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Abstract

Checkpoint patterns that enforce rollback-dependency trackability (RDT) have only
on-line trackable checkpoint dependencies and allow efficient solutions to the determina-
tion of consistent global checkpoints. The design of RDT checkpointing protocols that are
efficient both in terms of the number of forced checkpoints and in terms of the data struc-
tures propagated by the processes is a very interesting research topic. Fixed-Dependency-
After-Send (FDAS) is an RDT protocol based only on vector clocks, but that takes a high
number of forced checkpoints. The protocol proposed by Baldoni, Helary, Mostefaoui and
Raynal (BHMR) takes less forced checkpoints than FDAS, but requires the propagation
of an O(n2) matrix of booleans.

In this paper, we introduce a new RDT protocol, called RDT-Partner, in which a pro-
cess can save forced checkpoints in comparison to FDAS during checkpoint intervals in
which the communication is bound to a pair of processes; a very interesting optimiza-
tion in the context of client-server applications. Although the data structures required by
the proposed protocol maintain the O(n) complexity of FDAS, theoretical and simulation
studies show that it takes virtually the same number of forced checkpoints than BHMR.
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Resumo

Padrões de checkpoint que garantem a propriedade rollback-dependency trackability
(RDT) apresentam apenas dependências entre checkpoints que podem ser detectadas em
tempo de execução e permitem a utilização de soluções eficientes para a determinação de
checkpoints globais consistentes. O desenvolvimento de protocolos para checkpointing
que garantem RDT de maneira eficiente tanto em termos do número de checkpoints tira-
dos quanto em termos das estruturas de dados propagadas é um tópico de pesquisa muito
interessante. Fixed-Dependency-After-Send (FDAS) é um protocolo RDT baseado apenas
em vetores de relógios, mas que tira um número alto de checkpoints forçados. O proto-
colo proposto por Baldoni, Helary, Mostefaoui e Raynal (BHMR) tira menos checkpoints
forçados que o FDAS, mas requer a propagação de uma matriz de booleanos O(n2).

Neste artigo, nós propomos um novo protocolo RDT, chamado RDT-Partner, no qual
os processos podem economizar checkpoints forçados em relação ao FDAS durante in-
tervalos de checkpoint nos quais a comunicação está restrita a um par de processos. Esta
otimização pode ser muito interessante no contexto de aplicações cliente-servidor. Embo-
ra as estruturas de dados requeridas pelo protocolo proposto mantenham a complexidade
O(n) do protocolo FDAS, estudos teóricos e de simulação mostram que o RDT-Partner
tira praticamente o mesmo número de checkpoints forçados que o BHMR.

Palavras chave: algoritmos distribuı́dos, tolerância a falhas, checkpointing, recuperação
por retrocesso, rollback-dependency trackability

1 Introduction

A checkpoint is a recording in stable memory of a process’ state. The set of all checkpoints
taken by a distributed computation and the dependencies established among these check-
points due to message exchanges form a checkpoint pattern. Checkpoint patterns that enforce
rollback-dependency trackability (RDT) present only checkpoint dependencies that can be on-
line trackable using vector clocks or dependency vectors, and allow efficient solutions to the
determination of the maximum and minimum consistent global checkpoints that include a set
of checkpoints [16]. Many applications can benefit from these algorithms: rollback recovery,
software error recovery, and distributed debugging [16].

In order to enforce the RDT property, an RDT checkpointing protocol [1, 16] allows pro-
cesses to take checkpoints asynchronously (basic checkpoints), but they may be induced by the
protocol to take additional checkpoints (forced checkpoints). Some RDT checkpointing pro-
tocols presented in the literature are based only on checkpoints, message-send, and message-
receive events: No-Receive-After-Send, Checkpoint-After-Send, Checkpoint-Before Receive,
and Checkpoint-After-Send-Before-Receive [16]. These protocols are instantiations of the
Mark-Receive-Send model [13] and are prone to induce a large number of forced checkpoints.

An effort to reduce the number of forced checkpoints can be done through the collaboration
of the processes to maintain and propagate control structures. The decision to take a forced
checkpoint must be based on information piggybacked on application messages; there are no
control messages and no knowledge about the future of the computation. An important goal
is to develop an efficient protocol both in terms of the number of forced checkpoints and in
terms of the complexity of the required data structures.
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Fixed-Dependency-Interval (FDI) [9, 16] and Fixed-Dependency-After-Send (FDAS) [16]
maintain and propagate vector clocks. They force the vector clock of a process to remain
unchanged during an entire checkpoint interval (FDI) or after the first message-send event of
an interval (FDAS). Trying to reduce even more the number of forced checkpoints, Baldoni,
Helary, Mostefaoui, and Raynal have explored the RDT property at the message level [1, 2,
3]. A protocol proposed by them, called BHMR, never takes more forced checkpoints than
FDAS [14]. However, the more elaborated condition used by BHMR requires the propagation
of an additional O(n2) matrix of booleans [1].

In this paper, we introduce a new RDT protocol, called RDT-Partner, in which a process
can save forced checkpoints in comparison to FDAS during checkpoint intervals in which the
communication is bound to a pair of processes; a very interesting optimization in the con-
text of client-server applications. This protocol is based on a recent result that characterized
the strongest condition that can be used on-line by an RDT checkpointing protocol [6]. Al-
though the data structures required by the proposed protocol maintain the O(n) complexity
of FDAS, theoretical and simulation studies show that it takes virtually the same number of
forced checkpoint than BHMR.

The paper is structured as follows. Section 2 introduces rollback-dependency trackability.
Section 3 describes the RDT-Partner protocol. Section 4 compares the proposed protocol with
FDAS and BHMR. Section 5 summarizes the paper.

2 Rollback-Dependency Trackability

The literature presents two approaches to define rollback-dependency trackability. The first
one is based on the study of on-line trackable dependencies, implemented through the use
of vector clocks or dependency vectors [16]. The other approach is based on the study of
sequence of messages [1, 2, 3, 6].

2.1 Computational model

A distributed computation is composed of n sequential processes (p1; : : : ; pn) that communi-
cate only by exchanging messages. Messages cannot be corrupted, but can be delivered out of
order or lost. The activity of a process is modeled as a sequence of events that can be divided
into internal events and communication events realized through the sending and the receiving
of messages. Checkpoints are internal events; each process takes an initial checkpoint (im-
mediately after execution begins) and a final checkpoint (immediately before execution ends).
Figure 1 illustrates a space-time diagram [10] augmented with checkpoints (black squares).

Let c
i

denote the th checkpoint taken by pi. A non-final checkpoint c
i
,  � 1, and its

immediate successor c+1
i

define a checkpoint interval I
i

. This interval represents the set of
events produced by pi between c



i
and c

+1
i

, including c


i
and excluding c

+1
i

.

2.2 Checkpoint dependencies

A consistent global checkpoint is a set of checkpoints, one per process, that could have been
seen by an idealized external observer [4]. Checkpoints that are part of the same consistent

164



p1 -�

c11

U

m1

�

c21

U

m4

�

c31

p2 -�

c12

U

m2

�

c22
�

c32
�
m5

�

c42

p3 -�

c13
�

c23

�

m3

�

c33
�

c43

I33

Figure 1: A distributed computation

global checkpoint cannot be related by checkpoint dependencies. Netzer and Xu have de-
termined that checkpoint dependencies are created by sequences of messages called zigzag
paths[12].

Definition 2.1 Zigzag path—A sequence of messages� = [m1; : : : ; mk] is a zigzag path that
connectsc�

a
to c

�

b
if (i) pa sendsm1 after c�

a
; (ii) if mi, 1 � i < k, is received bypc, thenmi+1

is sent bypc in the same or a later checkpoint interval; (iii)mk is received bypb beforec�
b
.

Two types of zigzag paths can be identified: (i) causal paths and (ii) non-causal paths. A
zigzag path is causal if the reception of each message but the last one causally precedes the
send event of the next one in the sequence. In Figure 1, [m2; m3] is a causal path from c12 to c21
and [m1; m2] is a non-causal zigzag path from c11 to c23.

A zigzag path that connects a checkpoint to itself is called a Z-cycle and identifies a useless
checkpoint, that is, a checkpoint that cannot be part of any consistent global checkpoint [12].
In Figure 1, [m3; m1; m2] and [m5; m4] are examples of Z-cycles; c23 and c32 are useless check-
points.

Let � = [m1] and � 0 = [m2; m3] be two zigzag paths; the concatenation of � and � 0 will be
denoted by � � � 0, or � � [m2; m3], or [m1] � �

0, or [m1; m2; m3] [3].

2.3 Vector clocks

A transitive dependency tracking mechanism can be used to capture causal dependencies
among checkpoints. Each process pi maintains and propagates a size-n vector clock vci, such
that vci[i] is initialized to 1 and all other entries to 0. The entry vci[i] represents the current
interval of pi and it is incremented immediately before a new checkpoint is taken. Every other
entry vci[j], j 6= i, represents the highest checkpoint index of pj that pi causally depends and
it is updated every time a message m with a greater value of vcm[j] arrives to pi.

Figure 2 depicts the vector clocks established during a distributed computation. Note that
the vector clock associated to checkpoint c23 is (1; 1; 2) and it correctly represents the de-
pendencies of this checkpoint. Unfortunately, not all dependencies can be tracked on-line.
For example, the vector clock associated to checkpoint c33 does not capture the existence of a
zigzag path that connects c21 to c33.

Definition 2.2 Rollback-dependency trackability (vector clock characterization)
A checkpoint pattern enforces RDT if all checkpoint dependencies can be on-line trackable

through the use of vector clocks.
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Figure 2: A distributed computation with vector clocks

RDT is a desirable property because when all dependencies are causal dependencies, effi-
cient algorithms can be used to construct consistent global checkpoints. Also, an RDT check-
point pattern does not admit useless checkpoints [16].

When a communication-induced checkpointing protocol is used to enforce RDT, processes
take checkpoints asynchronously (basic checkpoints), but they may be induced by the protocol
to take additional checkpoints (forced checkpoints) [5, 11]. Forced checkpoints can be taken
upon the arrival of a message, but before this message is processed by the computation.

In the FDAS protocol, a forced checkpoint is taken upon the reception of a message if (i) at
least one message has been sent during the current interval, and (ii) at least one entry of the
vector clock is about to be changed [16]. Figure 3 shows the same scenario of Figure 2 under
FDAS; the resulted checkpoint pattern enforces RDT.
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Figure 3: A distributed computation under FDAS

2.4 A message-based characterization of RDT

Trying to design more efficient protocols, Baldoni, Helary, Mostefaoui, and Raynal have ex-
plored the RDT property in the message level [1, 2, 3].

2.4.1 Causal doubling

A non-causal zigzag path is doubled by a causal one if the pair of checkpoints related by that
zigzag path is also related by a causal dependency [3]. In Figure 4 (a) [m1; m2] connects c�

a

to c�+1
a

and it is trivially doubled by the execution flow of pa. In Figure 4 (b), the non-causal
zigzag path [m2; m3] that connects c�

a
to c

�

b
is causally doubled by m1. In Figure 4 (c), [m1; m2]

is causally doubled by [m1; m3].
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Figure 4: Causal doubling

Definition 2.3 Trivial doubling—A non-causal zigzag path fromc�
a

to c
�

b
is trivially doubled

if a = b and� < �.

Definition 2.4 Causal doubling—A non-causal zigzag path fromc�
a

to c
�

b
is causally doubled

if it is trivially doubled or there exists a causal path� from c�
a

to c
�

b
.

A Z-cycle cannot be causally doubled. In Figure 5, the zigzag path [m1; m2] cannot be
doubled by the process execution because a causal dependency from c

�

b
to c

�

b
cannot exist.

pa : : : -�

c�
a

�
m2

�

c�+1
a

pb : : : -�

c
�

b

U
m1

Figure 5: Z-cycle: [m1; m2] cannot be causally doubled

Definition 2.5 Rollback-Dependency Trackability (zigzag path characterization)
A checkpoint pattern enforces the RDT property if all zigzag paths are causally doubled.

Since it appears to be very hard to track non-causally doubled zigzag paths, Baldoni,
Helary and Raynal have suggested an approach that tries to minimize the number of non-
causal zigzag paths that must be causally doubled to enforce RDT [3].

2.4.2 PCM-paths

A non-causal zigzag path can be seen as a concatenation of causal paths �1:�2: � � � :�k. The
number of causal paths in a non-causal zigzag path is the order of this path. A non-causal
zigzag path of order 2 (CC-path) is composed of exactly two causal paths �1 and �2 (Fig-
ure 6 (a)). A CM-path is a non-causal zigzag path of order 2 composed of a causal path � and
a single message m (Figure 6 (b)).

In order to further reduce the set of zigzag paths that must be doubled, let us consider an
additional constraint on the causal path � of a CM-path �:[m]. Let � be a prime path from c�

a

to c
c
, that is, the first path that brings to pc the knowledge about c�

a
. In Figure 7 (a), � is not

prime due to existence of �0; in Figure 7 (b), � is a prime path.
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Figure 6: Non-causal zigzag paths of order 2

Definition 2.6 Prime path—A causal path� from c�
a

to c
c

is prime if the last message of� is
the first message that brings topc the knowledge aboutc�

a
.

Definition 2.7 PCM-path—A PCM-path is a non-causal zigzag path composed of aprime
causal path� and a singlemessagem.

Definition 2.8 Rollback-Dependency Trackability (PCM-path characterization)
A checkpoint pattern enforces the RDT property if all PCM-paths are causally doubled.

This characterization leads to the development of a simple RDT protocol that breaks all
PCM-paths, that is, induces a process to take a forced checkpoint upon the establishment of a
PCM-path. This behavior is illustrated in Figure 7 and can be seen as a reinterpretation of the
FDAS protocol [2, 3].
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�
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�
�
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c�1
c

�

c
c

�
m

pb : : : -�

c
�
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pa : : : -�
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�
�

pc : : : -�

c�1
c

�

c
c

�

c+1
c

�
m

pb : : : -�

c
�

b

(a) �:[m] is not a PCM-path (b) pc must break �:[m]

Figure 7: FDAS can be seen as a protocol that breaks PCM-paths

2.4.3 Visibly doubling

A PCM-path need not to be broken by a process pc if, upon the establishment of this path, pc
is able to detect that it is already causally doubled [1, 2, 3]. Figure 8 shows a PCM-path � � [m]
that is causally doubled by a causal path �; process pc is able to detect this doubling due to the
causal path � 0. In this case, � � [m] is visibly doubledby �.

Definition 2.9 Visibly Doubled PCM-path—A PCM-path� � [m] is visibly doubled if (i) is
causally doubled by a causal path� and (ii) the reception of the last message of� causally
precedes the sending of the last message of�.
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Figure 8: A visibly doubled PCM-path

Definition 2.10 Rollback-Dependency Trackability (Visibly doubled characterization)
A checkpoint pattern enforces the RDT property if all PCM-paths are visibly doubled.

BHMR is a protocol that breaks all non-visibly doubled PCM-paths. Unfortunately, this
more efficient strategy in terms of forced checkpoints is less efficient in terms of data struc-
tures [2]. Each process must maintain and propagate information regarding other processes’
knowledge about causal relantionships, requiring an O(n2) data structure. Indeed, in the im-
plementation of BHMR [1] each process maintains and propagates an O(n) vector clock, an
O(n) vector of booleans, and an O(n2) matrix of booleans.

2.5 The minimal characterization of RDT

Recently, we have determined the minimal (strongest) condition that can be used to enforce
RDT [6]. A PMM-path is a non-causal zigzag path composed of two single messages m1 and
m2, such that m1 is prime (Figure 9). We have proved that a protocol that breaks all non-visibly
doubled PMM-paths must enforce RDT [6]. In the next Section, we are going to explore this
characterization to propose a protocol that is efficient both in terms of forced checkpoints and
in terms of data structures.

pa : : : -�

c�
a

�
m1

pc : : : -

�
m2

pb : : : -�

c
�

b

Figure 9: A PMM-path

Definition 2.11 PMM-path—A PMM-path is a non-causal zigzag-path composed of aprime
singlemessagem1 and a singlemessagem2.

Definition 2.12 Rollback-Dependency Trackability (minimal characterization)
A checkpoint pattern enforces the RDT property if all PMM-paths are visibly doubled.
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3 RDT-Partner protocol

The implementation of a protocol that keeps track of all visibly-doubled paths seems to require
O(n2) information [2]. In this Section, we introduce an O(n) protocol, called RDT-Partner,
that keeps track of only trivially-doubled PMM-paths.

3.1 PMM-cycles

A PMM-path [m1; m2] that starts and finishes in the same process is a PMM-cycle. Some
PMM-cycles are trivially doubled by the process execution; others cannot be causally doubled
because they form Z-cycles. Figure 10 illustrates the possibilities of PMM-cycles from the
perspective of a process pi. In Figure 10 (a) and (b), [m1; m2] is trivially doubled due to the
pj’s execution flow from c



j
to c

+1
j

. In Figure 10 (c), [m1; m2] is a Z-cycle and cannot be
causally doubled (a causal dependency from c



j
to c



j
cannot exist).

pi : : : -�

c�
i

1

m2

pj : : : -�

c


j

^
m1

�

c
+1
j

(a) When m1 is sent, process pj has no knowledge about c�
i

([m1; m2] is trivially doubled)

pi : : : -�

c�
i

�
m2

pj : : : -�

c


j

^
m1

�

c
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j

(b) When m1 is sent, process pj has knowledge about c�
i
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pi : : : -�
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�
m2

pj : : : -�

c


j

^
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i

([m1; m2] cannot be causally doubled)

Figure 10: PMM-cycles

Let us assume that a process pi maintains and propagates a vector clock vci and let us
analyze the complexity required to distinguish trivially doubled PMM-cycles from Z-cycles.
First, let us consider the scenario depicted in Figure 10 (a), in which upon the sending of m1,
pj has no knowledge about c�

i
. Process pi can deduce, upon the reception of m1, that m2 will

be received during I


j
or a later checkpoint interval and that [m1; m2] will be trivially doubled

by the pj’s execution flow. To identify this scenario, pi must evaluate the following condition:
vcm1

[i] < vci[i].
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Let us consider the other scenarios, in which upon the sending of m1, pj has knowledge
about c�

i
. In both cases, upon the reception of m1, pi would detect that vcm1

[i] = vci[i].
Thus, pi needs additional information to distinguish the scenario depicted in Figure 10 (b)
from the scenario depicted in Figure 10 (c). Message m1 can carry a boolean value to indicate
whether pj has taken a forced checkpoint after the last time it received knowledge about a new
checkpoint index in pi.

3.2 Partner relationships

In the previous section, we have shown that a process can efficiently detect trivially doubled
PMM-cycles. The detection of visibly doubled PMM-paths is similar to the detection of visibly
doubled PCM-paths and seems to require O(n2) information [2]. This means that a process
pi can efficiently save a forced checkpoint only in a constrained situation, in which pi sends a
message to pj and receives another message from pj.

Definition 3.1 Partner—Processpj is a partner of processpi if pi has sent a message topj
during the current interval.

Let us consider that pi has just one partner, say pj , in the current interval. If pi receives a
message m0 from pj (Figure 11 (a)) it can save a forced checkpoint if a Z-cycle is not estab-
lished, as described in Section 3.1. If pi receives a message m0 from another process, say pk
(Figure 11 (b)), that forms a PMM-path, it must take a forced checkpoint before processing m0.
Process pi will take this forced checkpoint even if this PMM-path is visibly doubled, because
it will not be able to efficiently detect this doubling.

pi : : : -�

�
m

pj : : : � -

^
m0

pk : : : -�

�
m0

pi : : : -�

�
m

�

pj : : : � -

(a) sender(m0) = partner (b) sender(m0) 6= partner

pi : : : -�

�
m1

�
m2

�

pj : : : -�

^

m0

pk : : : � -

pl : : : � -

�
m0

pi : : : -�

�
m1

�
m2

�

pj : : : -�

pk : : : � -

(c) sender(m0) (d) sender(m0)
is one of the partners is not one of the partners

Figure 11: The behavior of the RDT-Partner protocol
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Let us consider that pi has more than one partner, say pk and pj, and it receives a message
m0 from pj (Figure 11 (c)). Process pi can efficiently detect that [m0; m2] is not a Z-cycle, but
it cannot efficiently detect whether the PMM-path [m0; m1] is visibly doubled. Thus, process
pi must take a forced checkpoint before processing m0. A similar situation occurs when pi
receives a message from another process, say pl (Figure 11 (d)). In this case, two PMM-paths
[m0; m1] and [m0; m2] are formed, and pi must take a forced checkpoint before processing m0.

Finally, Figure 12 illustrates that forced checkpoints can be saved in a nested sequence of
partner interactions.

p4 : : : -�

�
p3 : : : -�

�

U

p2 : : : -�

�

U

p1 : : : � -

U

Figure 12: A nested sequence of partner interactions

3.3 RDT-Partner implementation

An implementation of RDT-Partner is described in class Partner (Class 3.1), using Java1 [7].
Every process, say pi, maintains and propagates a vector clock vci in order to characterize
casual precedence among checkpoints. When pi sends a message, vci is piggybacked onto it.
Before consuming a message m, process pi takes a component-wise maximum of vci and vcm.
When pi takes a checkpoint, it increments vci[i].

Process pi also maintains a variable partnerpid that keeps track of partner relationships
during checkpoint intervals:

� partnerpid = NO PARTNER indicates that pi has not sent any message;

� partnerpid = j indicates that pi has sent message(s) only to pj;

� partnerpid = MORE THAN ONE PARTNER indicates that pi has sent messages for
more than one process.

In order to distinguish trivially doubled PMM-cycles from Z-cycles, each process pi main-
tains a vector of booleans simple, such that simple[j], j 6= i, indicates that a checkpoint has
not been taken after pi has received knowledge about cvci[j]

j
. When pi sends a message to pj it

piggybacks simple[j] onto the message. When process pi takes a checkpoint it sets all entries
in simple to false, except its ith entry.

A checkpoint is induced by pi before delivering a message m if a PMM-path is detected
and one of the following condition holds: (i) it is not a PMM-cycle or (ii) it is a PMM-cycle,
but forms a Z-cycle.

1We have chosen Java because it is easy to read and has a precise description. Java is a trademark of Sun
Microsystems, Inc.
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Class 3.1 RDT Partner.java
public class RDT Partner f

public static final int N = 100; // Number of processes in the computation
public int pid; // A process unique identifier in the range 0..N-1
protected int [ ] vc = new int [N]; // Vector clock, automatically initialized to (0 ... 0)
protected boolean [ ] simple = new boolean [N]; // Keeps track of simple PMM-cycles

protected int partner pid;
public static final int NO PARTNER = - 1;
public static final int MORE THAN ONE PARTNER = N + 1;

public class Message f
public int sender, receiver;
public int [ ] vc;
public boolean simple;
// Message body

g

public void takeCheckpoint() f
vc[pid]++; // Increment checkpoint index immediately before the checkpoint
// Save state to stable memory
partner pid = NO PARTNER;
for (int i = 0; i < N; i++) simple[i] = i == pid;

g

public RDT Partner(int pid) f this.pid = pid; g // Constructor

public void run() f takeCheckpoint(); g // Initiate execution

public void finalize() f takeCheckpoint(); g // Finish execution

public void sendMessage(Message m) f
m.vc = (int [ ]) vc.clone(); // Piggyback vc onto the message
m.simple = simple[m.receiver];
if (partner pid == NO PARTNER) partner pid = m.receiver;
else if (partner pid 6= m.receiver) partner pid = MORE THAN ONE PARTNER;
// Send message

g

public void receiveMessage(Message m) f
if (m.vc[m.sender] > vc[m.sender] && partner pid 6= NO PARTNER) f // PMM-path

if (partner pid 6= m.sender jj // Not a PMM-cycle
(partner pid == m.sender && m.vc[pid] == vc[pid] && !m.simple))) // Z-cycle

takeCheckpoint(); // Forced checkpoint
simple[m.sender] = true;

g
for (int i = 0; i < N; i++) // Update the vector clock

if (m.vc[i] > vc[i]) vc[i] = m.vc[i];
// Message is processed by the application

g
g
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4 A comparison with FDAS and BHMR

4.1 Simulation results

Our experimental data was obtained using the simulation toolkit for quasi-synchronous algo-
rithms Metapromela [15]. This toolkit was built atop Spin [8], a tool to simulate and perform
consistency analysis of distributed protocols and algorithms. In Metapromela, the processes
are asynchronous and the simulated execution of each process is a succession of atomic events
of three types: internal, message-send and message-receive. The only type of internal event
that is relevant for checkpointing is the occurrence of a basic checkpoint. The environment is
controlled by adjusting the distribution of these events and the communication network.

The experiment was performed considering a complete network, i.e., each pair of processes
is connected by a bidirectional communication channel. The channels do not lose, corrupt or
change the order of messages. For each experimental point it was considered the average
of 10 measurements. Each measurement was taken by the execution of each of the studied
protocols under the same pattern of messages and basic checkpoints, that is, under exactly the
same history of events. We counted the ratio of forced checkpoints per basic checkpoint over
a period of 300 basic checkpoints for each process. Figure 13 shows the results obtained for
2 � n � 20, where n is the number of processes in the computation.
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Figure 13: Simulation results

FDAS takes consistently more checkpoints than BHMR and RDT-Partner. For small values
of n, say 2 or 3, the difference is large, but the difference becomes less significant as the values
of n grow. BHMR and RDT-Partner take almost the same number of forced checkpoints with a
very small difference for 3 � n � 5. In the following section, we give a theoretical explanation
for this behavior.
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4.2 Theoretical argumentation

The theoretical analysis performed in [14] proved that any protocol that uses a stronger con-
dition than FDAS to take forced checkpoints will outperform FDAS. Thus, FDAS cannot take
less checkpoints than BHMR and RDT-Partner, since both protocols break doubled PMM-
cycles, and FDAS is not able to track such dependencies. Figure 14 shows two-message sce-
narios in which BHMR and RDT-Partner can save a checkpoint in comparison to FDAS. Since
in our simulation the communication is uniform, the probability of these scenarios is higher
for small values of n, explaining the behavior of the curves.
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Figure 14: BHMR and RDT-Partner can save forced checkpoints in comparison to FDAS

In comparison to RDT-Partner, BHMR can also detect visibly doubled PCM-paths, po-
tentially saving more forced checkpoints. However, the minimum scenario in which BHMR
can save a checkpoint in comparison to RDT-Partner requires five messages (Figure 15) and
is likely to occur less frequently during a distributed computation. In a system composed of
three processes, this situation could be more likely, explaining the slightly difference in the
curves around this point (n = 3).
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Figure 15: BHMR can save a forced checkpoint in comparison to RDT-Partner

Although this situation cannot occur with FDAS, it is possible for a protocol based on a
weaker condition to outperform a protocol based on a stronger condition [14]. BHMR uses a
condition stronger than RDT-Partner and Figure 16 illustrates a scenario in which RDT-Partner
can save a forced checkpoint in comparison to BHMR. This scenario involves five processes
and ten messages. We can consider such scenarios less probable in distributed computations.

175



: : : -�

�
: : : -�

W

�
�

1
�

: : : -�

W

W W

�

�
: : : � -

�
�

: : : � -

: : : -�

�
: : : -�

W

�
�

1
�

: : : -�

W

W

�

W

�
: : : � -

�
: : : � -

(a) BHMR (b) RDT-Partner

Figure 16: RDT-Partner can save a forced checkpoint in comparison to BHMR

5 Conclusion

Checkpoint patterns that enforce the rollback-dependency trackability (RDT) property allow
efficient solutions to the determination of consistent global checkpoints [16]. In this paper, we
have introduced a new RDT protocol, called RDT-Partner, that is efficient both in terms of the
number of forced checkpoints and in terms of the complexity of the required data structures.

We have presented theoretical and simulation studies to show that RDT-Partner presents a
very good compromise between the stronger condition of BHMR [1] and the smaller control
structure of FDAS [16]. In conclusion, RDT-Partner is so far the best protocol to adopt in
practical implementations.

References

[1] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. A communication-induced checkpoint
protocol that ensures rollback dependency trackability. In IEEE Symposium on Fault Tolerant
Computing (FTCS’97), pages 68–77, 1997.

[2] R. Baldoni, J. M. Helary, and M. Raynal. Rollback-dependency trackability: A minimal charac-
terization and its protocol. Technical Report 1173, IRISA, Mar. 1998.

[3] R. Baldoni, J. M. Helary, and M. Raynal. Rollback-dependency trackability: Visible characteriza-
tions. In 18th ACM Symposium on the Principles of Distributed Computing (PODC’99), Atlanta
(USA), May 1999.

[4] M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed sys-
tems. ACM Trans. on Computing Systems, 3(1):63–75, Feb. 1985.

[5] E. N. Elnozahy, D. Johnson, and Y.M.Yang. A survey of rollback-recovery protocols in message-
passing systems. Technical Report CMU-CS-96-181, School of Computer Science, Carnegie
Mellon University, 1996.

[6] I. C. Garcia and L. E. Buzato. On the minimal characterization of rollback-dependency trackability
property. In Proceedings of the 21th IEEE Int. Conf. on Distributed Computing Systems, Phoenix,
Arizona, EUA, Apr. 2001. To appear.

[7] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Java Series. Addison–
Wesley, Sept. 1996.

176



[8] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering, 23(5), May
1997.

[9] T. R. K. Venkatesh and H. F. Li. Optimal checkpointing and local recording for domino-free
rollback recovery. Information Processing Letters, 25(5):295–303, 1987.

[10] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[11] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models, characterization, and
classification. IEEE Trans. on Parallel and Distributed Systems, 10(7), July 1999.

[12] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent global snapshots.
IEEE Trans. on Parallel and Distributed Systems, 6(2):165–169, 1995.

[13] D. L. Russell. State restoration in systems of communicating processes. IEEE Trans. on Software
Engineering, 6(2):183–194, Mar. 1980.

[14] J. Tsai, S. Y. Kuo, and Y. M. Wang. Theoretical analysis for communication-induced checkpoint-
ing protocols with rollback-dependency trackability. IEEE Trans. on Parallel and Distributed
Systems, Oct. 1998.

[15] G. M. D. Vieira. Metapromela: A toolkit for simulation of checkpointing algorithms. In Students
Forum of the IX Brazilian Symposium on Fault-Tolerant Computers, Mar. 2001.

[16] Y. M. Wang. Consistent global checkpoints that contain a given set of local checkpoints. IEEE
Trans. on Computers, 46(4):456–468, Apr. 1997.

177


	cabecalho: 
	seta: 


