
Treating Non-Functional Properties of Dynamic

Distributed Software Architectures

Nelson S. Rosa, Paulo R. F. Cunha

Centro de Inform�atica

Universidade Federal de Pernambuco

50732-970 Recife, Pernambuco - Brazil

Phone: +55 81 3271 8430 Fax: +55 81 3271 8438

E-mail: fnsr,prfcg@cin.ufpe.br

George R. R. Justo

Centre for Parallel Computing

University of Westminster

115 New Cavendish Street London - W1M 8JS

Phone: +44 207 911 5000 Fax: +44 207 911 5143

E-mail: justog@cpc.wmin.ac.uk

Keywords: Software Architecture; Non-Functional Properties; Dynamic Distributed Sys-

tems; Runtime Change.

Abstract

One of key methods to increase availability of distributed systems is to allow dy-

namic changes to place at runtime without to stop the entire system. A critical task

carried out during such changes consists of verifying and preserving the functional

properties of the system. However, as important as to preserve the integrity of func-

tional aspects, non-functional properties (e.g., security and performance) must also

be preserved when modi�cations occur. We present a formal approach for specifying

non-functional properties of dynamic distributed systems. This approach allows for-

mal veri�cation to be performed before a change is committed. The paper illustrates

our approach with an example of a dynamic client-server application.

1 Introduction

It is increasing the number of systems in which the continuous availability is a key char-

acteristic. For these systems, known as dynamic systems, the cost, risk and delay of

shut-downing and restarting the entire application are so critical that every change must

be carried out while the system still running [Oreizy 98a]. Typical dynamic systems in-

clude safety-intensive and mission-critical applications such air traÆc control, telephone

switching and multimedia medical systems. Most recent commercial applications, like

Internet search engines, also need to be available all time.

Changes in dynamic systems are mainly motivated by the necessity of removing bugs,

enhancing the functionality or adapting the system to a new environment. For instance,

to allow changes from a GSM mobile radio platform to the 3G UMTS. In practical terms,

these changes consist of replacing, adding and removing parts of the application, or simply

change the way in which the elements that compose the application are wired. Common to

every kind of change is the necessity of preserving functional properties (such as deadlock,

liveness, message loss, protocol conformance) in order to maintain the system integrity.

Hence, before a change is committed, the integrity of the application must be veri�ed to

ensure that its functional properties are preserved.

As important as the preservation of functional aspects, the non-functionality of the

system also must be kept unchanged after a runtime modi�cation [Oreizy 98b]. Firstly, for

most dynamic systems, non-functional properties play a critical role and their satisfaction

is mandatory. For these systems, non-functional properties such as good performance and

secure are as important for the correct functioning of the system as the functionality

itself. Secondly, as a kind of requirement, it seems to be natural to verify the system

integrity with respect to them. The absence of an explicit treatment of non-functional

requirements has been a critical success factor of several software systems [Boehm 96].

Thirdly, non-functional properties have a global nature, in opposite to local e�ects of

functional requirements. Hence, the modi�cation of a single component of the system may

a�ect the integrity of the entire application with respect to a particular non-functional

aspect. For example, a secure component may be replaced by a non-secure one, without

any kind of veri�cation. In this case, the global nature of non-functional properties implies

that the entire application will become non-secure just because a single non-secure piece

of the system.

Con�guration environments such as CL [Justo 99] and Darwin [Magee 95] and archi-

tectural infrastructure like ArchStudio [Oreizy 98a] do perform certain integrity veri�ca-

tion. For instance, CL checks port compatibility before a connection is performed. In

Darwin, the checking is performed verifying the compatibility of the interface types. Arch-

Studio uses architectural constraints imposed by the C2 architectural style [Oreizy 98c]

for de�ning invariants that must be veri�ed before a change is committed. If a change

violates the invariant, it is not performed. However, none of these environments takes

into account non-functional properties.

In this paper, we present an approach for considering non-functional properties when

changes occur. Our approach adopts software architecture concepts for describing dy-

namic distributed systems, characterising the dynamic distributed software architectures

[Kramer 97]. It concentrates on verifying the integrity of the application with respect to

its non-functional properties, i.e., if a system is secure before a runtime change, it must

still be secure after it. Essentially, these properties are de�ned as invariants that cannot

be violated during changes. In order to perform this task, we formally describe both the

non-functional properties, including their notion of compatibility and correlation, and the

software architecture concepts. These formal descriptions are thereby incorporated into

operations used to change the system at runtime.

This paper is organised as follows. Section 2 introduces basic concepts related to

non-functional properties and software architecture. Next section, Section 3, presents the

formal de�nition of basic concepts introduced in the previous section. Section 4 presents

the operations used to dynamically change the system considering the non-functional

properties. In Section 5, we apply our approach to a dynamic client-server system. Finally,

the last section presents the conclusions and some directions for future work.

2 Basic Concepts

In our approach, a dynamic distributed system is described in terms of software archi-

tecture elements such as components, connectors and con�guration. To these elements,

non-functional properties are assigned in order to characterise their quality attributes.

2.1 Non-functional Requirements

Functional requirements de�ne what a software is expected to do, while non-functional

requirements12 (NFRs) specify global constraints on how the software operates or how

the functionality is exhibited [Chung 99]. Functional requirements usually have localised

e�ects, i.e., they a�ect only the part of the software addressing the functionality de�ned

by the requirement. During the software development process, functional requirements

are usually incorporated into the software artefacts step by step. At the end of the

process, all functional requirements must have been implemented in such way that the

software satis�es the requirements de�ned at the early stages. NFRs, however, have a

global nature, which means that to satisfy a NFR may a�ect several design components.

NFRs have a very distinctive nature, in which a wide variety of aspects such as modi-

�ability and fault-tolerance are categorised as non-functional properties. The IEEE/ANSI

830-1993, IEEE Recommended Practice for Software Requirements Speci�cations de�nes

thirteen non-functional requirements that must be included in the software requirements

document: performance, interface, operational, resource, veri�cation, acceptance, docu-

mentation, security, portability, quality, reliability, maintainability and safety. Kotonya

[Kotonya 98] classi�es these requirements into three main categories: Product require-

ments, Process requirements and External requirements. Product requirements specify

the desired characteristics that a system or subsystem must possess. Process require-

ments put constraints on the development process of the system. External requirements

are constraints applied to both the product and the process, which are derived from the

environment where the system is developed.

In order to formalise NFRs, we adopts the set of abstractions proposed in [Rosa 00,

Rosa 01], in which non-functional information is modelled by two abstractions: NF-

Attribute and NF-Requirement. A NF-Attribute models both non-functional character-

istic of the software that can be precisely measured out (performance) and non-functional

features that cannot be quanti�ed, but may be de�ned as present in the software in a

certain level (security). A NF-Requirement is a constraint over a NF-Attribute, e.g.,

Good Performance is a constraint on the NF-Attribute performance, which de�nes that

the performance must reach a certain value.

1Also referred to as goals [Mylopoulos 92], ilities [Filman 98], software quality factors [Ghose 99] or
commonly quality attributes.

2NFRs, quality attributes and non-functional properties are terms used interchangeably throughout
the paper.

2.2 Software Architecture

The software architecture [Shaw 96] is the highest abstract description of a software de-

sign, which is de�ned at the initial stages of the software development. Software ar-

chitectures are commonly described in terms of three basic abstractions: components,

connectors and con�gurations. Components represent a wide range of di�erent elements,

from a single client to a database, and have an interface (made up of ports) used to

communicate the component with the external environment. Connectors represent com-

munication elements between components. The con�guration describes how components

and connectors are wired. A traditional view of software architecture is shown in Figure

1, where three components (CompA, CompB, CompC) and two connectors (C1, C2)

make up the con�guration. Each component has ports that compose its interface: p1 and

p2 of C1, p4 of CompB and p3 of CompC.

CompC

CompBCompA

p3

p4

p2

p1

C2

C1

Configuration

Figure 1: Software Architecture

Essentially, the software architecture presents a description of the software where

\computation" or \functionality" (included in components) and \communication" (mod-

elled by connectors) are clearly separated. In order to describe software architectures,

languages specially designed for this purpose, namely Architecture Description Languages

(ADLs), replace box-and-arrows diagrams and natural languages. This class of languages

has some key characteristics such as components and connectors as �rst-class elements,

ability for expressing the NFRs and the focus on the structure of software [Medvidovic 00].

3 Formalising Basic Concepts

NFRs and architectural elements presented in the previous sections are formalised through

�rst-order logic and set theory concepts. The notation used to formalise the basic concepts

consists of the logic operators ^, _,) and,; =df means \is de�ned by"; [P] means that

P is true for all values of variabels in its alphabet; S n T is the set minus operator; and

(x; y; z) de�nes a tuple.

3.1 Formalising Non-functional Requirements

De�nition [NF-Attribute] A NF-Attribute is speci�ed as a set of typed variables

as follows

nfa =df f var1 : Type1, ..., varn : Typen g

For example, the NF-Attribute performance is traditionally de�ned in terms of space

and time [Chung 99] as shown bellow

performance = f space : integer,time : real g

De�nition [NF-Requirement] A NF-requirement is a predicate3 (P) over a NF-

Attribute as shown bellow

nfr =df P(nfa)

For instance, a NF-Requirement over the NF-Attribute performance may be de�ned

as

Good Performance (performance) = time < 0:045

A NF-Requirement may also be de�ned as a logical expression that includes two or

more predicates over di�erent NF-Attributes. For instance, the security of systems is

usually de�ned having a certain level (SECURITY LEVEL). Hence, the NF-Requirement

Fast and Secure is de�ned as follows (performance and Good Performance as de�ned

before)

security = (level : SECURITY LEV EL)

Secure (security) = (level = Level 4)

Fast and Secure (performance,security) = Good Performance (performance) ^
Secure(security)

In addition to these two basic de�nitions, we also consider the idea of correlation

among NF-Attributes, as proposed in the NFR Framework [Chung 99]. According to

this framework, NF-Attributes are usually correlated either positively or negatively. A

\positive" correlation means that the NF-Attribute acts \in favour of" another one, while

a \negative" correlation has an opposite e�ect. Essentially, the notion of correlation serves

to capture the relation among NF-Attributes or how one a�ects others.

De�nition [Correlation] A correlation is de�ned as an implication between con-

straints imposed on distinct NF-Attributes as follows

Correlation(nfa1; nfa2) =df P1(nfa1)) P2(nfa2), where nfa1 6= nfa2

For example, an improvement in the security likely has a negative e�ect on the per-

formance, as additional actions must be performed to improve the security

High Security (security) = (level = 5)

Low Performance (time) = (time > 1.47)

High Security) Low Performance

3A predicate is formally de�ned as an equation or an inequation or a collection of formulae. It may
be de�ned as the set of all tuples that satisfy the predicate f(x; y; :::; zg j P (x; y; :::; z)g.

De�nition [Compatibility] Two NF-Requirements are compatible if they constrain

the same NF-Attribute and the evaluation of both predicates produces the same value ([

P (x)] means evaluation of P for every value of x)

nfr1 = P1(nfa1) and nfr2 = P2(nfa2)

Compatibility (nfr1; nfr2) =df (nfa1 = nfa2) ^ [P1(nfa1)] , [P2(nfa2)]

3.2 Software Architecture

The architectural elements mentioned in Section 2.2, namely port, interface, component,

connector and con�guration are formally de�ned in the following.

De�nition [Port] A port is the point in which the component communicates with

the external environment. It is described through the de�nition of the direction of the

port, namely input port or output port.

PORT DIRECTION ::= input j output

port =df (dir type : PORT DIRECTION)

It is worth noting that additional elements may be used to describe a port [Paula 98].

However, this description only including the port direction is suÆcient for the scope of

this paper.

De�nition [Interface] The interface is de�ned a set of ports as follows

interface =df fport1, ..., portng

De�nition [Component] The component description includes an interface and three

di�erent non-functional requirements as shown bellow

component =df (compinterface,compPnfr,compRnfr,compCnfr)

The interface expresses the functionality provided by the component; CompPnfr is the

quality of the computation performed by the component; compRnfr refers to the expected

quality of the computation carried out by other components connected to it; compCnfr
de�nes the quality requirements expected from the communication (in the software archi-

tecture, the connector). For instance, a component may have a good performance, require

a secure communication and demand fast computation from the components connected to

it.

De�nition [Connector] The connector has an interface and provides communication

services with a certain quality, as speci�ed bellow

connector =df (conninterface,connnfr)

The description of a connector may also involve more elements [Allen 97] ones the

de�ned above are suÆcient for our purpose.

De�nition [Con�guration] The con�guration (configuration) is de�ned in terms of

a set of components (components), a set of connectors (connectors), connections between

these elements (connections), a global invariant (configurationnfr) and possible correla-

tions (correlations) between the NF-Attributes constrained in the software architecture.

configuration =df (components, connectors, connections,

configurationnfr(components,connectors),

correlations)

For example, the software architecture shown in Figure 1 may be de�ned as follows

components = fCompA, CompB,CompCg

connectors = fC1,C2,C3g

connections = f(CompA,C1,CompC),(CompA,C2,CompC)g

configurationnfr(components) =

8comp 2 components� Compatibility(compPnfr,P1(nfa1))

correlations(nfan,nfam,nfas) = (Pn(nfan)) Pm(nfam)) ^ (Pn(nfan)) Ps(nfas))

4 Formalising Runtime Change Operations

As mentioned in Section 1, operations of adding, removing, replacing and recon�guring

are used to change the dynamic distributed software architecture. These four operations

are formalised considering some assumptions related to the non-functional properties:

� Non-functional properties within connectors : The non-functionality spreads through-

out components and connectors, while the functionality itself is restrict to the com-

ponent. Being a communication element, the functional integrity is not veri�ed

when a connector is replaced. However, it is not true in relation to NFRs, as they

are also present in the connector and must be veri�ed when any runtime operation

involves a connector;

� Role of connectors : Software architecture principles de�ne that components only

communicate through a connector, never directly. Consequently, operations in-

volving connectors are usually more complicated, as they involve NFRs of three

architectural elements, i.e., NFRs of the connector itself and two components linked

by the connector;

� Two components and one connector : We consider each connector linking only two

components. This assumption is merely taken in account in order to clarify the

presentation of the change operations, without lost of generality. Each operation

may be easily extended for considering that a single connector binds more than two

components. It is carried out checking the compatibility conditions for every (not

simply two) component using the connector;

� NFRs as invariants : NFRs are invariants explicitly considered for preserving the

system integrity. Hence, before a change is committed, these invariants are veri�ed

in order to prevent changes that violate them;

� Software architecture versus con�guration models : Dynamic distributed systems

are usually speci�ed according to con�guration models such as CL and Darwin.

However, instead of use these models, we adopt a similar approach as proposed by

Oreizy [Oreizy 98a]. According to this approach, software architecture elements are

used to describe dynamic systems. Bene�ts of this approach comes with the explicit

separation of computation and communication, control over changes in the hands of

architects and the use of a software architecture as a representation of the system;

� Focus on architectural level : Our approach does not address the mechanisms pro-

vided for implementing runtime change operations, but focuses on analysing/modelling

change operations at architectural level in order to ensure the application integrity

considering non-functional requirements. Implementation environments such as

Darwin, CL and ArchStudio are responsible for the runtime changes;

� Functional compatibility : The functional compatibility is tested using the interface

de�ned for each component. In particular, we consider that interface compatibility

means behavioural compatibility. It is worth noting that assumption related to

functional compatibility are out of the scope of this paper; and

� Separation of non-functional properties : The software architecture concepts explic-

itly separate communication and computation concerns. Following this principle,

we also divide explicitly non-functional requirements related to the computation

(assigned to components) and ones present in the communication (associated to

connectors).

Considering these assumptions and using the formal de�nition of NFRs and archi-

tectural concepts presented in sections 3.1 and 3.2, we de�ne what have to be checked

in each change. We provide seven change operations, namely addComp, addConn,

remComp, remConn, repComp, repConn and con�guration, and the conditions

that must be satis�ed before their execution. Each operation changes the con�guration,

while the condition de�nes precisely the non-functional properties that must be checked.

Additionally, it is worth noting that these operations are considered to be atomic. This

fact is important as the system may be in an inconsistent state when the change is being

performed, unless the atomicity is guaranteed.

Adding a Component A component is added at runtime in order to enhance the

system functionality to meet changing user needs. When a new component is added to

the dynamic system, it is necessary to check the compatibility between NF-Requirements

of the new component and the component to which it will be connected, and the com-

patibility with the communication requirements provided by the connector. Additionally,

the NFRs of the new component are checked in order to avoid violating the predicate

de�ned for the con�guration. Figure 2 depicts the addition of the component NewComp.

It is worth noting that a new connector is not e�ectively added (the set connectors is

not altered), but simply a new instance of the connector C2 is created as it is always

necessary a connector between every two components in the software architecture.

CompCNewComp

CompA CompB

CompC

CompBCompA

p1

C2

C1

p2

p4

p3

After ChangeBefore Change

C2
C2

p3

Configuration Configuration

p4

p6

p1
C1

p5

p2

Figure 2: Adding a Component

The operation addComp is used to add a component. It is executed if the condition

addCompCondition is satis�ed. In this case, a new component is added to the set of

components and a new connection is added to the set of connections. Otherwise, the

con�guration is not changed. This operation is de�ned as follows

addComp (configuration, NewComp) =8
>>><
>>>:

components [fNewCompg and5

connections [f(CompA;C2; NewComp)g if addCompCondition

no action (con�guration not changed) otherwise

where

addCompCondition = Compatibility (NewCompPnfr, CompARnfr) ^

Compatibility (NewCompRnfr, CompAPnfr) ^

Compatibility (NewCompCnfr, C2nfr) ^

configurationnfr (NewComp) ^ correlation

Adding a Connector New connectors are added to communicate components, which

were not previously connected. A basic condition to be veri�ed when a new connector

is added refers to the communication requirements provided by the connector must be

compatible with ones required by the components being connected. Figure 3 shows the

addition of the connector NewConn connecting CompB and CompC.

The operation de�ned for adding a connector, namely addConn, is similar to one

used to add a component, except for the modi�ed set and the addConnCondition.

addConn (Conf , (CompA, NewConn, CompB)) =8
>>><
>>>:

connectors [fNewConng and

connections [f(CompB;NewConn;CompC)g if addConnCondition

no action (con�guration not changed) otherwise

where

5It means that an opperation follows another one.

CompA

CompC

CompB

CompC

CompBCompA

C1

Configuration

C2

p1

NewConn

p2

p4

p3

C2

Configuration

p4

p2

p1
C1

p3

p3

p5

Before Change After Change

Figure 3: Adding a Connector

addConnCondition = Compatibility (NewConnnfr, CompACnfr) ^

Compatibility (NewCompnfr, CompBCnfr) ^

configurationnfr (NewConn) ^ correlation

Removing a Component Components are removed in order to eliminate unnecessary

behaviour. Usually, the unnecessary behaviour is a consequence of recent added func-

tionality. Issue to be considered when a component is removed refers to the fact that

some components may be responsible for a speci�c non-functional characteristic of the

software. For instance, the component may take responsibility for the encryption. In this

particular case, the component cannot be removed.

A component is removed using the operation remComp. If the condition remComp-

Condition is satis�ed, the component is removed (through the set di�erence operator \n")
from the set of components that make up the con�guration and the connection including

OldComp is removed from the set of connections (connections).

remComp (configuration, OldComp) =8>>><
>>>:

components n fOldCompg and

connections n f(OldComp;C2; CompA)g if remCompCondition

no action (con�guration not changed) otherwise

where

remCompCondition = OldComp does not implement any task related to a NF-Attribute.

Removing a Connector Removing a connector is necessary when the connection be-

tween two components is not needed anymore. The operation remConn does not place

any condition to be applied to remove a connector

remConn (configuration, OldConn) = connectors n fOldConng and

connections n f(CompB, OldConn, CompC)g.

Replacing a Component Components are usually replaced in order to correct an

undesired behaviour or to enhance a system functionality. NFRs of the new component

must be compatible with the previous one. Figure 4 shows the replacement of OldComp

by NewComp.

NewCompOldComp

CompACompA CompB CompB

ConfigurationConfiguration

p3

p4

p2

p1

C2

C1

p3

p4

p2

p1

C2

C1

Before Change After Change

Figure 4: Replacing a Component

The replacement operation repComp is performed removing the old component

(OldComp) and adding the new one. Both operations are performed if the condition

repCompCondition is satis�ed.

repComp (configuration, OldComp, NewComp) =8
>>><
>>>:

configuration n fOldCompg and

configuration [fNewCompg if repCompCondition

no action (con�guration not changed) otherwise

where

repCompCondition = Compatibility (OldCompPnfr, NewCompPnfr) ^

Compatibility (OldCompRnfr, NewCompRnfr) ^

Compatibility (OldCompCnfr, NewCompCnfr) ^

configurationnfr (NewComp)

Replacing a Connector Connectors are replaced when it is needed to improve the

communication between two components. As for components, the replacement operation

repConn must verify the compatibility of NFRs of the new component and the new one,

as de�ned in the condition repConnCondition

repConn (configuration, OldConn, NewConn) =8>>><
>>>:

connectors n fOldConng and

connectors [fNewConng if repConnCondition

no action (con�guration not changed) otherwise

where

repConnCondition = Compatibility (OldConnnfr, NewConnnfr) ^

configurationnfr (NewConn) ^ correlation

Recon�guration The recon�guration means to recombine existing functionality to

modify overall system behaviour. As there is a connector between every two compo-

nents, the recon�guration may be performed by changing the connector bindings, i.e., it

consist of altering the set connections by removing an old connection and adding a new

one. The problem related to the recon�guration is to avoid putting together components

with di�erent NFRs and to use a connector with incompatible NFRs in relation to the

components. Figure 5 depicts a recon�guration in which the connection between CompA

and CompC is removed and a new connection is performed between CompB and CompC.

CompBCompA

CompCCompC

CompBCompA

C1
p4

C2

Configuration

p1

p2

p3

Configuration

p4

p1
C1

p3

p5
C2

Before Change After Change

Figure 5: Recon�guration

The recon�guration operation, namely recon�guration, consists of removing a par-

ticular connection and adding a new one, which expresses the new desired con�guration.

This operation is de�ned if recCondition is satis�ed.

recon�guration (Conf , (CompA, C2, CompC), (CompB, C2, CompC)) =8
>>><
>>>:

connections n f(CompA;C2; CompCg and

connections [f(CompB;C2; CompC)g if recCondition

no action (con�guration not changed) otherwise

where

recCondition = Compatibility (CompBRnfr, CompCPnfr) ^

Compatibility (CompBPnfr, CompCRnfr) ^

Compatibility (CompBnfr, C2nfr)

5 Case Study - Dynamic Client-server

In order to illustrate our approach, we apply the formalization and checking of system

integrity proposed in the previous sections to a client-server application. In fact, this

application is a dynamic distributed client-server, in which the server can be dynamically

changed by another one. In terms of NFRs, the communication between elements of

the application must be Secure and the application must be Fast. Figure 6 depicts the

application of the replacement operation to the server.

Initially, we describe the NF-Attributes de�ned for the application. These NF-Attributes

include security, accuracy and performance. The security is de�ned in terms of security

levels; the accuracy is simply de�ned as present or not; and the performance is speci�ed in

terms of the number of transactions processed per second. We de�ne the NF-Requirements

Secure, Accurate and Fast in terms of these NF-Attributes.

SECURITY LEV EL ::= Level 1 j Level 2 j Level 3 j Level 4 j Level 5

Server

NewServer
ClientB

ClientAClientA

ClientB

Server

C1

C2

p1

p3

p1

p3

p4

p2
C1

C2

p2

p4

Configuration

p5

p6

Configuration

Before Change After Change

Figure 6: Dynamic Client-server Software Architecture

security = (level : SECURITY LEV EL)

performance = (transactions processed : integer)

accuracy = (value : boolean)

Secure (security) = (level = Level 5)

Secure Communication (security) = (level = Level 2)

Fast (performance) = (transactions processed > 20)

Accurate (value) = value

The dynamic distributed software architecture contains three components and two con-

nectors. The ClientA has a port p1, its computation does not have any non-functional

property associated to (none) and requires a Fast and Accurate server; the ClientB has

a port p3, does not have any non-functional property assigned to (none) and requires a

Secure server. Both component require a Secure Communication; the server provides a

Secure, Fast and Accurate computation, while requires a Secure Communication.

ClientA = (fp1g, none, Fast ^ Accurate, Secure Communication)

ClientB = (fp3g, none, Secure, Secure Communication)

C1 = (C1interface, Secure Communication)

C2 = (C2interface, Secure Communication)

Server = (fp2; p4g,

Secure ^ Fast ^ Accurate,none,

Secure Communication)

configuration = (fClientA;ClientB; Serverg,fConnector1; Connector2g,

f(ClientA;Connector1; Server),(ClientB;Connector2; Server)g,

configurationnfr), where

configurationnfr = 8 Conn 2 connectors�

Compatibility(Connnfr; Secure Communication) ^

8 Comp 2 components j IsAServer(Comp)�

Compatibility(CompPnfr; Fast) ^

Compatibility(CompPnfr,Secure)

IsAServer tests if the component is a server (it may be a client) or not. In this case,

the constraint configurationnfr de�nes that every server must be Fast and Secure and

every connector must provide a Secure Communication. The description of the new server

is de�ned as follows

NewServer = (fp5; p6g,Fast ^ Secure,none,Secure Communication)

Thus, the replacement condition is

repCompCondition =Compatibility(Secure ^ Fast ^Accurate,Fast ^ Secure) ^

Compatibility(none,none) ^

Compatibility(Secure Communication,Secure Communication) ^

configurationnfr(NewServer)

These two servers cannot be replaced, as their non-functional properties are not com-

patible. Essentially, the NewServer is not Accurate, which is a characteristic required

by the ClientA. As shown on the right hand side of Figure 6, the con�guration is not

altered, i.e., the old server is not replaced.

6 Conclusion and Future Work

This paper has illustrated how non-functional properties may be explicitly dealt in dy-

namic distributed systems. In order to perform this task, we use a formal approach and

software architecture abstractions for describing dynamic systems. Using a �rst-order

logic based notation and set theory elements, we formally de�ned NF-Attributes, NF-

Requirements, correlation and compatibility notions, components, connectors and con�g-

uration. From these de�nitions, the conditions for executing runtime change operation of

adding, removing, replacing and recon�guring were also formally speci�ed.

This paper presents three main contributions: the treatment of non-functional prop-

erties itself, their formalisation and their inclusion in the context of dynamic distributed

systems. The formal de�nition of correlation and compatibility allows the use of tools to

perform (semi-)automatic proofs. For instance, a proof may be performed to demonstrate

that a system is secure if its non-functional requirements are formally speci�ed. Addi-

tionally, it is useful in the identi�cation of conicts between non-functional properties of

architectural elements. In terms of dynamic systems, it creates an actual possibility of

including non-functional properties in the checking of the system integrity. None of the

current con�guration models and architectural infrastructures includes the veri�cation of

non-functional properties at runtime. The importance of this treatment was �rstly iden-

ti�ed in [Oreizy 98a] and is still an important and open research topic within dynamic

distributed systems.

In terms of future work, our next target is to incorporate this approach into an imple-

mentation environment. Essentially, it is necessary to de�ne how the conditions de�ned

in Section 4 may be included in an actual implementation environment like CL [Justo 99].

On the formal hand side, further investigations have already begun in order to incorpo-

rate the runtime treatment of non-functional properties into the ZCL formal framework

[Paula 98].

We also intend to apply our approach to other non-functional properties such as fault-

tolerance, availability and so on. Finally, an apparently very interesting point to be

considered, refers to the potential bene�ts of the use of architectural styles [Garlan 95]

in relation to the treatment of non-functional properties. Evidences of this fact may be

observed because, in opposite to functional properties, non-functional ones usually are

general properties belonging to many di�erent software systems. This fact is something

very similar to what is desired in the de�nition of an architectural style, i.e., try to �nd

similarities among families of software systems and to take bene�ts of these similarities

in the development.

References

[Allen 97] Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,

May 1997.

[Boehm 96] Barry Boehm and Hoh In. Identifying Quality Requirements Conicts. IEEE

Software, 13(2):25{35, March 1996.

[Chung 99] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-

functional Requirements in Software Engineering. Kluwer Academic Publishers,

1999.

[Filman 98] R. E. Filman. Achieving Ilities. In Workshop on Compositional Software Ar-

chitectures, Monterey, California, USA, January 1998.

[Garlan 95] David Garlan. What is Style? In Dagshtul Workshop on Software Architecture,

February 1995.

[Ghose 99] Aditya K. Ghose. Managing Requirements Evolution: Formal Support for

Functional and Non-functional Requirements. In International Workshop on

the Principles of Software Evolution (IWPSE'99), Fukuoka, Japan, July 1999.

[Justo 99] G. R. Ribeiro Justo and P. R. F. Cunha. An Architectural Application Frame-

work for Evolving Distributed Systems. Journal of Systems Architecture,

45(1999):1375{1384, 1999.

[Kotonya 98] Gerald Kotonya and Ian Sommerville. Requirements Engineering: Process and

Techniques, chapter 8, pages 190{213. John Wiley & Sons, Inc, 1998.

[Kramer 97] Je� Kramer and Je� Magee. Distributed Software Architectures. In Interna-

tional Conference on Software Engineering (ICSE'97), pages 633{634, Boston,

USA, 1997.

[Magee 95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed

Software Architecture. In Fifth European Software Engineering Conference,

September 1995.

[Medvidovic 00] Nenad Medvidovic and Richard N. Taylor. A Classi�cation and Comparison

Framework for Software Architecture Description Languages. IEEE Transac-

tions on Software Engineering, 26(1):70{93, January 2000.

[Mylopoulos 92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and Using

Nonfunctional Requirements: A Process-oriented Approach. IEEE Transaction

of Software Engineering, 18(6):483{497, June 1992.

[Oreizy 98a] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based Runtime

Software Evolution. In International Conference on Software Engineering

(ICSE'98), Kyoto, Japan, April 1998.

[Oreizy 98b] Peyman Oreizy. Issues in Modeling and Analyzing Dynamic Software Archi-

tectures. Department of Information and Computer Science, University of

California, Irvine, 1998.

[Oreizy 98c] Peyman Oreizy, David S. Rosenblum, and Richard N. Taylor. On the Role of

Connectors in Modeling and Implementing Software Architectures. Technical

Report 98-04, Department of Information and Computer Science, University of

California, Irvine, February 1998.

[Paula 98] Virginia C. C. Paula, George R. R. Justo, and Paulo R. F. Cunha. ZCL: a

Formal Framework for Specifying Dynamic Distributed Software Architectures.

In Ninth European Workshop on Dependable Computing (EWDC'9), Gdansk,

Poland, May 1998.

[Rosa 00] Nelson S. Rosa, George R. R. Justo, and Paulo R. F. Cunha. Incorporating

Non-Functional Requirements into Software Architecture. In Formal Methods

for Parallel Programming Theory and Applications (FMPPTA'2000), Lecture

Notes in Computer Science, 1800, pages 1009 { 1018, Cancun, Mexico, May

2000.

[Rosa 01] Nelson S. Rosa, George R. R. Justo, and Paulo R. F. Cunha. A Framework

for Building Non-functional Software Architectures. In 16th ACM Symposium

on Applied Computing, pages 141{147, Las Vegas, USA, March 2001.

[Shaw 96] Mary Shaw and David Garlan. Software Architecture : Perspectives on an

Emerging Discipline. Prentice Hall, 1996.

	711:
	712:
	713:
	714:
	715:
	716:
	717:
	718:
	719:
	720:
	721:
	722:
	723:
	724:
	725:
	726:
	cabecalho:
	seta:

