
Mobile Groups

5DLPXQGR�-RVp�GH�$UD~MR�0DFrGR��)OiYLR�0RUDLV�GH�$VVLV�6LOYD

Laboratório de Sistemas Distribuídos – LaSiD
Departamento de Ciência da Computação

Universidade Federal da Bahia
Campus de Ondina, CEP: 40170-110, Salvador-BA, Brazil

{macedo, fassis}@ufba.br

5HVXPR

Comunicação em grupo tem sido largamente aceita como um meio efetivo de se
construir aplicativos distribuídos confiáveis [5]. Sistemas de grupos tradicionais são
baseados em processos estáticos [4, 5, 6, 7, 8]. Entretanto, processos estáticos não são a
única forma de se estruturar tais aplicações. Atualmente, processos migrantes, que
podem mudar de localização na rede durante a execução, têm sido propostos como uma
forma de se projetar aplicações distribuídas. Analogamente às aplicações com processos
estáticos, aplicações baseadas em processos migrantes também necessitam de formas
confiáveis de cooperação entre os processos. Com o objetivo de suprir parte dessas
necessidades, apresentamos neste artigo o conceito de grupos móveis. Assim como nos
sistemas de grupo tradicionais, grupos móveis também oferecem garantias de entrega de
mensagens e uma forma de sincronia virtual. No entanto, grupos móveis oferecem essas
garantias apesar da mobilidade dos seus membros. Mais ainda, eles tornam a mobilidade
de processos não somente visível para o grupo, mas também ordenam esses eventos de
uma forma coerente em relação a outras ações do grupo, tais como falhas de processos,
entradas e saída de membros. Neste artigo, definimos formalmente grupos móveis,
especificamos as propriedades de um protocolo de PHPEHUVKLS para tais grupos,
apresentamos o protocolo e provamos sua correção�

$EVWUDFW

Group communication has been proved as an effective abstraction for constructing
reliable distributed applications [5]. Traditional group communication systems [4, 5, 6,
7, 8] are based on static processes. However, static processes are no longer the unique
way of structuring distributed applications. Currently, some form of PLJUDWLQJ�SURFHVV,
i.e., a process that can change its location in the environment during its execution, is
being frequently proposed as a basic component for designing distributed applications.
Similarly to distributed applications based on static processes, applications based on
processes that can migrate also need forms of reliable cooperation between processes. In
order to fulfil part of this requirement, we present the concept of PRELOH� JURXSV.
Analogously to traditional group systems, mobile groups also provide message delivery
guarantees and a sort of virtual synchrony. However, mobile groups provide these
guarantees GHVSLWH� WKH� PRELOLW\� RI� WKHLU� PHPEHUV. Furthermore, they make process
mobility not only visible for the group, but also consistently ordered with other group
actions (such as process crashes, joins and leaves). In this paper we formally define
mobile groups, specify the properties of a membership protocol for such groups, present
the protocol itself, and prove its correctness.

.H\ZRUGV: Distributed Systems, Group Communication, Fault Tolerance,
Mobile Agents, Mobile Groups

66

��� ,QWURGXFWLRQ

Group communication has been proved as an effective abstraction for constructing reliable
distributed applications [5]. A JURXS is a set of SURFHVVHV that communicate with each other
by exchanging messages which are multicasted to the whole group. In order to preserve
consistency among the state of group members, the group communication protocols must
guarantee certain properties such as atomic delivery (either all processes deliver a message or
no one deliver it), message ordering guarantees (e.g., causal and total), and a sort of virtual
synchrony where modifications on the group membership (caused by events such as process
crashes and joins, etc.) are consistently ordered with respect to message delivery. In such an
environment, operational processes perceive the same sequence of actions, though, in reality,
they may happen in an arbitrary order.

Traditional group communication systems, such as Horus [9], Transis [4], and Newtop [6],
are based on VWDWLF processes. After a member joins a group, it remains at the same location in
the distributed environment during its whole life time. However, static processes are no longer
the unique way of structuring distributed applications. Currently some form of PLJUDWLQJ
SURFHVV��i.e., a process that can change its location in the environment during its execution,�is
being frequently proposed as a basic component for designing distributed applications. An
example of a type of migrating process that has attracted the attention of researchers in the
last years are the PRELOH� DJHQWV�� The mobile agent concept is being proposed to support
different types of applications, including electronic commerce [18, 23], workflow
management [24], network management [25], implementation of telecommunication services
[16], distributed information retrieval [25] and active networks [25].

Similarly to distributed applications based on static processes, applications based on processes
that can migrate also need forms of reliable cooperation between processes. In order to fulfil
part of this requirement, we present the concept of PRELOH� JURXSV��Mobile groups are an
extension of the traditional concept of groups that supports PLJUDWLQJ�SURFHVVHV�as members
of a group. With mobile groups, a migrating process has the ability to change its location in
the distributed environment ZKLOH� EHORQJLQJ� WR� D� JURXS. Analogously to traditional group
communication systems, mobile groups also provide message delivery guarantees and a sort
of virtual synchrony. However, mobile groups provide these guarantees GHVSLWH�WKH�PRELOLW\
RI�WKHLU�PHPEHUV. Furthermore, they make process mobility not only visible for the group, but
also consistently ordered with other group actions (such as process crashes, joins, and leaves).
An implementation of mobile groups by using conventional group systems is not satisfactory
because process mobility would be hidden from the group actions history.

Elsewhere [21], we have introduced the concept of mobile groups in the context of a
reliability requirement discussion for mobile agent systems. This paper adds to our previous
work, by formally defining mobile groups, specifying the properties of a membership protocol
for such groups, presenting the protocol itself, and proving its correctness, i.e., that the
protocol satisfies the defined properties.

The remaining of the paper is structured as follows. Section 2 presents an application scenario
for mobile groups. Section 3 discusses the most closely related work. In section 4 we present
the system model and our assumptions. Section 5 presents our membership protocol for
mobile groups. Finally section 6 concludes the paper.

67

��� $�0RELOH�*URXS�$SSOLFDWLRQ�6FHQDULR

The following example illustrates the use of mobile groups to support the coordination of
mobile agents in an electronic commerce scenario.

A company’s employee wants to arrange a business trip. He would like to start an automated
process to carry out the arrangement from his computer, a notebook that he uses to do his job.
As part of the process, it is necessary to make a flight reservation. According to the policies of
the user’s company, the flight companies by which the user can make reservations are
classified in priority classes. In order to make the reservation, a minimum number of price
offers must be compared, say, from three flight companies. While collecting prices, the flight
companies’ priorities must be taken into consideration.

The software used to automate the trip arrangement is based on mobile agents1. In general
terms the flight reservation could proceed as follows. First three agents are created. The list of
flight companies and their priority classes are given to these agents. The three agents then
move each to a flight company with the highest priority (assume, for simplicity, that there are
at least three flight companies with the highest priority). Each agent verifies if the company
can make the reservation according to the user's requirements and checks the price of the
flight ticket. When an agent obtains an offer of a company, it sends this offer’s information to
one of the three agents, the FRRUGLQDWRU. The coordinator will collect the prices, will select the
cheapest one, and will inform the other agents about the result. The agent that sent the offer
selected by the coordinator will commit the reservation.

The agents, however, must be able to react on failures and exceptions during the execution of
this process. For example, if the coordinator fails, another agent must be chosen to play the
coordination rule. Also, if an agent does not find an appropriate offer by a flight company, it
might move to another company of the list.

Mobile groups are thus a suitable abstraction to support the coordination between the agents
in this scenario, i.e., to enable the agents to react on failures and to act consistently. The set of
agents used in the business trip arrangement will form a mobile group. Each agent represents
a process of the group. With the support provided by mobile groups, at any time each agent
taking part in the group will have a consistent view of the set of agents that mutually consider
each other operational. If the coordinator fails, the other agents will eventually know about
this. A new coordinator can then be elected by applying some predefined rule on the set of
operational agents (for example, distinct priorities might be assigned to agents and the agent
with the highest priority in this set will be the next coordinator). The new coordinator can
then, for example, create a new agent to complete the set of three agents looking for offers.
Additionally, since mobile groups provide also a consistent view about the location of agents
while they move, when an agent decides to look for offers of a company, it will not move to
companies it knows were already visited by other agents of the group.

��� 5HODWHG�:RUN

Mobile groups are an extension of the traditional concept of process groups. In traditional
process groups, such as Horus [9], Transis [4] and Newtop [6], processes are static, i.e., they
remain at the same place in the distributed environment during its whole life time. Movement
of a process in traditional group communication systems could be implemented by making the

1 We are not going to argue in this paper on the applicability of mobile agents to this example. The rea’der can
find reasons for using mobile agents in scenarios like this elsewhere, for example, in [15].

68

moving process leave the group before the movement and join it again after the movement.
The group communication system, however, would recognize these operations (leaving and
joining the group) as two distinct operations for two different processes, since in those group
systems, when a process joins a group, it obtains a new identification. In mobile groups, a
process can migrate from a place in the distributed environment to another, while belonging to
the group. The mobile group system recognizes the movement action for the same process,
before and after the movement. Considering the movement as a single group operation allows
a more efficient implementation of the group service and makes possible the synchronization
of messages with relation to migration. Using traditional group communication protocols on
top of a layer providing process migration transparency (as, for example, provided by systems
such as Voyager [19]) would not provide a satisfactory solution either, since process mobility
would be hidden from the group service, making it cumbersome to implement some
functionality such as synchronization of messages with relation to movement.

Previous work incorporated process movement in group communication services in the
context of mobile computing (environments with mobile devices). Some examples of work in
this context are: algorithms for causal ordering [26, 27, 28]; algorithms for atomic multicast
[29]; causal and total ordering of messages [30]; and a membership service [31, 32]. In these
environments processes start and terminate their executions on the same host. However, since
a host may be mobile, a process might change its (physical) location in the environment when
the host where it is moves. In mobile groups we are considering that the hosts where
processes are running are not mobile, but migrating processes can move from a host to
another. Both problems are similar in the aspect that a process of a group is changing its
location in the distributed environment. They are different, however, in other aspects, such as
scalability (we can expect much more mobile agents, for example, than mobile devices) and
in the way messages are routed to the recipients (routing handled at the application level, in
the case of mobile agents, and in the network level, in the case of mobile devices). The
algorithms proposed for group membership in mobile environments, however, do not tolerate
host failures [31, 32] or would restrict the possibility of exploring locality if adapted to be
used with mobile agents [32] (the algorithm in [32] is based on a static server with which the
group members must communicate even if the whole group has moved occasionally to a local
network located far from the server).

In the context of mobile agent systems, different forms of interaction between agents were
proposed. Existing mobile agent systems (e.g., Voyager [19] and Aglets [33]) provide
currently many forms of communication between agents (Remote Method Invocation, events,
unreliable multicasts, etc.). In [34] the authors extend Linda to integrate mobility. In [35] a
concept for coordinating groups of agents is described, but which is not fault tolerant. To the
best of our knowledge no previous work exists that described a concept for supporting
guarantees such as the ones provided by traditional group communication systems to mobile
agents.

��� 6\VWHP�0RGHO�DQG�$VVXPSWLRQV

We assume a distributed system as a collection of mobile and static SURFHVVHV��ORFDWLRQV�and
FRPPXQLFDWLRQV�FKDQQHOV. A location represents a logical place in the distributed environment
where processes execute. When a mobile process migrates, it moves from a location to
another. Due to its movement capability, a process may be at different locations at different
time instants. Processes at different locations communicate by exchanging messages through
the communications channels.

69

Let /� �{�O���O���������OQ�} denote the set of all possible locations. Let P be the set of all possible
processes. A mobile group is denoted by the set of processes J� �^�S���S���������SQ�`��g ⊆ P. On a
mobile group, four operations are defined:

� join(g, p): issued by process p, when it wants to join group g ;

� leave(g, p): issued by process p, when it wants to leave group g;

� move (g, p, l): issued when a mobile process p wants to move from its current location
to location l;

� send(g, p, m): issued by process p when it wants to multicast a message to the members
of group g.

Each functioning process S of a mobile group has an associated *URXS�6HUYLFH which is in
charge of assessing the group membership modifications and message delivery. We
distinguish between a message being UHFHLYHG�by a *URXS�6HUYLFH�through the communication
channel and a message being GHOLYHUHG to S�by the Group Service. The delivery of a message
to a process can be delayed by the Group Service to satisfy synchronization requirements
enforced by the system. Messages are delivered to processes according to the view synchrony
semantics, presented in section 5.

Besides receiving messages, a process S also LQVWDOOV� YLHZV. Views in mobile groups will
reflect not only group membership, but also the locations where the processes in the group
are. During its life time, a process S may install multiple views. Each view is associated with
a number which increases monotonically with group view installations.

A view represents a mapping between processes of group J and locations of the distributed
environment. Let &(g) = { (S��O) | S�∈ �J and O�∈ �/ } denote the cartesian product of J and /.
We use YM

L�J� to denote the view number L of J installed by process SM. A view YM
L�J� ⊆ &�J� is a

subset of &�J� such that there is an element �S��O� ∈ YM
L�J� if S is in J at location O when YM

L�J�
was established.

We consider that a process S installs a view when actually the Group Service associated with
S installs the view on behalf of S.

When the distinction between groups is not relevant for the understanding, the parameter that
identifies the group will not be used in the notations. That is, the operations on a group and
views will be denoted MRLQ�S���OHDYH�S����PRYH��S��O���VHQG�S��P�� DQG�YM

L.

We consider the communication channels to be reliable, i.e., message delivery in sequential
order (FIFO order) is guaranteed. We assume that message transmission and processing times
cannot be accurately estimated (i.e., an asynchronous system) and that processes fail only by
crashing, i.e., by stopping functioning without producing any further action.

As will be seen later in this paper, our group membership protocol is based on a consensus
module in order to reach agreement on the new views to be installed by operational group
members. The consensus problem can be informally defined in the following way. Each
process proposes a value, and all fault-free processes have to agree on a common value which
has to be one of the proposed values. The Consensus problem constitutes a basic building
block on top of which solutions to practical agreement problems can be designed. However,
solving this problem in asynchronous distributed systems where processes can crash is far
from being a trivial task. More precisely, it has been shown by Fischer, Lynch and Paterson
[3] that there is no (deterministic) solution to this problem as soon as processes (even only
one) may crash. The major advance proposed to circumvent this impossibility result lies in the

70

Unreliable Failure Detector concept, proposed and investigated by Chandra, Hadzilacos and
Toueg [1, 2]. The weakest conditions that have to be satisfied to solve the consensus problem
have been identified [2] and, accordingly, several protocols have been proposed to solve the
consensus problem [1, 10, 11, 12, 14].

A failure detector is a sort of distributed oracle which gives (unreliable) hints about the state
of processes. It is basically defined by two properties: a FRPSOHWHQHVV property that is on the
actual detection of failures, and an DFFXUDF\ property that limits the mistakes a failure
detector can make. Chandra and Toueg have defined several FRPSOHWHQHVV and DFFXUDF\
properties that allowed them to define eight classes of failure detectors. Among them, the
class ◊S is the most attractive since it imposes the weakest conditions on the run time
environment. This class includes all the failure detectors that VDWLVI\� VWURQJ� FRPSOHWHQHVV
(eventually, every crashed process is suspected by every correct process), and HYHQWXDO�ZHDN
DFFXUDF\ (there is a time after which there is a correct process that is never suspected). Ways
to implement the failure detector ◊S have been presented elsewhere [13, 36].

As our group membership service makes use of the ◊S consensus protocol as specified by
Chandra-Toueg in [1], we assume in our system model the existence of a distributed ◊S
failure detector. Furthermore, we also assume that a majority of processes of a group view
does not crash as required by the ◊S Consensus protocol. That is, if views YN

L�J� and YN
L���J�

are installed by process SN, then YN
L���J� will include the majority of processes of view YN

L�J�.

We will use the primitive FD[S] to inquire the failure detector ◊S. Thus, FD[S] = WUXH means
that process S was suspected by the local failure detector module.

For interacting with the ◊S Consensus module, we make use of the primitives 3URSRVH�LQSXW�
YDOXH� and 'HFLGH�RXWFRPH�YDOXH�. The first allows us to propose a given value to the
consensus, and the latter will return the outcome from the consensus.

��� 0RELOH�*URXS�0HPEHUVKLS

The Group Membership Problem consists traditionally of determining the set of group
members which are operational in a given instant of the group existence. This set, called the
group view, can change dynamically on the occurrence of process crashes or when processes
deliberately leaves and joins the group. Every time a change occurs in the group membership
view, a new view is installed at every (operational) process member. The main challenge of
the group membership protocol is to ensure that each group member installs an identical
sequence of views. In other words, the group members will perceive the evolution of the
group membership in a mutually consistent way.

In mobile groups an additional event causes the generation of a new view for the group: the
movement of a process. Ensuring now that each group member will install an identical
sequence of views will provide the group members with a mutually consistent view of the
group in relation to process crashes, joins, leaves DQG�PRYHPHQW�RSHUDWLRQV. Messages sent to
the group will be synchronized in relation to all these events.

�����7KH�0RELOH�*URXS�0HPEHUVKLS�3URSHUWLHV

We consider that when a mobile group J is created, every group member SN�installs an initial
view YN

� = { (S���O�����S���O�����������SQ��OQ�}. For each pair (SL��OL) ∈ YN
�, OL denotes the location in

the distributed environment where SL�is. After the initial view is installed, any modification on
the structure of the mobile group (migrations, addition or deletion of members) will result in

71

new views being installed, forming the sequence YN
��� YN

������� YN
P where P represents a given

moment on the view evolvement history.

Process S multicasts messages only to those processes of its current view. A process S that
does not belong to a group J communicates with J by sending messages to one of the group
members.

In this paper, we will only consider the so-called primary partition membership [5] where a
unique sequence of views is installed for a given mobile process group. Primary partition
membership is convenient, for example, for implementing fault-tolerant migration of mobile
agents with mobile groups. The existence of concurrent views which is dealt with by
partitionable membership protocols [4, 6] will be explored in future works.

9LHZ�3URSHUWLHV

Let Y�J�� �{�S���O�����S���O����������SQ��OQ�} be a view of group J. We will denote by Y�J��3 the set
of processes that occur in Y�J�, i.e., Y�J��3 = { S �S��O� ∈ Y�J�, for some O� ∈ /}. In order to
simplify the notation, we will say that a process S ∈ Y�J� iff S ∈ Y�J��3.

Let J� �^�S���S��������SQ�` be a mobile group. The views installed by processes belonging to J
must obey the safety and liveness properties defined below.

6DIHW\�3URSHUWLHV

9DOLGLW\�� : if a process SM ∈ J installs a view YM
L�J�, then SM ∈ YM

L�J�.

9DOLGLW\���: if a process SM ∈ YN�
L�J��3�±�YN

L���J��3, L > 1, then SM asked to join J.

9DOLGLW\���: if a process SM ∈ YN
L���J��3�±�YN

L�J��3, L > 1, then SM asked to leave J or it has been
suspected of crashing by some group member.

9DOLGLW\�� : if the pair (S��O¶) ∈ YN
L�J� and (S��O) ∈ YN

L���J� and O�≠�O¶, then S asked to move from
O to O¶.

Validity01 states that only the members of a group view install the corresponding view.
Validity02, Validity03, and Validity04 state that modifications on the group view are justified
only by joins, leaves, crashes or crash suspicions, and movements.

$JUHHPHQW� : if a process SM ∈ YM
L�J� installs YM

L���J� and a process SN ∈ YM
L�J� also installs

YN
L���J�, then YM

L���J� = YN
L���J�.

8QLTXH� VHTXHQFH� RI� YLHZV : Let YL
N and YM

N be the view of number N installed by SL and SM,
respectively (view number N = NWK view installed only for the processes which installed the
initial group view). Then, YL

N is necessarily equal to YM
N. In other words, ∀ N�� L�� M if SL and SM

install views vL
N and YM

N��then�vL
N = YM

N.

Unique sequence of views is a necessary condition for the so-called primary component
membership where only one component of the group is allowed to make progress (i.e., groups
are not allowed to split into, disjoint, subgroups). In order to enforce this behavior it is
required that the majority of processes in a view YM

L assent in the composition of view YM
L��.

Also, observe that agreement, as defined above, does not necessarily implies an unique
sequence of views since processes may join the group later, without installing the initial group
view Y�.

72

/LYHQHVV�3URSHUWLHV

Termination01 : if a process SM ∈ YN
L�J� leaves J or crashes and some group member remains

operational, then there will be at least one operational process SK�of J�that installs YK
O��J���O�!�L�

such that SM ∉ YK
O�J�.

Termination02 : if a process SM asks to join J� and� SM and some group member of J remain
operational then there will be at least one operational process SN of J that installs YN

L�J� such
that SM ∈ YN

L�J�.

Termination03 : if a process SN of a pair �SN���O� ∈ YN
L�J� asks to move to location O¶ and it is not

excluded from the group, then there will be at least one operational process SK ∈ YN
L�J� that

installs YK
L�U�J� such that (S��O¶) ∈ YK

L�U�J� and (S��O) ∈ YK
L�U���J���U�!��

0HVVDJH�'HOLYHU\�3URSHUWLHV

A message P UHFHLYHG�by the network transport layer is stored in the group system’s local
buffers and is delivered only when the delivery properties can be satisfied. If
J� �^S���S��� ����� SQ� `� is a mobile group, let GHOLYHU�P��SL�� N��� SL� ∈ J�denote the delivery of a
message P to process SL in view YL

N�J�.

We define the following safety and liveness message delivery properties for our mobile
process groups:

6DIHW\�3URSHUW\

Consider processes SL and SM, SL ∈ J, SM ∈ J�

MD1 (ATOMICITY): If SL installs views YL
N�J� and YL

N���J� and SM installs views YM
N�J� and

YM
N���J�, then GHOLYHU�P��SL��N��⇔�GHOLYHU�P��SM��N�. This is the all or nothing message delivery

property. That is, any two member processes of J that install two consecutive views, deliver
the same set of messages between them.

As a result of MD1, any two member processes of g that never crash nor suspect each other,
deliver the same set of messages between two consecutive views.

/LYHQHVV�3URSHUW\

MD2 (LIVENESS): If a process SL sends P in view U, then provided it continues to function as
a member of J, it will eventually deliver P in some view YL�

U¶���U¶�≥��U.

Properties MD1 and MD2 together enforce a sort of virtual synchrony similar to the one
initially proposed by Birman [5] and correctly formalized in [37]. Birman’s virtual synchrony
requires that U = U¶�in the MD2 and can be implemented by blocking sending messages during
the view installation procedure. Instead, our definition is more related to the ones proposed in
Transis [4] and Newtop [6] systems which differ from ours by the fact that they were
primarily intended to partitionable memberships.

�����7KH�0RELOH�*URXS�0HPEHUVKLS�3URWRFRO

The group communication system consists of the group membership service, a multicast best-
effort primitive, called PFDVW, a reliable multicast primitive, called UPFDVW, and a consensus
service.

A process sends a message P to a group J by multicasting P to all members of J. The
primitive PFDVW�P�J� causes the delivery of P to J as long as the sender process does not
crash. The sending process identifier is recorded in the multicasted message.

73

The primitive UPFDVW�P�J��will deliver a message P�atomically to all members of group J.
That is, if P is UPFDVW to J and at least a member of J delivers P, all processes of J will also
deliver P. The primitive UPFDVW� is more expensive to implement than PFDVW, since it must
guarantee the all or nothing effect. A simple way of implementing UPFDVW�P�J�� from a
PFDVW�P�J� is as follows. Every member of J that receives P�for the first time��relays P to J
before delivering P�[1].

As mentioned in section 2, our membership service is based on the execution of the ◊S
Consensus protocol. Therefore, we assume the existence of the primitives SURSRVH�LQSXW�
YDOXH� and GHFLGH�RXWFRPH�YDOXH� which are used to propose an input value for the consensus
and decide the consensus outcome, respectively.

+DQGOLQJ�3URFHVV�&UDVKHV

Consider a message P sent to a mobile group J. When P is received by a destination process
S��S�∈ �J��P is immediately delivered to S and stored in a local buffer called XQVWDEOH until P is
known to be stable (i.e., received by all processes in g). If a message remains unstable for too
long, the membership service will start a new view installation procedure for removing
possibly crashed processes from the current membership view and delivering the unstable
messages not yet delivered. This procedure, which is carried out through a consensus
protocol, guarantees that all correct2 members deliver the same set of messages and the same
sequence of views. Additionally, messages are delivered at operational processes in the same
view. In other words, processes deliver the same set of messages between two consecutive
views installed. In the example of figure 1, S� crashed before finishing the multicast of P in a
way that S� has received (and delivered) P but not S�. After suspecting the crashing of S�, S�
and S� will start a procedure of view installation to recover the missing message P and deliver
it to S� before installing the new view (N��) which does not include S�.

Figure 1. View Installation with Virtual Synchrony

As mentioned before, processes try to install a new view whenever one or more locally
delivered messages remain unstable longer than a predetermined timeout period. To recover
unstable messages, the group processes will engage themselves in a recovery phase where
they exchange their unstable sets. Afterwards, the view installation will only progress if any
of the operational group members fail in sending the corresponding unstable set (notice that a
real crashed process that failed in sending the acknowledgement to a given message will also
fail in sending the unstable set). Such processes – those which did not send the unstable set -
are considered as crashed and a new view will be installed which does not include them. We

2 A FRUUHFW process is a process that does not crash neither is excluded from the group.

S�

P

P

Y�
N�
 �Y�

N�
 �Y�

N�
 ^S���S���S�` start new view

installation

S�

S�

crash

Y�
N��
� �Y�

N��
� �^S���S�`

74

should bear in mind, however, that those suspected processes may be just too slow (due to a
overloaded site or connection link, for instance). Although a false suspicion3 may cause the
removal of an operational process from a group, the membership service presented in this
paper will do this removal in such a way that the membership information will always be kept
mutually consistent among all the processes that are not suspected. Let us assume that all the
processes maintain the set XQVWDEOH to record the unstable messages. This set is a global
variable initialised empty and updated through the message stability assessment task and the
procedures of the membership protocol. FXUUHQWYLHZ is a global set and represents that latest
view installed by a process. That is��given a group J��FXUUHQWYLHZ is formed by pairs �SL�� OL�,
SL ∈ J and OL ∈ /, where OL is the current location of process SL. Below the mechanism used by
each group member to assess the message stability is presented.

0HVVDJH�6WDELOLW\�$VVHVVPHQW�7DVN
�ODXQFKHG�E\�D�SURFHVV�S�IRU�HYHU\�VHQW�RU�UHFHLYHG�PHVVDJH�P�
��VHW�WLPHRXW�P�
��XQVWDEOH�←�XQVWDEOH�∪ ��^P`�����SXWV�P�LQWR�VHW�XQVWDEOH��
�:DLW�XQWLO
������∀ �T∈ �FXUUHQWYLHZ��UHFHLYHG�P�DFN���WKH�UHFHLSW�RI�P�ZDV�DFNQRZOHGJHG�E\�DOO�PHPEHUV��
������RU
������H[SLUHV�WLPHRXW�P��
��LI�∀ �T�∈ �FXUUHQWYLHZ���UHFHLYHG�P�DFN�
����WKHQ
������FDQFHO�WLPHRXW�P��
������XQVWDEOH�←��XQVWDEOH�±�^P`�����UHPRYHV�P�IURP�WKH�VHW�XQVWDEOH��`
���HOVH
������EHJLQ
��������N� �N��������LQFUHPHQWV�WKH�YLHZ�FRXQWHU��
���������UPFDVW��FKDQJH9LHZ5HTXHVW��N������WU\�WR�LQVWDOO�D�QHZ�YLHZ�N��
�����HQG

The membership protocol works by all group members executing the ◊S consensus on a new
view to be established as well as the set of messages not yet known as being stable. After
reaching consensus, each group process first delivers the unstable messages from the
consensus execution that have not been delivered yet and then installs the new agreed view.
Notice that there may exist several concurrent consensus executions, each one identified by
the number N of the new view to be stabilized. Though we present here a novel protocol, the
use of multiple consensus executions for solving agreement problems (such as static
membership and atomic broadcast) have been presented in other works [1, 38].

The membership protocol working on behalf of a group member SL consists of the task below
that is activated whenever a message remains unstable longer than a predetermined timeout
period. During the new view establishment process, all the group members are required to
send their unstable sets and the new view will be formed by removing those processes which
were suspected by the local failure detector FD, provided that a majority of the processes
(whether suspected or not) have sent the unstable sets. Given a group J with the
corresponding process locations, and a process SL ∈ J, QHZYLHZ denotes a set formed by pairs
�SL�� OL�, SL ∈ J and OL ∈ / (QHZYLHZ�/>L@� � OL���The global variable YLHZQXPEHU� denotes the
number of a view installed by a process SL. FXUUHQWYLHZ�and YLHZQXPEHU together indicate the

3 Timeout values should be carefully chosen in order to make false suspicions rare.

75

process view in a given moment of a process view evolvement. For example, when
YL

N��= {S�, S�}, then YLHZQXPEHU = N and FXUUHQWYLHZ�= {S�,�S�}.

&KDQJLQJ9LHZ�7DVN�
 ����8SRQ�UHFHLYLQJ��FKDQJH9LHZ5HTXHVW��N��PHVVDJH
�����'2�EORFN�ORFDO�GHOLYHU\�DQG��PFDVW�XQVWDEOH��N��LI��XQVWDEOH�N��KDV�QRW�EHHQ�PXOWLFDVW�\HW�
���FROOHFW�WKH�XQVWDEOH�PHVVDJHV�IURP�DOO�QRQ�VXVSHFWHG�JURXS�PHPEHUV�
�����SURYLGHG�WKDW�D�PDMRULW\�RI�WKHP�KDV�VHQW�WKHLU�XQVWDEOH�PHVVDJHV��
����:DLW�XQWLO�>∀ �T∈ �FXUUHQWYLHZ���UHFHLYHG��XQVWDEOH�N��IURP�T�RU�)'�T�� �WUXH@

DQG�IRU� �Q����� �SURFHVVHV�T���UHFHLYHG��XQVWDEOH�N��IURP�T
�����DOOOXQVWDEOH�� ��^PHVVDJH����PHVVDJH�∈ �XQVWDEOH��DQG��UHFHLYHG��XQVWDEOH�N�`
�����QHZYLHZ�� �FXUUHQWYLHZ��±�^�T�O�� �T∈ �FXUUHQWYLHZ�3�DQG��XQVWDEOH�N�
��ZDV�QRW�UHFHLYHG�IURP�T`
��UXQ�FRQVHQVXV�N��
����3URSRVH�N��DOOXQVWDEOH��QHZYLHZ�
����:DLW�XQWLO�GHFLGH�N��DOOXQVWDEEOH��QHZYLHZ��
��GHOLYHU�WKH�DJUHHG�XQVWDEOH�PHVVDJHV�QRW�GHOLYHUHG�\HW��
����'HOLYHU�DQ\�P�∈ �DOOXQVWDEOH� P�KDV�QRW�EHHQ�GHOLYHUHG�\HW
��LQVWDOO�WKH�QHZ�YLHZ�N�RQO\�LI�WKH�FXUUHQW�YLHZ�ZDV�PRGLILHG��
���� ,I�QHZYLHZ� �FXUUHQWYLHZ�WKHQ��H[LW��`��LW�ZDV�D�IDOVH�VXVSLFLRQ��
��LQVWDOO�WKH�QHZ�YLHZ�N�LI�SL�VWLOO�EHORQJV�WR�YLHZ�N��
����,I�SL�∈ �QHZYLHZ�3�WKHQ�^YLHZQXPEHU�� YLHZQXPEHU������FXUUHQWYLHZ�� �QHZYLHZ�`
������(OVH�³FRPPXQLFDWH�SURFHVV�SL�WKDW�LW�KDV�EHHQ�UHPRYHG�IURP�WKH�PRELOH�JURXS´
����8QEORFN�GHOLYHU\

+DQGOLQJ�0RYHV

A group process SL willing to move to a new location O must issue the operation PRYH�SL�O�. As
a result, the mobile group service will first make sure that there are conditions to the required
migration. If so, the location information of SL is updated and the ChangingView task is started
to try to install the new view with the new location for SL.

As happens with crashes, joins, and leaves, a new process location is established in all group
members by installing a new view through a consensus procedure. This consensus procedure
is required since all the events (crash, joins, leaves, and message delivery) should be ordered
with respect to the new process location installation. Below are the steps performed by the
mobile group system in order to move a process SL to a given location O.

0RYH�SL��O����/* moves process SL to location O ; */
����(QTXLUH�WKH�UHPRWH�ORFDWLRQ�DERXW�WKH�LQVWDOODWLRQ�RI�D�QHZ�SURFHVV
����,I�PRYHPHQW�LV�DXWKRULVHG�WKDQ�VWDUW�WKH�PHPEHUVKLS�VHUYLFH�RQ�WKH�UHPRWH�SODFH
������HOVH�^H[LW��UHWXUQ�HUURU�FRGH`
����FXUUHQWYLHZ�/>L@�� �O�
����N��� �N�����
����UPFDVW�&KDQJH9LHZ5HVTXHVW��N�����WU\�WR�LQVWDOO�D�QHZ�YLHZ��
����DZDLW�&KDQJH9LHZ�WDVN�WR�ILQLVK�
����LI��SL�∈ �FXUUHQWYLHZ�3�DQG�FXUUHQWYLHZ�/>L@� �O
������WKHQ
�������^�PLJUDWH�SL�WR�UHPRWH�ORFDWLRQ
���������LQVWDOO�FXUUHQW�YLHZ�DW�UHPRWH�ORFDWLRQ
��������IRUZDUG�WR�WKH�UHPRWH�ORFDWLRQ�DOO�WKH�UHFHLYHG�EXW�QRW�GHOLYHUHG�PHVVDJHV
��������)LQLVK�WKH�ORFDO�SL�`

76

Due to space limitations we will not present in this paper the operations and correctness
proofs connected with process joins and leaves. The proofs and operations for joins and leaves
are quite similar to the ones presented here and can be found in the complete version of our
work [22].

&RUUHFWQHVV�RI�WKH�3URWRFRO

3URRIV¶�VNHWFK

In order to present the correctness of the membership protocol, we must show that the safety
and liveness properties, namely, validity, agreement, unique sequence, termination, and the
messages delivery properties are satisfied in any execution of the protocol. Below we show
how all these properties are satisfied by the protocol composed by the message stability
assessment and ChangeView tasks, and the move operation actions. The letters C and M will
be used to indicate the statement lines of the ChangeView task and move operations,
respectively (e.g., C10 stands for statement line number 10 of ChangeView task).

9DOLGLW\���: if a process SM ∈ J installs a view YM
L�J�, then SM ∈ YM

L�J�.

Observe that, by assumption, there is an initial view that is installed by all processes that
appear in it. Afterwards, modifications to the group membership (by modifying the global
variable FXUUHQWYLHZ), are carried out only under the condition that the process which installs
the new view belongs to it (C10).

9DOLGLW\���: if a process SM ∈ YN
L���J��3�±�YN

L�J��3, L > 1, then SM asked to leave J or it has been
suspected of crashing by some group member.

If SM ∈ YN
L��(g).P – vk

i(g).P}, i > 0, is because process SM was removed from the group
membership before view YN

L�J��was installed. On the other hand, a new view is formed only
by modifying the variable QHZYLHZ�(C5) which is latter subjected to the consensus procedure
in the body of the ChangingView task (C6). The consensus outcome for QHZYLHZ (which by
definition is proposed by one of the processes of YL��(g))�defines then the new set of processes
of the group (C7 and C11). Finally, notice that the QHZYLHZ maintains all the processes of
FXUUHQWYLHZ except those which are suspected of crashing by some group member (i.e. have
not sent the corresponding unstable set). Therefore, if SM is not in YN

L�J��� it is because it has
been suspected by some group member. The proof for leave is analogous.

9DOLGLW\���: if (S��O¶) ∈ YN
L�J� and (S��O) ∈ YN

L���J� and O�≠�O¶, then S asked to move from O to O¶.

Verification of validity04 is trivial from the execution of PRYH(S��O¶) operation which changes
the location of the process before launching a new view installation (M3).

$JUHHPHQW� �� if a process SM ∈ YM
L�J� installs YM

L���J� and a process SN ∈ YM
L�J� also installs

YN
L���J�, then YM

L���J� = YN
L���J�.

Agreement can be proved by induction on the numbers of view installed during a group g
lifetime. First notice that by assumption all processes install the same initial view 1. Now let
us suppose by induction hypothesis that all processes installed view L�� L > 1, respecting the
agreement property. That is, if a process SN ∈ YN

L���J� installs the view YN
L�J� and another

process SU ∈ view YN
L���J� installs view YU

L�J�, then YU
L�J� = YN

L�J� for any SN and SU ∈ YN
L��(g).

Now, we must show that YM
L���J� = YN

L���J�.

The updating of the variables YLHZQXPEHU�and FXUUHQWYLHZ reveals the establishment of a new
view (C10). As YLHZQXPEHU is initialized with value 1 (when the initial view is set) and it is
increased by 1 for every new view installed, when YM

L�J� and YN
L�J� are established, the values

of YLHZQXPEHU for processes SM and SN will be updated to L. The new view YL���is then formed

77

when the value of YLHZQXPEHU� is updated to L�� and FXUUHQWYLHZ� to the set QHZYLHZ in line
C10.

In order to change the view from YL�J��WR�YL���J�� processes SM and SN will construct their own
QHZYLHZ sets (by collecting the identifiers of the processes which the unstable sets have been
received from4 (C5)) which they propose as their input values for the ◊S consensus protocol.
The view YL�� will be formed and installed only after the processes in view YL have decided the
outcome of the corresponding consensus (C6 and C7). As the agreement property of the ◊S
Consensus protocol certifies that every process decides for the same set QHZYLHZ, all
processes that install view YL�� will install the same view.

8QLTXH� VHTXHQFH�RI� YLHZV : Let YL
N and YM

N be the view of number N installed by SL and SM,
respectively (view number N = NWK view installed only for the processes which installed the
initial group view). Then, YL

N is necessarily equal to YM
N. In other words, ∀ N�� L�� M if SL and SM

install views vL
N and YM

N��then�vL
N = YM

N.

Suppose by contradiction there are 2 processes S� and S� that install different sequences of
view and take the first view L of the sequence such that these views are different, for any L > 0.
The agreement property proved above guarantees that process view L of S� and S� are equal.5

/LYHQHHV�3URSHUWLHV

7HUPLQDWLRQ�� : if a process SM ∈ YN
L�J� leaves J or crashes and some group member remains

operational, then there will be at least one operational process SK�of J�that installs YK
O��J���O�!�L�

such that SM ∉ YK
O�J�.

If SM crashes, it will not acknowledge messages sent to J and therefore the ViewChange task
of a operational process SK�will eventually receive the UPFDVW�FKDQJH9LHZ5HTXHVW��N� issued
by the message stability assessment task of SK� By definition, UPFDVW will guarantee that all
operational group members receive the change_view request and, thus, start the membership
service. Since by assumption the majority of processes of YL�J� does not crash and will send
the corresponding (L��, unstable) message, the protocol eventually finishes C3 and define the
new view in C5. Finally, notice that the variable QHZYLHZ (which is used to set a new view in
C10) will not include SM since it will not send the required (L��, unstable) message.

7HUPLQDWLRQ�� : if a process Sk of a pair �SN��O� ∈ YN
L�J� asks to move to location O¶ and it is

not excluded from the group, then there will be at least one operational process SK ∈ YN
L�J� that

installs YK
L�U�J� such that (S��O¶) ∈ YK

L�U�J� and (S��O) ∈ YK
L�U���J���U�!��

After executing the PRYH�SL�O� operation, the ChangeView Request will be received by all
operational group members (as it is transmitted by a reliable multicast) which will in turn start
a new view installation with the new location O of SN (M5) Therefore, the new pair �SN��O� will
be part of the QHZYLHZ set (C5) in all operational group members (as SN will send its unstable
set). Therefore, if SN is not excluded from the group during the view installation procedure
(cause by some other parallel consensus execution), all operational group members will install
the new view YL���J� with the new location of SN�

4 Notice that the QHZYLHZ set will contain the majority of such processes despite false suspicion from the failure
detector FD (C3) since by assumption of the ◊S detector, the majority of processes of YL�does not crash.
5 This proof is only valid if joins are not considered, as with joins processes may have different initial views.

78

0HVVDJH�'HOLYHU\�3URSHUWLHV

6DIHW\�3URSHUW\

Consider processes p and q belonging to g.

0'���$720,&,7<�: If SL installs views YL
N�J� and YL

N���J� and SM installs views YM
N�J� and

YM
N���J�, then GHOLYHU�P��SL��N��⇔�GHOLYHU�P��SM��N�. This is the all or nothing message delivery

property. That is, any two member processes of J that install two consecutive views, deliver
the same set of messages between them.

Consider a message P sent to a group J. Message P�is sent with the PFDVW�primitive. Thus,
unless the sender process crashes during the multicasting of P, P will reach all destinations.
By assumption, unless delivery is explicitly blocked by the membership service, a received
message is immediately delivered after its arrival. Now consider the case when the P sender
crashes in such a way that atomicity is violated. That is, some (but not all) processes will get
the message and others will not. Without loss of generality, let process�S be such a process
which received P. As P sender have crashed, P will remain unstable long enough that S will
try to install a new view to remove the P’s sender by executing the ChangingView Task. In
the ChangingView task, every operational process will multicast its unstable set which may or
not include P (notice that P will be present in the unstable set multicast by S). In the
ChangingView task of an operational process, all the unstable messages will be collected and
a new membership defined with the processes identifiers which the unstable sets were
received from. These two sets, that is, the collected unstable set and the new membership, will
be the input value of a given process for the consensus module. After that, the consensus
module will decide for one of the proposed pairs, and all messages of the collected unstable
set from the consensus outcome will be delivered in all operational processes of the old
membership - before a new view is installed. Therefore, if a process delivered P in the old
view and remains in the new view (established from the consensus), then P will be delivered
to all processes of the new view before the referred new view is installed.

/LYHQHVV�3URSHUW\

0'���/,9(1(66�� If a process SL sends P in view U, then provided it continues to function
as a member of J, it will eventually deliver P in some view YL�

U¶���U¶�≥��U.

First notice that PFDVW guarantees that, as long as the sender of P remains operational, P will
reach all destinations. If no view changes occur, then m will be delivered in YL�

U(g). Suppose
now that a view YL�

U’(g) was installed before the delivery of P and that process SL belongs to
the new view YL�

U’(g). So, if P was not delivered before, then either P will be part of the
collected unstable set, and therefore will be delivered before the new view is installed, or it
will be delivered after the new view is installed.

���&RQFOXVLRQ

We have presented mobile groups as an extension of the traditional concept of process groups
that support their members to migrate between locations of a distributed environment. Mobile
groups provide a reliable form of coordination between migrating processes and thus fulfill
part of the requirements that arise in current distributed applications. For example, for
supporting reliability of mobile agent based applications in electronic commerce scenarios.

In this paper we formalized the properties of a membership service for mobile groups,
presented a membership protocol and proved that it satisfies the defined properties. Mobile
groups support a form of virtual synchrony in which messages are synchronized with not only

79

crashes (suspicious), leaves and join operations of group members, but also with movement
operations. The algorithm presented is based on a ◊S failure detector based consensus and it
implements a primary partition membership protocol. In order to validate our model in
broader environments, we are currently implementing the mobile membership protocol as
defined in this paper on top of a ◊S based general framework intended to solve agreement
problems in a efficient way [10]

To the best of our knowledge this is the first work that provides and formally defines a
concept of group which supports moving processes by integrating the movement events inside
the group communication protocols. By doing that, we were able to enforce semantics for
synchronizing the delivery of messages with relation to movements, and, as a consequence,
we can extend the functionality of the system. For instance, by defining alternative semantics
for message delivery that recognizes a moving process (for example, total order delivery).
That would not be achieved satisfactorily by using traditional group communication systems.

The presented concept is a first step towards developing a form of enabling mobile process
coordination with broader applicability. It complements other efforts that provide reliability of
mobile process based applications, such as the concepts for mobile agent fault tolerance and
transactional support [15, 17, 20]. The concept presented in this paper is being implemented at
LaSiD/DCC/UFBA as part of a reliable distributed platform that will be used to support,
among other applications, the development of a reliable workflow management system.

���5HIHUHQFHV

[1] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the
ACM, 43(2):225-267, March 1996.

[2] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal of
the ACM, 43(4):685--722, July 1996.

[3] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2):374--382, April 1985.

[4] Amir, Y., Dolev, D., Kramer, S., Malki, D. Transis: A Communication Subsystem for High Availability. In
Proc. of the 22nd Int. Symp. on Fault-Tolerant Comp. pp. 76-84, Boston, July, 1992.

[5] Birman, K. The Process Group Approach to Reliable Distributed Computing. Communications of the ACM,
Vol. 9, No. 12. pp. 36-53, December 1993.

[6] Ezhilchelvan, P., Macêdo, R., Shrivastava, S. Newtop: A Fault-Tolerant Group Communication Protocol. In
Proc. of the IEEE 15th Int. Conf. on Dist. Comp. Syst. Vancouver, pp. 296-306, 1995.

[7] Kashoek, M, Tanenbaum, A.. Group Communication in the Amoeba Dist. Op. System. In Proc. of the Int.
Workshop on Parallel and Distributed Systems, Vol.5, No.5, pp. 459-473, May, 1994.

[8] Melliar-Smith, M.P., Moser, L.E., Agarwala, V. Processor Membership in Asynchronous Distributed
Systems. IEEE Trans. on Parallel and Distributed Systems, 5(5):459-473, May1994.

[9] Renesse, R., Birman, K., Cooper, R., Glade, B., Stephenson, P. The Horus System. In K. Birman e R.
Renesse, editores, Reliable Distributed Computing with the Isis Toolkit, pp. 133-147. IEEE Computer
Society Press, Los Alamitos, CA, 1993.

[10] Hurfin, M., Macêdo, R., Raynal, M., Tronel, F. A General Framework to Solve Agreement Problems. Proc.
of the IEEE Int. Symp. on Reliable Distributed Systems, SRDS'99, Lausanne. 1999.

[11] Badache, N., Hurfin, M., Macêdo, R. Solving The Consensus Problem In A Mobile Environment. Proc. of
the IEEE International Performance, Computing, and Communications Conference – IPCCC'99,
Phoenix/Scottsdale, USA: IEEE Press, 1999. p.29-35.

[12] Greve, F., Hurfin, M., Macêdo, R., Raynal, M. Consensus Based on Strong Failure Detectors : A Time and
Message Efficient Protocol. Lecture Notes in Computer Science, v.1800, p.1258-1267, May/2000.

[13] Aguilera, M., Chen, W., Toueg, Using the heartbeat failure detectors for quiescent reliable communication
and consensus in partitinable networks. Theoretical Comp Science, 220:3-30, 1999.

[14] Schiper, A., Early Consensus in an Asynchronous System with a Weak Failure Detector. Distributed
Computing, 10:149-157. 1997.

[15] Assis Silva, F.M.. A Transaction Model based on Mobile Agents. PhD Thesis. Technical University Berlin.
1999

80

[16] Magedanz, T., Popescu-Zeletin, R. Towards ”Intelligence on Demand“ - On the Impacts of Intelligent
Agents on IN. in Proceedings of the 4th International Conference on Intelligence in Networks. Bordeaux,
France. November, 1996

[17] Rothermel, K., Straßer, M. A Fault-Tolerant Protocol for Providing the Exactly-Once Property of Mobile
Agents. Proceedings of the IEEE Symposium on Reliable Distributed Systems (SRDS’98). West Lafayette,
USA. October, 1998. pp. 100-108

[18] Straßer, M., Rothermel, K., Maihöfer, C. Providing Reliable Agents for Electronic Commerce. in Trends in
Distributed Systems for Electronic Commerce - International IFIP/GI Working Conference TREC’98.
Springer. Berlin. 1998. pp.241-253

[19] ObjectSpace. Voyager – ORB 3.1 Developer Guide. Object Space, Inc. 1999
[20] Assis Silva, F.M., Popescu-Zeletin, R. Mobile Agent-based Transactions in Open Environments. IEICE

Transactions on Communications. IEICE/IEEE Joint Special Issue on Autonomous Decentralized Systems.
Vol.E83-B, No.5. Maio 2000

[21] Assis Silva, F.M., Macêdo, R.J.A. Reliability Requirements in Mobile Agent Systems. Anais do II
Workshop de Testes e Tolerância a Falhas (II WTF). SBC. Curitiba. Julho 2000

[22] Macêdo, R.J.A., Assis Silva, F.M. Mobile Groups. Technical Report RI001/01. LaSiD/UFBA (Distributed
Systems Laboratory / Federal University of Bahia). February, 2001.

[23] White, J.E. Telescript Technology: Scenes from the Electronic Marketplace. General Magic. 1994
[24] Cai, T., Gloor, P.A., Nog, S. Dartflow: A Workflow Management System on the Web using Transportable

Agents. Technical Report PCS-TR96-283. Department of Computer Science. Dartmouth College. 1996
[25] Fuggetta, A., Picco, G.P., Vigna, G. Understanding Code Mobility. IEEE Transactions on Software

Engineering. Vol.24, No.5. May, 1998
[26] Alagar, S., Venkatesan, S. Causal Ordering in Distributed Mobile Systems. IEEE Transactions on

Computers. Vol. 46, No. 3. March, 1997
[27] Yen, L.-H., Huang, T.-L., Hwang, S.-Y. A Protocol for Causally Ordered Message Delivery in Mobile

Computing Systems. ACM/Baltzer Mobile Networks and Applications. Vol. 2. 1997
[28] Prakash, R., Raynal, M., Singhal, M. An Efficient Causal Ordering Algorithm for Mobile Computing

Environments. Proceedings of the 16th International Conference on Distributed Computing Systems. May
27-30, 1996, Hong Kong, IEEE Computer Society, 1996

[29] Endler, M. A Protocol for Atomic Multicast among Mobile Hosts. Proceedings of the 1st Brazilian
Workshop on Wireless Communication (1o. Workshop de Comunicação sem Fio - WCSF) ,
UFMG/PRONEX. Belo Horizonte, Brazil. July 1999

[30] Anastasi, G., Bartoli, A., Spadoni, F. Group Multicast in Distributed Mobile Systems with Unreliable
Wireless Network. Proceedings of the Eighteenth Symposium on Reliable Distributed Systems. Lausanne,
Switzerland. October, 1999

[31] Prakash, R., Baldoni, R. Architecture for Group Communication in Mobile Systems. Proceedings of the 17th

IEEE Symposium on Reliable Distributed Systems. Indiana, USA. October, 1998
[32] Bartoli, A. Group-based Multicast and Dynamic Membership in Wireless Networks with Incomplete Spatial

Coverage. Mobile Networks and Applications. Vol. 3. Baltzer Science Publishers. 1998
[33] Lange, D.B., Chang, D.T. IBM Aglets Workbench – Programming Mobile Agents in Java – A White Paper.

IBM Corporation. September, 1996
[34] Picco, G.P., Murphy, A.L., Roman, G.-C. Linda Meets Mobility. Proceedings of the 21st International

Conference on Software Engineering (ICSE'99), Los Angeles (USA), D. Garlan and J. Kramer (eds.). ACM
Press. May, 1999

[35] Baumann, J., Radouniklis, N. Agent Groups in Mobile Agent Systems. Distributed Applications and
Interoperable Systems (DAIS’97). H.König, K.Geihs, T.Preuá (eds.). Chapman & Hall. 1997

[36] Macêdo, R. Failure Detection in Asynchronous Distributed Systems.Proc. of II Workshop on Tests and
Fault-Tolerance (II WTF 2000), pp. 76-81, July 2000, Curitiba, Brazil, Brazilian Computer Society.

[37] Anceaume, E., Charron-Bost, B., Minet, P, and Toueg, S. On the formal specification of group membership
services. Tech. Report 95-1534, Cornell University, Ithaca, USA, 1995.

[38] Guerraoui, R., Schiper, A. Consensus Services : A Modular approach for building agreement protocols in
distributed systems. FTCS’99. IEEE.

81

	cabecalho:
	seta:

