-~

=

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

Coordinating Mobile Agents through the Broadcast Channel*

Vera Nagamuta and Markus Endlerf
Department of Computer Science
IME-University of Sao Paulo, Brazil
{nagamuta,endler}@ime.usp.br

Abstract

In distributed applications based on mobile agents, coordination and synchronization of
the actions executed by a team of mobile agents are difficult tasks. The main difficulty comes
from the fact that coordination requires the agents to interact with each other in spite of
their dynamically changing locations.

In this paper we present a mechanism for coordinating mobile agents which handles the
problem of locating and addressing members in a group of mobile agents. This mechanism,
which we called Broadcast Channel, implements reliable broadcasts of messages to a group
of mobile agents, independently of their current locations.

Resumo

Em aplicacées distribuidas baseadas em agentes mdveis, a coordenagdo e a sincronizagao
das acgoes dos agentes méveis sdo tarefas complexas. A maior dificuldade é devido ao fato de
que agentes méveis podem mudar de endereco dinamicamente.

Neste artigo, apresentamos um mecanismo para coordenagdo de agentes méveis que trata
do problema da localizagdo de membros de um grupo de agentes mdveis. Este mecanismo,
que chamamos de Canal de Broadcast, implementa a difusdo de mensagens confidvel a um
grupo de agentes moveis independentemente de sua localizacdo corrente.

Keywords: mobile agent, coordination, broadcast

1 Introduction

Much work has been done in the design and implementation of execution environments for mobile
agents [24, 15, 23, 16], but until now only few environments provide higher-level services that
give support for the coordination among mobile agents. In our research we focus on exactly this
problem: How to support coordination for groups (teams) of mobile agents. This problem is
complex mainly due to the lack of a fixed address (location) of the agents.

Coordination is mainly required for distributed programs consisting of a team of cooperating
agents, where each agent is responsible for performing part of a common, global task. Teams of
mobile agents are likely to become the means to implement several distributed and networked
applications in the future [11]. For example, one possible application is the search for some
information in the network, to be performed in parallel by a group of agents and which are
supposed not to visit a same host more than once. Another application could be a network

*Partially supported by CAPES (Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior) and FAPESP
(Fundagéo de Amparo & Pesquisa do Estado de Sdo Paulo) - Grants No. 98/06138-2 (Project SIDAM) and No.
00/08742-6.

tMoving to: Departamento de Informética, PUC/Rio, Rua Marqués de Sao Vicente 225, CEP 22453-900 Rio
de Janeiro, endler@inf.puc-rio.br

669

N

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

management task, where a set of agents is in charge of executing a system-wide, consistent
reconfiguration of software modules of a distributed program.

Some coordination models for mobile agents have been proposed [15, 3, 7, 6], and have been
classified by Cabri et al [5], but all of them require either spatial or temporal coupling.

The main contribution of our work is a new approach for achieving coordination among mo-
bile agents, which is based on a mechanism which we called Broadcast Channel. The main char-
acteristic of our approach is that location management is entirely separated from the application-
specific inter-agent communications. With our approach, it is possible to program communica-
tions among agents without worrying about their current locations. Instead, it is the mecha-
nism’s responsibility to keep track of the current location of agents and to guarantee that the
broadcast messages are delivered to all agents in the team. Thus, our mechanism facilitates the
programming of coordinated activities (e.g. migrations) within teams of mobile agents.

The remainder of the paper is organized as follows: in section 2 we discuss some group
communication systems and compare them with our mechanism. In section 3, we present some
coordination models proposed for mobile agents. In section 4, we present our coordination
mechanism, its basic elements and functioning, and section 5 presents an informal description of
the protocol used to implement our mechanism. In section 6, we give an example showing how
to use our mechanism to achieve mutual exclusion among a set of agents. Section 7 discusses
results of some performance tests performed with our prototype implementation. Finally, in
section 8 we make some concluding remarks.

2 Related Work

Since the early 80’s much effort has been invested in the development of many sorts of group
communication mechanisms and services for distributed systems, because it was recognized that
they are a fundamental building block for many distributed protocols. Among many developed
group communication protocols and tools, the best-known are probably the early Isis [4], Horus
[21] and Transis [2], and the more recent ORB-based systems, such as Orbix+Isis [12], Electra [18]
and OGS [10]. Most of these works were focused on reliability and fault-tolerance, but reliable
group communication is also a fundamental service for coordination and consensus protocols.

As for Mobile Agents, only few works have incorporated group communication mechanisms
into the agent programming environments. To our knowledge, only Tacoma [14, 13] and Con-
cordia [25] provide some support for group communication in a mobile agent environment.

Project Tacoma focuses on operating system support for mobile agents. Its execution envi-
ronment consists of a Tcl interpreter that uses the Horus library. The advantage of the approach
is that Horus’s robustness and rich functionality is made available to mobile agent systems. The
drawback is a lack of an integrated language model which exposes the agent programmer to the
details of the Horus environment.

Concordia does not actually support group communication in the traditional sense, but in-
stead provides a base class called AgentGroupImpl which can be extended by the application
programmer with application-specific group operations. Invocations of these operations by mo-
bile agents are then forwarded to a group daemon executing at a specific host. Subclasses of
AgentGroupImpl are thus implemented as a centralized agent that is used for storing data sent
by the group of migrating agents, but which is unable to deliver messages to the agents asyn-
chronously.

Compared with these works, the Broadcast Channel is based on message diffusion, which has
the advantage of allowing asynchronous delivery of messages to the group members (the agents).
Moreover, the mechanism guarantees delivery of messages to all group members in the same
order, even if some agents are temporarily non-available due to a migration. Our mechanism
is also seamlessly integrated into the mobile agent execution model of ASDK (Aglets Software

670

NN

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

Development Kit [16]). Moreover, it handles all issues related to agent location transparently
to the the programmer, so that he (or she) can focus on the application-specific interaction
protocols in the agent groups.

Actually, in our work, as well as in Tacoma and Concordia, the main goal has been to support
agent cooperation rather than enhancing fault-tolerance. In the next section we present some
coordination models for mobile agents, showing the advantages and drawbacks of each of them
before presenting our mechanism.

3 Coordination Models for Mobile Agents

Cabri, Leonardi and Zambonelli [5, 6] presented a taxonomy of coordination models for mobile
agents based on spatial and temporal coupling, and defined four categories of coordination models:

e Direct Coordination
In this model, the mobile agents send messages directly to each other. This model re-
quires spatial coupling, because the sender must know the receiver’s identity and temporal
coupling, because the receiver must be active during the communication.

This interaction mechanism has been incorporated in most programming systems for mo-
bile agents, such as Sumatra [1] and AgentTcl [15]. In spite of its usefulness, it is not well
suited for coordinating mobile agents, mainly because it is based on peer-to-peer commu-
nication, requires the applications to track the current location of agents, and usually does
not give support for deferred message delivery, e.g. when the message destination is not
currently reachable.

o Meeting-oriented Coordination
In the meeting-oriented models, mobile agents interact through meetings points, i.e. the
place where a meeting can occur. In this model, the agents must enter a given meeting
point in order to communicate and synchronize with other agents. Meetings points impose
a locality constraint, since only local agents can participate in the meeting.

This model solves the problem of locating agents, found in direct coordination, but requires
agents to know the meeting point. Moreover, it requires synchronization among the agents,
e.g. they must be colocated at the meeting point during at a certain period of time in order
to be able to interact with each other. Examples of systems based on this coordination
model are Ara [20] and MOLE [3].

e Blackboard-based coordination
In this model, the agents interact through shared message repositories at each place, called
blackboards, i.e. the sender puts a message on the blackboard and the receiver can either
read or retrieve the message from the blackboard.

The main advantage of this model is the temporal uncoupling: messages are left on the
blackboard no matter where the corresponding receivers are or when they will read the
message. The drawback of backboard systems is the spatial coupling: the agents have to
visit the correct place and agree on common messages types and formats. Ambit [7] is an
example of a system using the blackboard-based coordination.

¢ Linda-like Coordination
Linda-like coordination is also based on a shared name-space, but unlike blackboards, it
uses an associative tuple space where information is organized as tuples and can be accessed
and retrieved through pattern-matching.

671

N

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

The main advantage of the Linda-like coordination is its temporal uncoupling and partial
spatial uncoupling. Although it does not require agent synchronization (e.g. meeting at a
certain place), the patterns used to access the tuple space embody some implicit knowledge
of the peer agent’s interaction requirements. MARS [6] implements a variant of the Linda-
based coordination, called reactive blackboard, where changes to the tuple space can be
automatically mirrored on several places.

Each of the above coordination models requires some form of temporal or spatial coupling
among agents, and most of them do not handle the problem of locating the peer agent or the
shared data space required for interaction. In our work we follow an approach to mobile agent
coordination based on message broadcasts within groups of agents. In this approach, spatial
coupling is present only as the requirement to be member of the group, and there is no temporal
coupling, meaning that all broadcast messages will eventually be delivered in the same order to
all group members.

4 Coordination via the Broadcast Channel

The choice of message broadcasting as the primary means for coordinating mobile agents was
motivated by our understanding that many synchronization and consensus algorithms are based
on message diffusion. The main idea was to design a mechanism supporting message diffusion
within groups of migrating elements, e.g. the mobile agents. We called this mechanism Broadcast
Channel [19)].

One of the components of the Broadcast Channel is an element called Broadcast Prozy (or
simply Prozy), which executes at a fixed address and acts as main representative of the group.
It is responsible for processing broadcast request issued by agents and making sure that all
members of the group do in fact receive the broadcasted message. Thus, for each team of
cooperating agents a Prory must have been instantiated at some place. The Prozy is similar
to the AgentGroup of Concordia [9], but it differs in that it has the additional function of
broadcasting messages to the group members and holding a local copy of the messages until all
agents have sent acknowledged its receipt.

Location management, i.e. tracking the agent’s locations, is also responsibility of the Broad-
cast Channel, and is done as follows. Fach of the places in this system is associated with a
domain, and within each domain there is a specific place, called reference place. While this ref-
erence place maintains the information about the current location (e.g. a place) of every mobile
agents in that domain, the Prozy only keeps track of the current domain where each mobile
agent is currently located. Thus, the reference places act as intermediates between the Proxy
and the mobile agents for locating and delivering broadcast messages. The main reason for using
such an architecture with this number of levels was our understanding that it is a good trade-off
between the overhead of message forwarding (by the intermediates) and the costs of handling
location updates due to agent migrations.

In order to perform its intended task, the Broadcast Channel requires an agent deployment
infra-structure, and makes the following assumptions about the execution environment:

1. there is no loss or corruption of agent-to-agent messages;

2. agents within a group start migrating only after the Broadcast Channel (representing the
group) has been properly instantiated and configured;

3. only static groups are supported, i.e. mobile agents cannot enter or leave a group dynam-
ically;

672

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

4. all components that implement the Broadcast Channel are trustful and always available,
i.e. there are no failures of hosts or problems with the agent infra-structure;

5. agents migrate only to place that are within a registered domain and migration takes a
finite time;

6. agents can migrate arbitrarily often, but eventually each agent must stay a sufficient long
period of time at a place;

7. message transmissions can have an arbitrary, but finite duration

If all of the above assumptions about the execution environment are met, the Broadcast
Channel guarantees that all broadcast messages are eventually delivered to all group members,
and that delivery is in total order.

4.1 Basic Concepts and Architecture

The Broadcast Channel implementation is based on the following elements:

e place: corresponds to the execution environment for mobile agents. While executing at a
place, an agent may: (a) interact with other agents at the same place; (b) send messages
to agents at other places or (c) request to be dispatched to another place. Each place must
be assigned to a single host, but a host can have several places.

e domain: is a set of places with a singular representative, called reference place.

e reference place: is the representative of the domain. It is a place with the following
additional functions: (a) hold references and forward messages to mobile agents within the
domain; (b) update the reference to an agent when it changes place, and (c) interact with
other reference places when agent migrates to another domain.

e Prozy: is a singular element with a fixed address, which is known by all reference places and
mobile agents participating in a group. The Prozy maintains information about the refer-
ence places, the mobile agents that are members of the group and the domains where they
are currently located. Its main responsibilities include: (a) broadcast of messages received
from an agent that is member of the group, (b) receive and keep track of acknowledgments
for each broadcasted message, (c) maintain an updated record of agent locations (in terms
of domains) and (d) re-transmit messages when inter-domain migration is notified.

e message: is the communication object of this mechanism. Each message has a unique
identifier given by the Prozy, and is composed of a CONTROL component, used by the
communication protocols within the Broadcast Channel , and the APPL component, which
carries application-specific data.

Figure 1 depicts the architecture of the Broadcast Channel. FEach rectangle represents a
domain (Dy, Da,..., Dy) with the corresponding reference places (RPy, RPs,..., RP,), represented
by hachured rectangles, a set of places (Pi, P,..., Pj), represented by white rectangles and a set
of mobile agents represented by circles. We assume that all the mobile agents in this figure are
already registered with the Prozy. Arrow () shows a mobile agent M A; sending a message to
the Prozy. In), this message is broadcasted by the Prozy to the reference places. In @), each
reference place is sending the message to places (within its domain) holding some agent, and in
@), the places are forwarding the message to the mobile agents. In (), the mobile agents are
sending an acknowledgment to the Prozy.

673

AW 19° Simposio Brasileiro de Redes de Computadores

) Floriandpolis, Santa Catarina, 21 a 25 de maio de 2001
_______________________ —
© .] @

RP. P4 RP2

,,,,,,,,,,,,,,,,,, ‘ @1 ®

Figure 1: System Architecture

The choice of this architecture has two main advantages. First, by managing location infor-
mation at two levels (at the Prozy and at each of the reference places) most of the updates related
to agent migrations can be handled by the local reference place and need not be send to the
Prozy. Only in the case of an inter-domain migration, the reference place of the involved domains
exchange some information and the Prozy is notified about this migration, making it possible
for it to update its information about the agent location, and to retransmit non-acknowledged
messages to the new reference place.

Second, this architecture decentralizes the task of message broadcasting, by delegating part
of the work to the reference place in each domain.

5 Informal Description of the Protocol and Messages

The protocol used to implement the Broadcast Channel is based on a set of control messages
exchanged among its elements (see Table 1).

The protocol also defines messages for the registration and de-registration of agents. In order
to be able to use the Broadcast Channel, the agent must first register itself with some Prozy at
creation time. This is done by sending a registration message (REGISTRY_AGENT) directly to the
Proxy. The Prozy announces the new agent registered to all reference places.

In order to ensure the reliable delivery of a message, the Prozy assigns it a unique identifier
MessagelD (e.g. a sequence number), which is also used to implement total ordering. Mobile
agents handle the messages according to the MessagelD and are able to detect missing or dupli-
cated messages.

When an agent moves to another place it may not receive some messages which were sent
during its migration, and which then have to be re-sent to the agent. For this, both the Prozy
and reference place store all sent messages until all agents (members of the group) acknowledge
their receipt, by sending message CONFIRM(AgentID) to the Prozy. When all acknowledgments
for a message have arrived, the Proxy removes the corresponding entry from its records and
sends a request to reference places to remove the message also from their messages queues.

5.1 Intra- and Inter-domain Migrations

There are two cases of migration: intra-domain and inter-domain migrations. In both cases it
is necessary to update the information about the current location of the migrated agent, and to
re-send messages.

Before a migration, the agent sends a GOING_TO(AgentID) to the place where it is currently
executing and dispatches itself to another place. When it reaches the new place, it sends an
ARRIVAL message indicating the reference place of the domain where it came from, the identifier of
the last handled message, and identifiers of messages not handled yet (called message repository).

674

~

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

19° Simposio Brasileiro de Redes de Computadores

The first argument is used to identify if the migration was intra- or inter-domain, while the second
and third are used to identify which messages must be re-sent to the agent.

After receiving message ARRIVAL the place sends a REGISTRY message (with the same argu-
ments of ARRIVAL plus its own identifier) to the reference place of the domain.

Through the message REGISTRY, the reference place is able to determine if the migration was
intra- or inter-domain. In the first case, the reference place updates the agent’s address locally,
checks which of the messages have not been received by the agent (comparing its local message
queue and the received message repository) and eventually re-sends messages to the agent. Thus,
in the case of intra-domain migration, the Prozy does not receive any notification.

Inter-domain migration requires more interactions among the reference places and the Prozy,
and in this case the Prozy is also responsible for the message retransmissions. When an agent
moves from the domain with reference place RP; to domain with reference place RP», the
RP; must delete its information about the agent. For this purpose, RP, sends a DEREGISTRY
message to inform RP; that the agent is leaving its previous domain. RP, also locally registers
the agent as pertaining to its domain and notifies the Proxy about the migration through a
UPDATE message carrying its own identification (i.e. the new reference place address). With
this message, the Prozy will update also its registry about the agent’s location (i.e. its current
domain), check for non acknowledged messages and re-send them to the new reference place.

Table 1 summarizes all control messages mentioned above, indicating the transmitted argu-
ments and its purpose, where MA stands for Mobile Agent, RP for reference place and P for
place.

GOING_TO AgentID MA — RP, | Notifies the P or RP where is located
MA —» P that it is migrating to other P or RP.
ARRIVAL AgentID MA — RP Notifies that the MA is entering to
oldRefPlaceAddr MA - P this P or RP.
msgRep
REGISTRY AgentID P —» RP Registers the MA in the corresponding
oldRefPlaceAddr migration.
newPlaceAddr, msgRep
DEREGISTRY AgentID RP — RP De-registers the MA from the old RP.
UPDATE AgentID RP — Proxy | Updates the RP of the MA on the
newRefPlaceAddr Proxy.
CONFIRM msglD, AgentID MA — Proxy | Confirm the receipt of a message.

Table 1: Broadcast Channel Control Messages

5.2 A Migration Scenario

In order to illustrate how the Broadcast Channel handles message retransmissions caused by
inter- and intra-domain migrations, Figure 2 shows a scenario from the moment a broadcast
message is sent to a mobile agent, until the acknowledgment from the agent is received by the
Proxy. For the sake of simplicity, this scenario assumes a group with a single mobile agent.

For this scenario, we assume the existence of two domains D; and Dz, where the first has
reference place RP;, e and places P; and P,, and the second has reference place RP, and places
respectively P35 and Py. Suppose that the mobile agent (MA) is initially located at place Py, has
not received any messages before the Prozy “broadcasts” message m1, and that before it receives
this message from P; it migrates to place P, (intra-domain migration - (I)). When RP; receives
the REGISTRY(ID,RP;,P>,$) message, it identifies that the migration is intra-domain (comparing
the first argument) and that the agent did not receive any message yet (since the last argument,
is empty) and then, re-sends m; .

Now let’s assume that meanwhile the agent migrated to place Ps (in @), of domain Ds. In

675

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

ml

proxy

update(ID,RP2)

S A I
R\ /A

regi7¢(lD,RP1.P2,<D) confirm(m1,ID)

P2 deregistry(ID)

— arrivaI(ID,.R'/I:l\,;) going_to(ID) 2
[RP2 m
@ L
02| ps [_\‘ registry(ID,RP1,P3,0) going_to(ID)

&
arrival(ID,RP1,0)

registry(ID,RP2,P4,m1)

P4

arrival(ID,RP2,m1)

Figure 2: Example of Inter- and Intra-domain Migrations

this case, RP; identifies this migration as inter-domain migration and notifies the Prozxy and RP;.
When the Prozy receives message UPDATE (in 3)), it checks for non-acknowledged messages (in
this case m1), and re-sends it, now to reference place RP,. The agent finally receives the message
and sends a CONFIRM(m1,ID) message to the Prozy. Finally, the agent moves to place Py, but
since the message has been acknowledged, it is not sent again.

6 Example

In this section we give an example showing how the Broadcast Channel can be used to solve
a specific coordination problem, i.e. mutual exclusion, and describe the development steps we
followed for the implementation of this example.

An example for agent coordination requiring mutual exclusion could be a team of agents in
charge of visiting a set of places, and where one wants to avoid that a place is visited by more
than one agent. In order to achieve this coordination, before migrating to a new place, agent
would have to notify all other agents about the place it plans to visit next. Such notifications
could be naturally implemented with the Broadcast Channel.

Yet another example would be if a team of agents (say 71) is supposed to find any member
of another team of agents (7»), and where at most one pair of different agents should start
an interaction. This sort of restriction may be important for applications where inter-team
transactions must only be performed once, and where individual agents have the autonomy to
perform actions without any further query to a central database.

In order to test our mechanism, we used Lamport’s well-known mutual exclusion algorithm
[17] (based on logic clocks) and developed a simple agent-based application program that im-
plements this algorithm using the Broadcast Channel. Although Lamport’s algorithm is quite
simple, and despite the fact that several optimizations of it have been suggested [22, 8], it was
well suited for our purpose, since it is based on broadcasts. In Figure 3 is shown part of the
pseudo-code for the agents, structured as statements of the form event => action.

The main idea of the original algorithm is as follows. Each of the N process maintains a
Lamport timestamp (a counter) and an array status of size N, where element status|i] contains the
latest message (either of type REQ, ACK or REL) received from process i, with the corresponding
timestamp of the sender. Whenever a process requires the mutual exclusiveness, it broadcasts a
REQ message to all processes, including itself. The receipt of this message is acknowledged by
each other process with an ACK message and its local timestamp. Thus, REQs and ACKs sent

676

-~

=

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

from any process are stored in the corresponding entries of status, at every process.

Whenever a process gives up its right for exclusiveness, it broadcasts a REL message with
its identifier and current timestamp, and array status at all processes are updated accordingly.
Then, every process checks the elements in status to find out which is the pending request with
the oldest (i.e. lowest) timestamp', and the corresponding process takes its exclusive access
right. Since all processes maintain their status arrays perfectly synchronized, and local clocks
are updated according to Lamport’s method, the algorithm in fact implements mutual exclusion.

In order to use Lamport’s algorithm with the Broadcast Channel we made the following
minor adaptations: One of the Prozy’s arguments is the size IV of the group, i.e. the number of
mobile agents participating in the mutual exclusion algorithm. As soon as the Proxy receives N
registration messages from the participants, it broadcasts the list of all agentIDs to all agents,
which perform an identical mapping from agentlDs to status indices. After the initial set-up, all
mobile agents use the Broadcast Channel as the only means of communication with the other
agents. Each broadcast request for the Prozy is a string of the form (TYPE, ID, TS), where TYPE
is either REQ, REL or ACK, ID is the agent’s Id and TS is its current timestamp. Notice these
are the application specific messages, as opposed to the CONTROL messages used to control
the mechanism per se. In order to test the mutual exclusion, we also implemented a stationary
resource agent, which logs all accesses to it.

Agent {
array status[N]; // N: size of mobile agents group
int ts=1; // local clock
BOOLEAN granted=FALSE; // indicates the access permission to the resource
int id; // the agent’s identifier (values between 1, N)

initialize_status(int N) {
// initializes the array status inserting REL with ts=0 for all elements
}
boolean min(int i) {
// returns TRUE if the element at the indez i of array status has the lowest ts of the array
}
OnRequest => {
// sends (REQ,id,ts+1) to Prozy if status[id] <> 'REQ’
}

OnRelease => {
// sends (REL,id,ts+1) to Prozy if status[id] = 'REQ)’
granted := FALSE; // the agent has no more access permission
}
OnReceive(m) => {
ts := max(ts,m.TS) + 1;
if(m. TYPE = *REQ’) {
status[m.ID] := m; // insert the REQ message at the position corresponding to the sender
// sends (ACK,id,ts+1) to Prozy
}
else if(m.TYPE = ’REL’) {
status[m.ID] := m;
}
else if(m.TYPE = °ACK’) { // if the message is an ACK and the previous one from the same
if (status[m.ID] <> ’REQ’) // sender is not a REQ, ACK is stored
status[m.ID] := m;
}
// verifies if the agent did a REQ and if the ts is the lowest
if(status[id] = *REQ’> AND min(id) AND NOT granted)
granted := TRUE; // obtain the access permission

'In the case of requests with same timestamp, the algorithm gives higher priority for the requests originated
from the process with lower process-Id.

677

10

20

30

N

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

Figure 3: Pseudo-code for the agent

For the implementation of this and other examples [19], we followed the sequence of steps
below:

1. Define the application specific messages (in this case, messages REQ, REL and ACK);

2. Extend the class Agent (of our mechanism API) with application specific attributes and
functions (in this example we created two kinds of agents: a request agent and a resource
agent);

3. Extend the class Proxy;

4. Define and create the infrastructure of the Broadcast Channel (section 7) and instantiate
the agents developed in step (2);

Through our implementation of this mutual exclusion application, we confirmed that at each
moment only one request agent accessed the resource agent, and hence showed that all broadcast
messages issued via the Broadcast Channel were received and handled correctly.

7 Prototype Implementation and Tests

The Broadcast Channel was implemented using the Aglets Software Development Kit (ASDK)
[16], an agent programming environment developed at the IBM Tokyo Research Laboratory.
The main elements of the Broadcast Channel infra-structure: the Prozy, reference places and
places are all implemented as stationary aglets® (i.e. classes Proxy, Place and ReferencePlace
are extensions of ASDK’s Aglet class®).

These elements are instantiated, configured and dispatched to hosts by an aglet called
InfrastructureLauncher, which provides a graphical interface to the user. Through this inter-
face, the user creates the places, chooses at which host they will execute, defines the domains and
the locations of the Prozy and the reference places. After the set up of the Broadcast Channel
configuration is finished, it is expected to remain fixed, i.e. no places or reference places can be
added or removed. Finally, mobile agents can be instantiated at the various places and their
first action will be their registration with a Prozy.

In order to use the Broadcast Channel for a specific application, classes Proxy and Agent
have to be extended by the programmer, in order to add application-specific attributes and
functions.

7.1 Tests

In this section we present the results of some tests that aimed at measuring the overhead incurred
by the Broadcast Channel both for stationary agents, and for two patterns of agent migrations.
We called the first ones static tests and the latter dynamic tests. In all tests, we measured the
time from the moment the Prozy broadcasts a message until it receives the last acknowledgment
for the message. The tests were run on SparcStations (60-167 MHz) executing Solaris 5.7 as
clients in our network. It is worthwhile to note that the tests were not aimed at providing a

*In ASDK, agents are programmed in Java and are called aglets (agent+applet).
3The source code of the Broadcast Channel is available at http://www.ime.usp.br/~nagamuta/bchannel.html/.

678

-~

=

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

complete and detailed picture of the mechanism’s performance, but only to identify which factors
do most contribute to the mechanism’s overhead.

In the static tests we compared the performance of the Broadcast Channel with that of a
simple ASDK program which broadcasts messages to a set of stationary agents, by using ASDK’s
message passing facility (method sendAsychMessage). We called it direct sending. The goal with
these tests was to assess how much overhead the message forwarding within Broadcast Channel
produces for different numbers of agents and domains.

Figure 3(a) represents the result of a static test done with 4 hosts, 9 places and 3 domains
(for the Broadcast Channel).

We considered groups of mobile agents with 3, 6, 12, 24, 36 and 48 agents, and we took the
mean value from measures for 60 broadcasts for each group size.

As expected, and shown in Figure 3(a), the time required for direct sending is lower than the
one using Broadcast Channel, but the second is always less than the double of the first one.

4 hosts, 9 places
10000 Broadcast Channel

10000

Direct Sending -------

8000 8000

6000 - 6000

Time(ms)
Time(ms)

4000 4000

Broadcast Channel

S =7 2 hosts, 6 places
2000 - 25 4 hosts, 6 places -~
4 hosts, 9 places -~

2000 -

1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
Number of agents Number of agents

(a) (b)
Figure 3: (a) Static test with 9 places and (b) Comparison

The same test was done with 2 hosts, 6 places and 4 hosts, 6 places, considering the same
number of agents. The result of the direct sending for these three cases was almost the same
but, as shown in Figure 3(b) in which we have just the results for the Broadcast Channel, we
can see that the best performance of the Broadcast Channel is achieved when we have a greater
number of hosts and places. This is due to the descentralized processing within the Broadcast
Channel, and the advantages of having less number of agents per domain.

In the dynamic test we defined a fixed, but arbitrary, itinerary for each mobile agent, and
compared two different stay periods (i.e. the period of time each agent stays at a place). Thus,
a short stay period means high migration frequency, and vice-versa. We compared the times
required by the Broadcast Channel to broadcast a number of messages to different numbers of
agents when their stay times are high and when they are low. In these tests, we used a single
stationary agent whose only task was to periodically request a broadcast to the group of mobile
agents.

The goal of these dynamic tests was to assess how much the mechanism’s performance
degrades when the migration frequency increases. Although we did tests only for two stay
periods (8 and 25 seconds), it was sufficient to notice that it takes more than the double of
time to deliver (and get acknowledgments for) all messages when a significant number of agents
(more than 15) are frequently migrating among six places within three domains (as shown in
Figure 4). The main reason for such increase in message delivery times is the fact that due to

679

.

-

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

the frequent migrations, much more messages have to be re-transmitted, either by the Prozy or
by the reference places .

80000 [

70000

60000 [

50000

40000 -

Time(ms)

30000 [

20000

6 places

TP = 8 seconds
TP =25seconds --------

10000

1 1 1 1 1
0 5 10 15 20 25 30 35
Number of agents

Figure 4: Dynamic test with 6 places

We also measured the delivery times for the same two stay periods (8 and 25 seconds), but
with a configuration of nine places (instead of six places) and three domains. Figure 5 shows that
with this configuration, the increase of delivery times is much slower. This is probably caused
by the fact that since in this case we have more places per domain, there is a lower probability
of occurrence of the more costly inter-domain migrations.

80000 [

70000

60000 [

50000

Time(ms)

40000 [

30000
4,)("
20000
9 places

TP = 8 seconds
TP =25seconds --------

10000 peeee X

" 1 1 1 1
0 5 10 15 20 25 30 35
Number of agents

Figure 5: Dynamic test with 9 places

Based on the results of both sorts of tests, we noticed that the Broadcast Channel achieves
best performance when the frequency of all agent migrations within a group is relatively low,
and when the probability of inter-domain migrations is much lower than that of intra-domain
migrations.

We are aware that in order to get more accurate information about the Broadcast Channel
performance, much more tests would be required. In the future we plan to perform also some
tests where places and reference places are shared by more than one Prozy , hoping to identify
places where the mechanism can be optimized.

8 Conclusion

In this paper we presented a coordination mechanism called Broadcast Channel, which offers an
alternative way to coordinate groups of mobile agents. The main purpose of the mechanism is to

680

-~

=

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

facilitate the task of programming teams of cooperating mobile agents. The main benefit is that
location management is completely separated from inter-agent communication. We implemented
a prototype of the Broadcast Channel IBM’s Aglets Software Development Kit (ASDK) [16].

When comparing our mechanism with other coordination models for mobile agents (see
section 3), we think it has the following advantages:

e There is no need for the agents participating in a group to know each other’s identity
or current location. Instead, all messages are broadcasted to all agents registered with a
Broadcast Channel regardless of their current location, and are eventually delivered even
if an agent is migrating between places;

e The mobile agents do not need to be synchronized or be located at the same place to
interact with each other, as in the meeting-oriented coordination model;

e Because the Broadcast Channel requires only a message passing mechanism, it can be
implemented on the top of most mobile agent execution environments, given that the
assumptions listed in section 4 are all satisfied.

The main drawbacks of our mechanism are the following;:

e In order to use the Broadcast Channel a mobile agent must know the address of the Prozy
corresponding to the group of which it should be a member. This information must be
provided by the user at the agent instantiation;

e Each broadcast request to the Broadcast Channel causes an additional overhead due to
message retransmission, as shown by the static tests. Agent migrations are the major cause
of the overhead produced by the Broadcast Channel, specially inter-domain migrations,
since they require both more control messages and the retransmission by a central element.

Despite these problems, we believe the Broadcast Channel to be an useful tool for developing
cooperating teams of mobile agents, mainly because the programmer has not to deal with the
issue of tracking the agents locations. However, the Broadcast Channel might be useful mainly
for applications with low performance requirements, where domains have many places, and where
migrations are not so frequent.

As future steps, we plan to use our mechanism for a real-world agent-based applications,
such as network-wide software configuration. Moreover, we plan to re-evaluate our design and
protocols, looking for possible optimizations.

References

[1] A. Acharya, M. Ranganathan, and J.Saltz. Sumatra: a Language for Resource Aware
Mobile Programs. Mobile Object Systems, Lecture Notes in Computer Science, Spring
Velarg(D)(1222):111-130, February 1997.

[2] Y. Amir, D.Dolev, S.Kramer, and D.Malki. Transis: A Communication Subsystem for
High Availability. Tech. Report TR CS91-13, Computer Science Dept., Hebrew University,
Jerusalem, 1991.

[3] J. Baumann, F. Hohl, K. Rothermel, and M. Strasser. Mole - Concepts of a mobile agent
system. World Wide Web, 1(3):123-137, 1998.

[4] K.P. Birman and R.V. Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, Los Alamitos, 1994.

681

AW 19° Simposio Brasileiro de Redes de Computadores

S anog Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

[5] G. Cabri, L. Leonardi, and F. Zambonelli. How to Coordinate Internet Applications based
on Mobile Agents. IEEE Seventh International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE), June 1998.

[6] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agents Co-
ordination. In Proc. of the 2. International Workshop on Mobile Agents, number 1477 in
Lecture Notes in Computer Science, pages 237-248. Stuttgart(D), September 1998.

[7] L. Cardelli and D. Gordon. Mobile ambients. LNCS, Spring-Verlag(D)(1378):140-155, 1998.

[8] O. Carvalho and G. Roucariol. On Mutual Exclusion in Computer Networks. Communica-
tions of the ACM, 26(2):146-147, February 1983.

[9] A. Castillo, M. Kawaguchi, N. Paciorek, and D. Wong. Concordia as enabling technology for
cooperative information gathering. In Proc. of Japanese Society for Artificial Intelligence
Conference, June 1998.

[10] P. Felber. The CORBA Object Group Service: A Service Approach to Object Groups in
CORBA. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1998. Num-
ber 1867.

[11] Michael N. Huhns. Agent Teams: Building and Implementing Software. IEEE Internet
Computing, 4(1):93-95, February 2000.

[12] Isis Distributed Systems Inc. and IONA Technologies Ltd. Orbix+isis programmer’s guide,
1995. Document D070-00.

[13] Dag Johansen, Keith Marzullo, Fred B. Schneider, Kjetil Jacobsen, and Dmitrii Zagorodnov.
NAP: Practical Fault-Tolerance for Itinerant Computations. In Proc. of the 19th IEEFE
International Conference on Distributed Computing Systems (ICDCS’99), May 1999. Also
Technical Report TR98-1716, Dep. Computer Science, Cornell University.

[14] Dag Johansen, Fred B. Schneider, and Robbert van Renesse. Mobile Agents and Process
Migration - An edited Collection, chapter What TACOMA Taught Us. Addison Wesley,
1998.

[15] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and G. Cybenko. Agent TCL: Targeting the
Needs of Mobile Computers. IEEFE Internet Computing, 1(4):58-66, July 1997.

[16] D.B. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

[17] L.Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communi-
cations of the ACM, 21(7):558-565, July 1978.

[18] Silvano Maffeis. Run-Time Support for Object-Oriented Distributed Programming. PhD
thesis, University of Zurich, Zurich, 1995.

[19] Vera Nagamuta. Coordenagao de Agentes Méveis através do Canal de Broadcast. Master’s
thesis, IME, University of Sao Paulo, R. do Matao 1010, 05508-900 Sao Paulo, Brazil,
November 1999.

[20] H. Peine and T. Stolpmann. The Architecture of ARA Plataform for Mobile Agents. In
Proceedings of the First International Workshop on Mobile Agents, number 1219 in Lecture
Notes on Computer Science, pages 50-61, Berlin(D), April 1997.

682

.

-

AW 19° Simposio Brasileiro de Redes de Computadores

SBRC

2001 Florianopolis, Santa Catarina, 21 a 25 de maio de 2001

[21]

[22]

[23]

[24]

[25]

R.v. Renesse, K. Birman, and S. Maffeis. Horus: A Flexible Group Communication System.
Comm. of the ACM, April 1996.

G. Ricart and A.K.Agrawala. An Optimal Algorithm for Mutual Exclusion in Computer
Networks. Communications of the ACM, 24(1):9-17, January 1981.

K. Rothermel and R. Popescu-Zeletin. Mobile Agents. Number 1219 in LNCS. Springer
Verlag, 1997.

G. Susilo. Infrastructure for Advanced Network Management based on Mobile Code. Tech-
nical Report SCE-97-10, Systems and Computer Engineering, Carleton University, June
1997.

David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, and Bill
Peet. Concordia: An Infrastructure for Collaborating Mobile Agents. In Proc.
First International Workshop on Mobile Agents 97 (MA’97), Berlin, April 1997.
www.meitca.com/HSL /Projects/concordia/documents.htm.

683

	cabecalho:
	seta:
	n pag:
	2:
	3:
	4:
	5:
	6:
	7:
	9:
	8:
	10:
	11:
	12:
	13:
	14:
	15:

