
Atomic Multicast Protocols for Reliable CAN Communication

Luís Miguel Pinho
Department of Computer Engineering,

ISEP, Polytechnic Institute of Porto
Rua São Tomé, 4200-072 Porto, Portugal

E-mail: lpinho@dei.isep.ipp.pt

Francisco Vasques
Department of Mechanical Engineering

FEUP, University of Porto
R. Dr. Bernardino de Almeida, 4200-465 Porto, Portugal

E-mail: vasques@fe.up.pt

Abstract

The Controller Area Network (CAN) is a fieldbus network with real-time capabilities. It is

generally considered that CAN guarantees atomic multicast properties, through its extensive

error detection/signalling mechanisms. However, there are error situations where messages

can be delivered in duplicate by some receivers or delivered only by a subset of the receivers.

This misbehaviour may be disastrous if the CAN network is used to support replicated

applications.

In order to prevent such inconsistencies, a set of atomic multicast protocols is proposed,

taking advantage of CAN synchronous properties to minimise its run-time overhead. This

paper presents such set of protocols, focusing on the timing analysis of the supported reliable

real-time communication.

Keywords: Distributed Systems: Algorithms; Real-Time; Fault-Tolerance.

Resumo

É geralmente considerado que as propriedades de difusão atómica em redes CAN (Controller

Area Network) são garantidas através dos mecanismos existentes de detecção e sinalização de

erros. No entanto, existem situações para as quais se verifica que uma mensagem pode ser

entregue em duplicado em alguns dos seus consumidores ou ser entregue unicamente num

subconjunto de consumidores. Estas irregularidades do protocolo CAN podem ter

consequências catastróficas, caso este seja utilizado para suportar aplicações replicadas.

Este artigo propõe um conjunto de protocolos para serem utilizados em redes CAN, que

garantem as propriedades de difusão atómica de mensagens. A análise temporal dos

protocolos propostos evidencia o seu correcto funcionamento temporal, nomeadamente em

termos de garantia de tempo de resposta limitado superiormente.

Palavras Chave: Sistemas Distribuídos: Algoritmos; Tempo-Real e Tolerância a Falhas;

194

1. Introduction

Controller Area Network (CAN) [1] is a fieldbus network suitable for small-scale Distributed

Computer Controlled Systems (DCCS), being appropriate for transferring short real-time

messages. The CAN protocol implements a priority-based bus, with a carrier sense multiple

access with collision avoidance (CSMA/CA) MAC. In this protocol, any node can access the

bus when it becomes idle. However, contrarily to Ethernet-like networks, the collision

resolution is non-destructive, in the sense that one of the messages being transmitted will

succeed.

This priority-based medium access control enables the use of CAN as the communication

support for real-time distributed systems. Several studies on how to guarantee the real-time

requirements of messages in CAN networks are available (e.g. [2]), providing the necessary

pre-run-time schedulability conditions for the timing analysis of the supported traffic, even

for the case of networks disturbed by temporary errors [3].

CAN networks also have extensive error detection/signalling mechanisms, which impose the

retransmission of the message when an error is detected. However, it is known that these

mechanisms may fail when an error is detected in the last but one bit of the frame [4]. This

problem may cause messages to be delivered in duplicate by some receivers (inconsistent

message duplicate), or, if the sender fails before re-transmitting the message, to the message

being delivered only by a subset of the receivers (inconsistent message omission), leading to

inconsistencies in the supported applications.

This misbehaviour may be disastrous if the CAN network is used to support replicated

applications, since these applications require that replicated components provide the same

results, when they are correct. Thus, the consistency of the delivered messages must be

guaranteed by atomic multicast mechanisms, which guarantee that messages are delivered by

all (or none) of the component replicas’ and that they are delivered only once. Furthermore,

there is the need to agree also in the order by which broadcasts are delivered, and to

consolidate values from replicated inputs. Thus, it is necessary to provide protocols that

guarantee these properties in spite of CAN inconsistencies, while at the same time preserving

CAN real-time characteristics (thus allowing the offline analysis of the messages’ response

time).

In this paper, the timing characteristics of the provided reliable protocols are analysed,

demonstrating that the real-time characteristics of CAN are preserved. The paper is organised

as follows. The following Section presents some work related to reliable communication in

CAN. Section 3 presents the protocols used to provide reliable real-time communication in

CAN. The timing analysis of these protocols is then described in Section 4, developing the

necessary pre-run-time schedulability conditions for the timing analysis of reliable real-time

195

communication in CAN networks. Finally, a numerical example is presented in Section 5 and

some conclusions are outlined in Section 6.

2. Related Work

The use of CAN networks to support DCCS applications requires not only time-bounded

transmission services, but also the guarantee of consistency for the supported applications. In

spite of the extensive CAN built-in mechanisms for error detection and recovery [1], there are

some known reliability problems [4], which can lead to an inconsistent state of the supported

applications.

Such misbehaviour is a consequence of different error detection mechanisms at the transmitter

and receiver sides. A message is valid for the transmitter if there is no error until the end of

the transmitted frame. If the message is corrupted, a retransmission is triggered according to

its priority. For the receiver, a message is valid if there is no error until the last but one bit of

the received frame, being the value of the last bit treated as 'do not care'. Thus, a dominant

value in the last bit does not lead to an error, in spite of violating the CAN rule stating that the

last 7 bits of a frame are all recessive.

Error detected
Receiver rejects

the frame

r dReceiver A

Error detected
Sender schedules frame
for retransmission

‘Do not care’ bit
Receiver accepts

 the frame
At this moment, Receiver A has accepted the frame, while
Receiver B has rejected it
- If the sender retransmits the frame, then Receiver B will have

it, while Receiver A will have a duplicate frame
(inconsistent message duplicate)

- If the sender fails before the retransmission, then Receiver B
will never have the frame (inconsistent message omission)

r dSender

d dReceiver B

Figure 1. Inconsistency in CAN.

In Figure 1, the Sender node transmits a frame to Receivers A and B. Receiver B detects a bit

error in the last but one bit of the frame. Therefore, it rejects the frame and sends an Error

Frame (requesting the frame retransmission) starting in the following bit (last bit of the

frame). As for receivers the last bit of a frame is a ‘do not care’ bit, Receiver A will not detect

the error and will accept the frame. However, the transmitter re-schedules the frame, as there

was an error. As a consequence, Receiver A will have an inconsistent message duplicate. The

use of sequence numbers in messages can easily solve this problem, but it does not prevent

messages from being received in different orders, thus not guaranteeing total order of atomic

multicasts. On the other hand, if the Sender fails before being able to successfully retransmit

the frame, then Receiver B will never receive the frame, although Receiver A has delivered it.

196

This situation causes an inconsistent message omission. This is a more difficult problem to

solve, than in the case of inconsistent message duplicates.

In [4], the probability of message omission and/or duplicates is evaluated, in a reference

period of one hour, for a 32 node CAN network, with a network load of approximately 90%.

Bit error rates were used ranging from 10-4 to 10-6, and node failures per hour of 10-3 and 10-4.

For inconsistent message duplicates the results obtained were from 2.87 x 101 to 2.84 x 103

duplicates per hour, while for inconsistent message omissions the results ranged from 3.98 x

10-9 to 2.94 x 10-6 omissions per hour. These values demonstrate that for reliable real-time

communications, CAN built-in mechanisms for error recovery and detection are not

sufficient.

Thus, the use of CAN to support reliable real-time communications must be carefully

evaluated and appropriate mechanisms must be devised. In [4], a set of fault-tolerant

broadcast protocols is proposed, which solve the message omission and duplicate problems.

However, such protocols do not take full advantage of the CAN synchronous properties,

therefore producing a greater run-time overhead under normal operation. For instance, in the

best-case (data message with 8 bytes), the overhead of the total order protocol (TOTCAN) is

approximately 150%. The problem is that, in order to achieve ordered multicasts, each

receiver must re-transmit an ACCEPT message, even if there is no error. Other protocols in

the set do not guarantee total order. Therefore, the overheads introduced by these protocols

make them very inefficient.

Another approach would be to use hardware-based solutions, such as the one described in [5].

This approach is based in a hardware error detector, which automatically retransmits

messages that could potentially be omitted in some nodes. It solves the inconsistent message

omission problem, but, in order to achieve order, it is necessary to restrict hard real-time

messages to never compete for the bus, in a time-slotted approach.

3. Reliable CAN Communication

Relying on CAN frames being simultaneously received in every node, the proposed protocols

are based in delaying the deliver of a received frame for a specific (bounded) time. The

approach is similar to the ∆-protocols [6], where, in order to obtain order, message delivery is

delayed for a specific time (∆). In the proposed approach, delivery delays are evaluated on a

stream by stream basis, where messages are delayed accordingly to their worst-case response

times, considering the case of a network disturbed by inaccessibility periods [2] [3]. It is also

assumed that clocks are approximately synchronised by an appropriated algorithm [7], to

guarantee both deterministic execution of replicated components [8] and the correct

evaluation of the delivery delays.

197

3.1 Failure Assumptions

In the proposed architecture it is assumed that:

- A single message can be disturbed by at most kdup duplicates. As the probability of an

inconsistent message duplicate is approximately 10-4 (the transmission of 2.87 x 107

messages per hour results in, at most, 2.84 x 103 duplicate messages [4]), it is not foreseen

the necessity of a kdup greater than 2.

- During a time T, greater than the worst-case delivery time of any message in the network,

at most one single inconsistent message omission occurs. Considering the existence of

3.98 x 10-9 to 2.94 x 10-6 inconsistent message omissions per hour [4], the occurrence of a

second omission error in a period T of, at most, several seconds has an extremely low

probability.

- There are no permanent medium faults, such as the partitioning of the network. This type

of faults must be masked by appropriate network redundancy schemes.

3.2 Atomic Multicasts

The proposed architecture provides several atomic multicast protocols with different failure

assumptions and different behaviours in the case of errors. The IMD protocol provides an

atomic multicast that just addresses the inconsistent message duplicate problem. The 2M

protocol provides an atomic multicast addressing both inconsistent message duplicates and

inconsistent message omissions, where messages are not delivered at any node in an error

situation.

The IMD protocol (Figures 2 and 3) provides an atomic multicast that just addresses the

inconsistent message duplicate problem. In order to guarantee that the duplicates are correctly

managed, every node, when receiving a message marks it as unstable, tagging it with a tdeliver

(current time plus δdeliver). If a duplicate is received before tdeliver, such duplicate is discarded

and tdeliver is updated (since in a node not receiving the original message, tdeliver refers to the

duplicate).

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Automatic
Retransmission

δdeliver Deliver
δdeliver

Duplicated
Messages

Error detected and
signalled by Receiver 3 but
not by Receivers 1 and 2

Fig. 2. Inconsistent message duplicate (IMD protocol).

198

Transmitter

1: atomic_multicast (id, data):
2: send (id, data)

3: when sent_confirmed (id, data): -- if it is registered for this msg

4: receivedMsgSet := receivedMsgSet ∪ ∪ msg(id,data)
5: tdeliver(id) := clock + ddeliver(id)

6: deliver:
7: for all id in receivedMsgSet loop
8: if tdeliver(id) < clock then
9: state(id) := delivered
10: end if
11: end loop

Receiver

1: when receive (id, data):

2: if id ∉ ∉ receivedMsgSet then
3: receivedMsgSet := receivedMsgSet ∪ ∪ msg(id,data)
4: state(id) := unstable
5: end if
6: tdeliver(id) := clock + ddeliver(id)

7: deliver:
8: for all id in receivedMsgSet loop
9: if state(id) = unstable and tdeliver(id) < clock then
10: state(id) := delivered
11: end if
12: end loop

Fig. 3. IMD Protocol Specification

The 2M protocol (Figures 4 and 5) addresses both the inconsistent message duplicates and

inconsistent message omissions where for the case of inconsistent message omissions, it

guarantees that either all or none of the receivers deliver the message. For the latter, not

delivering a message is equivalent to a transmitting node crash before sending the message.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message
Confirmation

δconfirm

δdeliver

Abort

Transmitter fails
before retransmiting

Receiver 3
signals the error

Fig. 4. Inconsistent message omission while sending the confirmation (2M protocol).

The 2M protocol is based on the transmission of a confirmation for every multicast sent in the

bus, and, if needed, the transmission of related aborts. A node wanting to send an atomic

multicast transmits the data message, followed by a confirmation message, which carries no

data. A receiving node before delivering the message, must receive both the message and the

confirmation. If it does not receive the confirmation before a specific tconfirm, it multicasts the

corresponding abort frame. This implies that several aborts can be simultaneously sent (at

most one from each receiving node that is interested in that particular message stream). A

199

message is only delivered if the node does not receive any related abort frame until after a

specific tdeliver (as a node receiving the message but not receiving the confirmation does not

know if the transmitter has failed while sending the message or while sending the

confirmation).
Transmitter

1: atomic_multicast (id, data):
2: send (id, message, data)
3: send (id, confirmation)

4: when sent_confirmed (id, message, data): -- if interested in the msg
5: receivedMsgSet := receivedMsgSet È msg(id,data)
6: state(id) := confirmed
7: tdeliver(id) := clock + ddeliver(id)

8: deliver:
9: for all id in receivedMsgSet loop
10: if state(id) = confirmed and tdeliver(id) < clock then
11: state(id) := delivered
12: end if
13: end loop

Receiver

1: when receive (id, type, data):
2: if type = message then

3: if id ∉ ∉ receivedMsgSet then
4: receivedMsgSet := receivedMsgSet ∪ ∪ msg(id,data)
5: state(id) := unstable
6: end if
7: tdeliver(id) := clock + ddeliver(id) -- duplicate update
8: tconfirm(id) := clock + dconfirm(id)
9: elsif type = confirmation then
10: state(id) := confirmed
11: elsif type = abort then

12: if id ∈ ∈ receivedMsgSet then
13: receivedMsgSet := receivedMsgSet – msg(id)
14: end if
15: end if

16: deliver:
17: for all id in receivedMsgSet loop
18: if state(id) = confirmed and tdeliver(id) < clock then
19: state(id) := delivered
20: elsif state(id) = unstable and tconfirm(id) < clock then
21: send (id, abort)
22: receivedMsgSet := receivedMsgSet – msg(id)
23: end if
24: end loop

Fig. 5. 2M Protocol Specification

When a message is received, the node saves it in the set of received messages, and marks it as

unstable, tagging it with the tconfirm and tdeliver. A node receiving a duplicate message discards

it, but updates both tconfirm and tdeliver. As the data message has a higher priority than the related

confirmation, then all duplicates will be received before the confirmation. Duplicate

confirmation messages will always be sent before any abort (confirmation messages have

higher priority than related abort messages), thus they will confirm an already confirmed

message. No update is performed in this case to tconfirm and tdeliver since they are related to the

time of reception of the message, not the confirmation.

200

4. Response Time Analysis of Reliable Communication

In order to guarantee the timeliness requirements of real-time applications it is necessary to

previously analyse the response time of the proposed protocols. As these protocols are based

on delaying of the delivery and consolidation phases, the response time analysis is constrained

by the evaluation of these delays.

In the following analysis, it is considered a CAN network with n message streams defined as:
),,(iiii DTCS =

(1)

where Si defines a message stream i characterised by a unique identifier. Ci is the longest

message duration of stream Si. Ti is the periodicity of stream Si requests. In order to have a

timing analysis independent from the model of the tasks at the application process level, it is

assumed that this periodicity is the minimum time interval between two consecutive arrivals

of Si requests to the outgoing queue. Finally, Di is the relative deadline of a message; that is,

the maximum admissible time interval between the instant when the message request is

placed in the outgoing queue and the instant when the message is delivered.

The response time analysis of CAN networks has been previously addressed in [2],

considering fixed priorities for message streams (since the network access is based on the

identifier’s priority) and a non-preemptive scheduling model (since lower priority messages

being transmitted cannot be preempted by pending higher priority messages). Considering

such scheduling model, the existing schedulability analysis [9] is adapted to the case of

scheduling messages on a CAN network. In [3], this response time analysis is extended to

integrate temporary periods of network inaccessibility (introduced in [10]).

In such analysis, the worst-case response time of a queued message, measured from the

arrival of the message request to its complete transmission, is:

mmm CIR += (2)

The schedulability of the message stream set is guaranteed if every message has a response

time smaller than its deadline. The term Im represents the worst-case queuing delay - longest

time interval between the arrival of the message request and the start of its transmission. The

term Cm represents the actual transmission time of the message.

Considering the deadline monotonic (DM) priority assignment, the worst-case queuing delay

of a message of message stream Sm is:

()

)(mj
j

bitm
mm IInaC

T

I
BI

mhpj

+

×

 +
+= ∑

∈∀

τ (3)

where Bm is the worst-case blocking factor, which is equal to the longest duration of a lower

priority message, τbit is the duration of a bit transmission and hp(m) is the set of message

streams with higher priority than Sm. Ina(Im) integrates the temporary periods of network

inaccessibility caused by errors in frame transmission [3], including the time necessary to re-

201

transmit failed messages. As a duplicate message is a consequence of the retransmission of a

inconsistently failed message, the duration of its transmission is also included in the Ina(Im)

term.

Some (or all) of these message streams may use the atomic multicast protocols presented in

the previous Section. Therefore, they may involve the exchange of extra messages in the

network, either from errors (duplicate messages) or from protocol-related messages

(confirmation, abort and retransmission messages). Extra messages related to a message

stream Si are referred respectively has Si
dup

 , Si
conf

, Si
ab

 and Si
retrans.

4.1 IMD Protocol

The IMD protocol delay (δdeliver) is used to guarantee that a message is only delivered when it

is known that there will be no more duplicates duplicates. A duplicate message appears when

there is an error in the last but one bit of a frame and some of the nodes do not detect it. Thus,

in this case, the sender will automatically retransmit the failed message. As the receiving node

must evaluate such delay based in local information, it must take the arrival instant as its time

reference. Thus, it must delay the delivery until the time it takes to completely retransmit a

failed message (Fig. 6).

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Automatic
Retransmission

δdeliver Deliver
δdeliver

Duplicated
Message

WIMD

Rm

Cm

Fig. 6. IMD Protocol with one duplicate message.

Thus, δdeliver must be greater or equal to the worst-case response time of the duplicate

message. This response time is equivalent to the worst-case response time of the original

message, as it has the same priority. However, as the transmitter automatically tries to

retransmit the failed frame, this retransmitted frame will not be blocked by any lower priority

message:

0, == dup
m

dup
mdeliver BRδ (4)

Considering the IMD protocol, the worst-case delivery time for message stream Sm is the sum

of the message worst-case response time plus the delay introduced by each one of its

duplicates (δdeliver is reset when a new duplicate arrives):

202

deliverdupm
IMD

m kRW δ*)1(++= (5)

Considering the IMD protocol, the best-case delivery time of message stream Sm is when a

message is transmitted with its best-case response time (actual transmission time) and no

duplicate is transmitted:

deliverm
IMD
m CB δ+= (6)

4.2 2M Protocol

For the 2M protocol, two different delays must be considered: δconfirm and δdeliver. For the

former, it is considered that the message and the confirmation are both put in the transmission

queue atomically, and that any delays needed to handle the transmission of the confirmation

message by the sender node are inferior to the transmission time of the message.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Confirmation

δconfirm

δdeliver

Abort

W2M

∆node Rm
abort

Rm

Cm
∆node

Fig. 7. 2M Protocol with confirm omission.

Thus, the evaluation of δconfirm considers that the confirmation message will not suffer any

blocking:

0, == conf
m

conf
mconfirm BRδ (7)

Although network disturbances may lead to the duplication of confirmation messages, the

Ina(Im) term of Equation 3 already integrates these duplicates in the evaluation of the response

time.

The δdeliver bound must be determined considering that every receiver must wait until it is

known that it will not receive any abort message. These abort messages will be sent after

δconfirm by the nodes that does not receive the confirmation message. However, it must also be

taken into account the response time of the node itself (∆node), between detecting a missed

confirmation until it places the abort message in the outgoing queue:
abort
mnodeconfirmdeliver R+∆+= δδ (8)

Note that several abort messages may be transmitted in the network, in relation to the same

omission error. However, to determine the δdeliver bound it is only necessary to consider the

first one to be transmitted, thus to consider the smaller ∆node of all receiving nodes. The

203

possible existence of several aborts in the network in case of error, must be properly

considered for the response-time evaluation of less priority messages.

The worst-case delivery time of message stream Sm, considering the 2M protocol, is when a

message is transmitted with its worst-case response time with possible duplicates (thus

resetting both δconfirm and δdeliver). Therefore, the worst-case delivery time must consider an

extra δconfirm for each assumed duplicate message. The best-case delivery time is obtained

when the message has its best-case response time (actual message transmission time) and

there are no duplicates or omissions:

deliverconfirmdupm
M

m KRW δδ ++= *2 (9)

deliverm
M

m CB δ+=2 (10)

δconfirm

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Confirmation

δdeliver

Abort

W2M

∆node Rm
abort

Rm

∆node

Duplicate

δconfirm

Fig. 8. 2M Protocol with message duplicate followed by confirm omission.

4.3 Response Time of Message Streams

In order to determine the response time of each message stream in the network, it is also

necessary to consider the interference of confirmation messages and possible aborts or

retransmissions of higher priority message streams that use the 2M protocol. Equation 3 must

be updated to account for these new interferences.

()
{ }j

mhpj
m

mhpj

extra
jj

j

bitm
mm msgextraIInaCC

T

I
BI _max)()(

)(∈∀∈∀
++

+×

 +
+= ∑

τ (11)

where Cj
extra is the interference caused by the confirmation message, which is:

=
0

conf
jextra

j
C

c
j is transmitted with the 2M protocol

otherwise
(12)

Additionally, max{extra_msgj } accounts for the possible aborts or retransmissions in the

network, due to inconsistent message omissions. As it is assumed the existence of a single

inconsistent message omission during a period T (greater than the largest worst-case delivery

204

time), each message stream needs only to consider the effect of one abort/retransmission due

to inconsistent message omission per receiver of message j, that is:

=
0

*
_

abort
j

rec
j

j
Cn

msgextra
j is transmitted with the 2M protocol

otherwise
(13)

The Ina(Im) term of Equation 11 integrates the temporary periods of network inaccessibility

caused by errors in frame transmission, therefore it includes the retransmissions of

inconsistently failed messages (that is, duplicates).

4.4 Network Utilisation

The network utilisation is given by the sum of the ratio transmission delay versus period of all

message streams. Additionally, periods of temporary network inaccessibility (due to on-going

error detection and recovery mechanisms) must also be considered [3]:

ina
m m

m U
T

C
U +

= ∑

∀

(14)

The Uina term accounts for the network utilisation due to errors in frame transmission,

therefore, as already referred, it includes the network utilisation related to duplicate messages.

Considering the proposed atomic multicast protocols, Equation 14 must be updated to account

for the extra messages in the network. For each message stream transmitted with the 2M

protocol, an extra confirmation message must be added (Cm
extra, Equation 12) to the first term

of Equation 14. Furthermore, a third factor is included in Equation 15 to account for network

utilisation related to inconsistent message omissions (one for each period T).

T

msgextra
U

T

CC
U

m
m

ina
m m

extra
mm

}_{max
∀

∀
++

 +
= ∑ (15)

5. Numerical Example

In order to clarify the use of the presented model, a simple example constituted by four nodes,

connected by a CAN network at a rate of 1 Mbit/sec, is considered (Fig. 9). A distributed hard

real-time application, constituted by four tasks (τ1..τ4), is spread over the nodes. As

component replication is also used, then some of these tasks are also replicated.

C1

C2’’

C3’
C3

τ1 τ2’’

τ2’ τ4
τ4’τ3’

C2’
τ2 τ3

C2

τ3’’

C3’’

τ4’’

Application Configuration

CAN network

τ1 τ2 τ3 τ4

Application

M1 M3 , M4 , M5

Messages

M2

Fig. 9. Application Example

205

The application is divided in three components: component C1 encompasses tasks τ1,

component C2 encompasses τ2 and τ3, and finally component C3 is just τ4. Component C2 and

C3 are replicated in three replicas, while component C1 is not replicated. Node 1 encompasses

component C1 (τ1) and C2’ (τ2’, τ3’), node 2 component C2 (τ2, τ3) and C3 (τ4), node 3

component C3’ (τ4’) and C2’’ (but just τ2’’) and node 4 component C3’’(τ4’’) and C2’’ (but just

τ3’’). Table 1 presents each task’s characteristics, while Table 2 presents the characteristics of

the necessary message streams (all values are in milliseconds).

Table 1. Tasks’ characteristics

Task Type WCET Period Component Nodes
τ1 Periodic 2 5 C1 1
τ2 Periodic 2 10 C2 1,2,3
τ3 Sporadic 3 10 C2 1,2,4
τ4 Periodic 4 15 C3 2,3,4

Table 2. Messages Streams’ Characteristics

Msg Bytes Period From To Protocol
M1 4 5 τ1 τ2,τ2’,τ2’’ 2M
M2 8 10 τ2’’ τ3’’ IMD
M3 6 10 τ3 τ4,τ4’,τ4’’ 2M
M4 6 10 τ3’ τ4,τ4’,τ4’’ 2M
M5 6 10 τ3’’ τ4,τ4’,τ4’’ 2M

Note that messages from τ2 to τ3 and τ2’ to τ3’ are internal to the node, since they are

intra-component, and both tasks are in the same node. Since message M1 is a 1-to-many

communication, the 2M protocol is used. Therefore, there will be an extra confirmation

message with the same period of M1, but without data bytes. Since it is considered that an

inconsistent message omission may occur, then it is also necessary to account for the possible

3 retransmission messages (one from each receiving node).

Message M2 is internal to a component (although the component is spread between nodes 3

and 4), and it is a 1-to-1 communication. Therefore, it is sufficient to use the IMD protocol,

since only duplicates are to concern. Messages M3 to M5 are messages from replicated τ3 to

replicated τ4, therefore the 2M protocol is used for the transmission of messages. Thus there

will be an extra confirmation message for each message sent (and possible abort messages).

In this analysis, the model of [3] is used, with the following error assumptions:

- a maximum of 2 errors in each 10 ms time interval, resulting from a bit error rate of

approximately 10-4, which is an expectable range for bit error rates in aggressive

environments;

- possible existence of an inconsistent message omission during the period of analysis;

- possible existence of one duplicate in the transmission of a message (Kdup = 1);

- a ∆node equal to 100 µS and a maximum deviation between clocks (ε) of 100 µS.

206

The target of this example is to analyse the responsiveness of the proposed protocols, for both

the response time and the delivery time of messages. Response time is considered as the time

interval between requesting a message transfer until the message is fully received at the

receiver side. Delivery time is considered as the time interval between requesting a message

transfer until the message is delivered to the upper layers. If multicast protocols are not used,

response and delivery times are equivalent, since messages are delivered as soon as they are

correctly received.

Table 3. Messages’ Response Time without considering protocols

Msg P Cm Rm
NP

M1 5 0.089 0.519
M2 10 0.127 0.630
M3 10 0.108 0.741
M4 10 0.108 0.852
M5 10 0.108 0.852
U 6.590 %

Table 3 presents the response time for each message stream and the network load when

multicast protocols are not used. Rm
NP represents the worst-case response time (NP: no

protocols), P is the periodicity and Cm is the actual time taken to transmit a message. U is the

network utilisation.

As it can be seen, the worst-case response time of messages is considerably greater than its

actual transmission time. Although, interference from higher priority messages is one of the

factors leading to such difference, the main factor is the considered network bit error rate. For

instance, a message of stream M1 in an error free environment would have a worst-case

response time of 0.219 ms. The possible existence of errors in the network is responsible for

more than duplicating its worst-case response time, even when multicast protocols are not

used.

Table 4 presents the messages’ delivery times considering the use of multicast protocols.

Rm
MP represents the worst-case response time of a message stream when multicast protocols

(MP) are considered. Wm and Bm are, respectively, the worst- and best-case delivery time for

message stream Mm.

Table 4. Messages’ Delivery Time considering protocols

Msg Protocol Rm
MP δconfirm δdeliver δdeliver_ae Wm Bm Wm/Rm

MP

M1 2M 0.519 0.350 0.969 0.389 3.394 1.058 6.54
M2 IMD 0.959 - 0.848 - 2.655 0.975 2.77
M3 2M 1.070 0.901 2.013 - 3.984 2.121 3.72
M4 2M 1.234 1.065 2.341 - 4.640 2.449 3.76
M5 2M 1.287 1.229 2.558 - 5.074 2.666 3.94
U 9.09 %

As it can be seen in Table 4, the worst-case delivery time is greater than the related worst-case

response time, because apart from the multicast-related introduced delays, it is assumed that

207

each message may be disturbed by one duplicate. For instance, the worst-case delivery time

for message stream M5 is not only given by the message stream response time plus its δdeliver,

but also by summing an extra δconfirm due to the possible existence of a message duplicate.

The last column of Table 4, presents the ratio worst-case delivery time/worst-case response

time, when considering the use of multicast protocols. It is obvious that the IMD protocol is

the one that introduces smaller delays, while the 2M protocol is the one with the higher delays

(relative to its response time). Therefore, the system’s engineer can use this reasoning to

better balance reliability and efficiency in the system. Moreover, the multicast protocols

increase network utilisation less than 50%, since multicast-related retransmissions only occur

in inconsistent message omission situations. Although this network load increase is still large,

it is much smaller than in other approaches, and it is the strictly necessary to cope with

inconsistent message omission using a software-based approach.

One of the main targets of the proposed multicast protocols is to introduce reliability in CAN

communication, while at the same time preserving CAN real-time characteristics (thus

allowing the offline analysis of messages’ response times). Such target is achieved with the

proposed multicast protocols, since the predictability of message transfers is guaranteed.

6. Conclusions

In spite of its built-in error detection/signalling mechanisms, CAN networks may cause

inconsistencies in the supported applications, as messages can be delivered in duplicate by

some receivers or delivered only by a subset of the receivers. In order to preclude such

incorrect behaviour, a set of atomic multicast protocols has been proposed. Total order is

guaranteed through the transmission of just an extra message (without data) for each message

that must tolerate inconsistent message omissions. Only in case of an inconsistent message

omission (low probability) there will be more protocol-related retransmissions.

These protocols explore the CAN synchronous properties to minimise its run-time overhead,

and thus to provide a reliable and timely service to the supported applications. In this paper

the model and assumptions for the evaluation of the message streams’ response time of these

protocols is also presented, demonstrating that the real-time capabilities of CAN are

preserved, since predictability of message transfers is guaranteed.

References

[1] ISO 11898. (1993). Road Vehicle - Interchange of Digital Information - Controller
Area Network (CAN) for High-Speed Communication. ISO.

[2] Tindell, K., Burns, A. and Wellings, A. (1995). Calculating Controller Area Network
(CAN) Message Response Time. In Control Engineering Practice, Vol. 3, No. 8, pp.
1163-1169.

208

[3] Pinho, L., Vasques, F. and Tovar, E. (2000). Integrating inaccessibility in response
time analysis of CAN networks. In Proceedings of the 3rd IEEE International
Workshop on Factory Communication Systems, pages 77–84, Porto, Portugal,
September 2000.

[4] Rufino, J., Veríssimo, P., Arroz, G., Almeida, C. and Rodrigues, L. (1998). Fault-
Tolerant Broadcasts in CAN. In Proc. of the 28th Symposium on Fault-Tolerant
Computing, Munich, Germany, June 1998.

[5] Kaiser, J. and Livani, M. (1999). Achieving Fault-Tolerant Ordered Broadcasts in
CAN. In Proc. of the 3rd European Dependable Computing Conference, Prague, ,
Czech Republic, September 1999, pp. 351-363

[6] Cristian, F., Aghili, H., Strong, R. and Dolev, D. Atomic Broadcast: From Simple
Message Diffusion to Byzantine Agreement. In Information and Control, 118:1, 1995.

[7] Rodrigues, L., Guimarães, M. and Rufino, J. Fault-Tolerant Clock Synchronisation on
CAN, In Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain,
December 1998.

[8] S. Poledna (1998). Deterministic Operation of Dissimilar Replicated Task Sets in
Fault-Tolerant Distributed Real-Time Systems. In Dependable Computing for Critical
Applications 6, pp. 103-119, IEEE Computer Society Press, 1998.

[9] A. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. (1993).
Applying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):285-292.

[10] J. Rufino and P. Veríssimo (1995). A Study on the Inaccessibility Characteristics of
the Controller Area Network. In Proc. of the 2nd International CAN Conference,
London, United Kingdom, October 1995.

209

	cabecalho:
	seta:

