service discovery when the scope of

searching is somehow reduced, for example, in an enterprise network [8], a store's wireless

network or an automobile network. As mentioned before, the enforcement to use multicast

communication hinders the opportunity to a seamlessly migration to larger scale networks,

like the Internet.

JTrader presents a Jini-based software solution that enables services to be registered

transparently in an Internet service federation, almost without system administration e�orts.

In addition, users and programs, as represented in Figure 1, can access services as if they

were on their own local networks in such a way that semantics of DA groups de�ned on those

remote networks are preserved. Therefore, JTrader gathers public remote service proxies and

registers them on its DAs, providing a means for localizing global services wherever they are

hosted. In contrast to the peer-to-peer architecture, this approach somehow centralizes

communication in order to make possible universal reachability, nevertheless it does not

maintain any kind of service's state3.

From now, the JTrader coarse-grained architecture and core components are presented:

� JTrader Federation-JTF. The federation manages sets of DAs what, in Jini terminol-

ogy, is called Lookup Service or simply Lus. As a consequence, it de�nes a policy

governing service proxies registration as a means to provide load balance and scalabil-

ity. This is the core system component on which every service globally accessible is

registered. Taking a simple design as a requirement, this component de�nes only two

operations: lookup and register. To some extent, the former represents a discovery

protocol version over the Internet, by which programs could inform a group and the

component retrieves the set of DAs joining that group. At �rst glance, the register

operation could seem unnecessary since DA already implements it. While describing

federation details on next section, we justify the reason for this operation requirement.

� JTrader Federation Adapter -JTFA. Since the federation exposes public services over

the Internet, distributed application can access them by means of a remote adapter

object located in the client's address space. By de�nition, an adapter component

3Although service o�er properties are also considered part of the service state, Jtrader keeps them con-

sistent with the service remote implementation



implements an interface known to its clients without having to assume what class is

used to implement that interface [5]. Figure 4 illustrates this design pattern using

JTrader components.

<<adapter>>

<<adapter interface>>

<<adaptee>>

<<client>>

Federation
ProxyJTFA

Figure 4: The adapter design pattern

Indeed, the adaptee instance is unknown until client bootstrap time when the adapter

object looks up a federation object. The adapter component hides the programmer

details of searching for the federation, once the federation is found, its proxy is bound

to the JTFA component and method calls to this adapter component are delegated to

the remote federation.

Discovering the JTF location is not a problem to the Web system described ahead,

since, in the current con�guration, JTF and JTWS live on the same network, so that

the Web system can use multicast to dynamic discover the federation. In fact, this is a

very speci�c case. In order to resolve the location problem to the Internet, the current

adapter implementation statically de�nes a set of primary name servers where the

federation proxy object can be retrieved. This can lead to failures when the primary

services mentioned crash or change their location. Despite the adapter design pattern

used allows changing this set without a�ecting client and server code, it requires manual

recon�guration, which means a very hard requirement. We are working on alternative

solutions to handle this problem.

� JTrader Web System-JTWS. This component provides a Web front-end to users access

terminal services available on the federation. Regarding to Figure 1, this components

interfaces with the user actor. Using this component, it is possible to de�ne tem-

plates as if you did it programmatically, and also submit queries, and receive results.

These results represent service matching. Therefore, users may download service's pro-

gramming interface and use the JTFA component to access some service. For those

services which provide some supportable4 user interface, users can also access and op-

erate the service on-the-y using the Web as a starting point without requiring to

download programming interfaces and using the JTFA component outside the Web

System. Therefore, Figure 5 introduce the software components that interface with

the federation.

� JTrader Enterprise Agent-JTEA. This component represents a remote stationary agent

installed on a network that hosts services to be published in the federation. The com-

mon use of this component is for enterprises that want to achieve scale on using their

service components. Not every service installed on this network have to be published

in the federation, but only those who provide some complete functionality to users and

programs - when it is a subsystem. Once installed on the network, this agent listens

for service state changes; thus if a service crashes, starts or modi�es some property;

the agent, by means of its remote adapter, should notify the federation in order to

4JTrader only provides support to URL-based UI like Java Servlets, Microsoft ASP, and JSP



<<program>>

<<user>>
user interface

JTWS

JTFA Service
Federation

Figure 5: The federation's client components

keep service o�ers in consistent state. In fact, service crashes are handled in a di�erent

approach. As service registration is leased, failing to renew the lease make registration

to be spontaneously dropped. This situation may happen on agent or service failure.

In both cases, the federation is automatically recovered to a consistent state without

requiring any communication. Figure 6 enlightens the organization of this components

and their connections.

JTF

companyB.com

companyC.com

companyA.com

remote call
local call
system or subsystem

service

JTEA

JTFA

Figure 6: The remote adapter and enterprise agent

5 Federation Details

Designed for large scale use, the federation component - JTF - should meet scalability, avail-

ability and performance requirements. The system should keep running even in presence of

partial failures, searching for alternative running instances of failed objects and dynamically

binding them to the federation - availability. The federation should be able to grow, adding

new service instances, name servers, and hosts, in order to support access and registration

high volumes - scalability. Moreover, the federation has to achieve an acceptable overall

eÆciency by means of conscious balanced compromises - performance.

SDP protocols very often provide a means to �lter, while in discovery phase, name servers

which join on some well known group. Considering system administrators de�ne suitable

groups representing service categories some enterprise has, it is possible to discover speci�c

DAs, whose registered services have some similar semantic pattern like \devices". In such

a case, the result of discovering DAs joining on this group is that proxies enabled to access

devices are registered on them, so query scope is con�ned. However, this feature is very hard



to be achieved on a considerably distributed scenario whereby programs could really share a

service marketplace. Imagine, for example, \companyA" uses \devices" to name the devices

group, while \companyB" uses \Devices". Actually, this is a hard problem to be resolved

both for clients and services. In such a case, clients do not know which string should be

used to name the device group, and services are enforced to agree on a shared ontology in

order to classify their objects on a single group. Despite we do not present or recommend

any shared service ontology, this work assumes the existence of one.

Even with this assumption, the federation faces a hard problem about resource allocation.

To con�ne services in a common place, the federation should have at least one running Lus

per service category. This is infeasible regarding the potential number of enterprise groups

and the intermittent frequency, which they are used on JTF. Therefore, concerning the

federation scale, this behavior is very hard to achieve since the number of potential groups

de�ned in remote networks (enterprise) is supposed to be some orders of magnitude greater

than the number of Lookup Services hosted in the federation. On the other hand, allowing

a Lookup Service to join on multiple and semantically distinct service categories deny the

principle of segregating services to scope queries and administration. In fact, JTF does

not conform with this principle strictly. It controls which Lus a service is to be registered

by providing a front-end interface to register the service, and thereby the registration is

performed transparently to services. Services from di�erent groups may actually share the

same Lookup Service. Therefore, that group used in local Jini networks to search for Lus

instances containing only a specialized kind of services does not hold anymore, rather these

groups are managed by the federation to know exactly which user-de�ned groups maps to

which Lus instances and reverselly.

On the other hand, as in regular Jini networks, the federation system strictly de�nes

which groups the Lus join, but these groups do not represent service categories, rather they

are groups assigned by the system administrator to enable load balancing and raise the

system availability. Indeed, Lookup Services joining on the same, here called, physical group

are con�gured to keep the same set of services regardless if they join on distinct user de�ned

groups. Thus, JTrader uses two kinds of groups as described bellow:

� user-de�ned group. This group is dynamically managed by the JTF component to pro-

vide group awareness to JTrader's users. In contrast to the Jini approach of attaching

static groups to Lus, this approach attaches services to groups as a consequence of

using a Lookup Service to store o�ers from multiple user-de�ned groups. These groups

are transparent to Lookup Services, only the federation users access them.

� administrator de�ned group. A physical and administrative group used to multicast

discovery Lookup Service instances into JTrader network. Lus instances joining on the

same physical group should keep the same set of services. The consistent replication

of services is achieved by tunnels, as shown in [4], installed between Lookup Services

joining the same physical group. These groups main purpose is to balance the system

load and increase service availability, so they are transparent to users. Therefore, any

combination of Lookup Services which has at least one component from each physical

group represents the whole federation and the load balancing solution should guarantee

the best selection.

As represented in Figure 7, this arrangement enables unprecedented interchange among

Lookup Services as long as some instance fail or become somehow ineÆcient. A directed

tunnel between a pair of Lookup Services, causes any modi�cation in one Lus, like a new



service being registered, be also replicated to the other. The only constraint is to avoid loop

on the tunnel network so that messages would be never dropped. However, this problem can

be resolved tagging the messages posted by the initial Lus with an identi�er, if the message

reaches the source, it will be dropped. Starting new DA instances, attaching these instances

to groups, de�ning tunnels among them, and monitoring services registered are features of

an independent administration tool called: JTrader Admin5.

s1s1 s2

s3 s4

s5

s3 s4

s2 s1 s2

s4

s1 s2

s5

s3

s1 s2

s4

s1 s2

s3

Lus1 joins phys1 Lus1 joins phys1 Lus2 joins phys1 Lus1 joins phys1 Lus2 joins phys1

Lus4 joins phys2Lus3 joins phys2

Lus5 joins phys3 Lus5 joins phys3

Lus2 joins phys1

Lus4 joins phys2 Lus4 joins phys2

Scenario 1 Scenario 2 Scenario 3

Figure 7: user-de�ned and physical groups

In Figure 7 three con�guration scenarios are presented where �ve service o�ers are reg-

istered in three distinct user-de�ned groups. The initial con�guration (Scenario 1) has �ve

Lookup Services joining in three physical groups, and also proxy tunnels installed as men-

tioned earlier: Lus1 $ Lus2, Lus3 $ Lus4. The second scenario presents an automatic

recon�guration after a Lus failure whereby the replicated Lus start to respond for services

registered in the failed one. The third scenario also presents a Lus failure situation, but in

this case the Lookup Service had no replication. In fact, this situation may also occur in

Jini enterprise networks and there is no trivial solution to this problem as well. Services

can catch the event of a Lus failure and register its o�er in a di�erent group. However,

this approach does not seem a reasonable alternative, as it will probably be very diÆcult

to clients �nd that service in a di�erent group. In other words, if a Jini networks does not

provide at least one Lus associated with a given group, we naturally expect that no service

joining that group could be registered, and service o�ers would be lost even if the service

is available. Therefore, the system should guarantee there are at least two running Lus for

the same physical group in order to avoid service o�er lost, which is graphically represented

in the transition between Scenario 2 and 3 by a user-de�ned group reduction. Also, this

function could be well automated by the JTrader Admin.

In a Jini private network, a service can register to receive events on Lus failure and try, in

response, to discover a new available one that joins the same group. In contrast, JTrader uses

a di�erent approach in order to provide service availability and reduce communication with

the federation. Using tunnels, JTF makes a best e�ort to keep services proxies available. If

a proxy is unregistered it is due to failing in renewing a lease or if there are no more Lus

available on the physical group, as presented earlier. In other words, federation clients will

not use a Jini DiscoveryListener instance to manage Lookup Service availability events.

5At this moment, this auxiliary tool is not implemented.



In order to increase reliability, JTrader system should provide redundant federation ob-

jects that would assume the place of the other in the event of a failure. However, this feature

is not yet developed since it is very related to the presence of a persistence service, which

this system does not currently use. This persistence service should be synchronized to allow

federation services concurrently access the system's state. On the other hand, storing the

state on a remote place should introduce some overhead if compared to the state persisted

locally. The �nal chapter discusses this theme in more detail.

5.1 API

As mentioned earlier, the JTF component can be considered as a special case of discov-

ery protocol as it provides a means to access DAs. The federation interface also de�nes

a register operation which could seem unnecessary considering the Lookup Service inter-

face - ServiceRegistrar - de�nes a similar operation. However, using the Lookup Service

register method makes sense in environments that users have some inuence over DA cre-

ation like enterprise networks; but this is not the case on wider networks which user-de�ned

groups are created on a demand basis. When searching a Lookup Services of a given user

de�ned group for the �rst time, probably, no instance will be returned by the federation,

thereby service o�ers could not be registered if the register operation were not provided

on JTF interface. In addition, this operation enables JTF to associate user-de�ned groups

with Lookup Services. The JTF interface is de�ned as follows:

public interface IJTrader {

public ServiceRegistration register(String group,

ServiceItem item,

long leaseDuration)

throws RemoteException;

public ServiceRegistrar[] discover(String group)

throws RemoteException;

}

Once services are successfully registered on JTF, Lookup Service proxies may be retrieved by

calling the discover method. Therefore, as Lookup Services are localized, client components

do not need to interact directly with the federation object anymore, thus alleviating JTF from

concurrent access. Notice that more than one Lus proxy may be returned in a discover()

call as user-de�ned groups may use more than one Lookup Services. This happens when the

system is regarded as overloaded by applying a heuristics to verify this situation. The load

balancer component is discussed on the next section. In fact, this decision may a�ect the

client behavior as the Lus instances returned represent disjoint sets of services, and thereby a

client should query each Lus untill �nd the intended service. However, we will see the system

can be con�gured to not use this feature, thus the discover() operation would return only

one Lus instance and services joining on some user-de�ned group will not span over multiple

Lus.



5.2 Load Balance

By starting replicated Lus, the federation increase reliability since lost of services is avoided

when Lus instances fail. However if a Lookup Service becomes overloaded due to a high

volume of service o�ers, the replicated intance should be as well overloaded. Thus, physical

groups do not provide a natural mechanism to balance the load.

The JTF component is not directly responsible to implement load balancing, rather

it delegates these functions to the Balancer subcomponent. The Balancer is extensively

used by the federation to select the Lus that will be used to register a service, meaning

that services from the same user-de�ned group may be spread in di�erent physical groups,

as represented on 7. In fact, threre is a tradeo� between keeping user-de�ned group in a

small set of physical groups or larger ones. Enlarging this set may increase load balance

in detriment of performance and transparency caused by the distribution of service o�ers -

remember clients should fetch services from disjoint Lookup Service instances.

As a requirement to load balance, services from the same user-de�ned group should be

con�ned in a restricted and con�gurable upper bound number of physical-groups. When this

number is assigned to 1, the balancer should not attempt to balance the load of the system, as

a consequence, user-de�ned groups do not form disjoint sets and discover operation returns

only one Lookup Service instance that should be any of those representing the same physical

group initially used. JTF always asks the Balancer for the best current Lus, however, the

Balancer does not always answer with the best one as it must apply some rules in order to

control resource misuse. For example, if Lus1 already has a service from some user-de�ned

group, the next service from that group is likely to be registered also on Lus1 if this Lus1 is

not regarded as overloaded. Currently, load evaluation is only based on Lookup Service size

- the number of o�ers registered. Moreover, even though the heuristic the Balancer uses

to accomplish this selection is briey presented bellow, this work does not intend to present

a de�nitive solution on this theme, so this component is properly decoupled from the JTF,

but only a general model to manage a dynamic federation. By the way, next chapter poses

that Lookup Service size is not a good parameter to evaluate the load of the system.

� The evaluation di�erence between the best Lus joining on some user-de�ned group

and the best current one should be greater than some con�gurable value. In other

words, this rule says that a new Lus should only join on a user-de�ned group when it

is signi�cant better than the older.

� The number of Lus already joined on an user de�ned group should be less than some

maximum absolute value and also less than some maximum relative value, both con-

�gurable. The �rst number imposes an absolute upper-bound to user-de�ned group

size, however it does not scales well when the number of Lus in the federation is con-

siderably small. Thus, a number relative to the number of running Lus should be also

de�ned.

� If the above conditions are not met, JTF uses the best Lus already joining on the

user-de�ned group

The organization of JTF components is shown in Figure 8:

5.3 Current Shortcomings

Trying to scaling the trading service to the Internet, this work faced two hard problems:

federation dynamic location and security constraints imposed by the network. As long as



Admin
JTrader

physical groups

Balancer

JTF Implementation

event notifications

JTF interface

Figure 8: The JTrader federation

multicast communication is a very hard issue in current Internet, this work provides a solution

based on unicast. Actually, multicast communication is very limited concerning IPv4 and

this work is based on current Internet. The JTFA component has used a list of alternative

primary name servers by which the federation object is likely to be registered. Using name

servers causes a dependency between the client and the federation, say the federation adapter

and the federation, as it should be localized by some speci�c identi�er - the name of the

server, for instance. Therefore, the federation location is not completelly transparent to

the adapter component as the location of the name server is not. Furthermore, the RMI

speci�cation enforces the service to be running on the same location as the name server, so

the federation object is supposed to be running on a host of the mentioned list.

The application multicast tunneling approach delegates to a process that listens for uni-

cast messages on the Internet and then forwards multicast messages on the local network.

As the federation object is installed on a Jini network, the tunnel process is able to reach

its proxy by using the Jini multicast discovery protocol. Therefore, the federation object

is allowed to be running in another host than the name server host. However, the adapter

component still needs to statically discover the tunnel process by reaching the name server

where it is registered.

In addition, the Internet has a multitude of network policies and constraints regarding to

the hostile environment where it lies on. Concerning this scenario6, security is another hard

issue for distributed computing as it must be enabled without opening ports for hackers.

Also, it is very diÆcult to �nd subnets with similar security policies, what makes general

solutions very hard facing the network scale. This way, achieving scale and handling security

are contradictory issues on Internet distributed systems. In [3] we has detailed the security

solution approached by the JTrader system.

6 Conclusion

This work has introduced current SDP technologies, presented some scenarios of use, and

�nally has described the design of JTrader, an approach to service trading federation over

6In fact, a great deal of users access Internet by means of ISP through cable modem and POP3 connections



the Internet. The JTrader system is made of four components: JTrader Federation is the

core component that manages a set of Lookup Services where currently available services

are registered, this component aimed at providing a highly scalable and reliable service from

where worlwide service o�ers can be retrieved; the JTrader Federation Adapter provides a

means to programs transparently access the federation on remote locations; the JTrader Web

System is a Web front-end that provides tools to search for services on that federation and

perhaps using them; and �nally JTrader Enterprise Agent provides a means to enterprises

publish their services almost without administration.

References

[1] Ken Arnold, Bryan O'Sullivan, Robert W. Scheier, Jim Waldo, and Ann Wollrath.

The Jini Speci�cation. Addison-Wesley, December 1999.

[2] Marcelo d'Amorim, Vander Alves, and Carlos Ferraz. A Comparative Analysis of Trad-

ing approaches. Universidade Federal de Pernambuco, November 2000.

[3] Marcelo d'Amorim and Carlos Ferraz. Leveraging Security in Internet Distributed Ap-

plications. Universidade Federal de Pernambuco, February 2001.

[4] W. Keith Edwards. Core Jini. Sun Microsystems Press, June 1999.

[5] M. Grand. Patterns in Java, A Catalog of Reusable Design Patterns Illustrated with

UML, volume 1. John Wiley & Sons, New York, NY, USA, 1998.

[6] J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, and W. Allen. Bluetooth: Vision,

goals, and architecture. ACM Mobile Computing and Communications Review, 2(4):38{

45, Oct 1998.

[7] James K. Watson Jr., Jeetu Patel, and Joe Feener. Free Trade Zones. Doculabs, July

1999.

[8] James Kempf and Pete St. Pierre. Service Location Protocols for Enterprise Networks.

Wiley, 1999.

[9] Microsoft Corporation. Universal Plug and Play Device Architecture Reference Speci�-

cation, November 1999. available at http://www.microsoft.com/hwdev/UPnP.

[10] Object Management Group. CORBA OMA Speci�cation, June 1986.

[11] Sun Microsystems. JavaSpaces Service Speci�cation, 1.1 edition, October 2000.

[12] V. Vasudevan. A Reference Model for Trader-Based Distributed Systems Architectures.

Object Services and Consulting Inc., January 1998.

[13] P. Wycko�, S. McLaughry, T. Lehman, and D. Ford. Tspaces. IBM Systems Journal,

1999.


	853: 
	854: 
	855: 
	856: 
	857: 
	858: 
	859: 
	860: 
	861: 
	862: 
	863: 
	864: 
	865: 
	866: 
	867: 
	868: 
	cabecalho: 
	seta: 


