
182 Simpósio Brasileiro de Redes de Computadores 553

Quartz: A QoS Architecture for Open Systems*

Frank Siqueira* and Vinny Cahill

Distributed Systems Group, Department of Computer Science, Trinity College Dublin, Ireland
E-Mail: {Frank.Siqueira, Vinny.Cahill}@cs.tcd.ie

•
Abstract

This paper describes an architecture that provides support for quality of service (QoS)
specification and enforcement in heterogeneous distributed computing systems. The Quartz
QoS architecture hás been designed to overcome various limitations of previous QoS
architectures that have constrained their use in heterogeneous systems. These limitations
include dependencies on specifíc platforms and the fact that their fünctionality is often limited
by design to one particular área of application. Quartz is able to accommodate differences
among diverse computing platforms and áreas of application by adopting a flexible and
extensible platform-independent design, which allows its internai components to be
rearranged dynamically in order to adapt the architecture to the surrounding environment.
Further significant problems found in other QoS architectures, such as the lack of ffexibility
and expressiveness in the specification of QoS requirements and limited support for resource
adaptation, are also addressed by Quartz. This paper describes Quartz in detail, presents its
prototype implementation, evaluates its design based on experience with a number of
applications that use this prototype, and compares Quartz to other QoS architectures.

1. Introduction

Despite the evolution of computing platforms, computational resources such as network
bandwidth, processing time and memory are still scarce due to the increasing complexity of
computer applications. Moreover, there is a category of application that cannot tolerate
uncertainty concerning access to computational resources, demanding that the availability of
resources be predictable. These applications can have different leveis of dependence on the
resources provided by the system, ranging from the strong resource availability guarantees
required by real-time embedded control systems to the best-effort nature of non-critical
Internet-based multimedia applications. With the migration of real-time systems from
specialised architectures to more 'open' environments, predictable services and guaranteed
response times with very low (or even null) error rates are required to support consistent real-
time behaviour. On the other hand, multimedia applications such as multi-party conferencing,
áudio and video broadcast, and distributed co-operative applications are becoming common
despite existing limitations of bandwidth for media transfer and processing power to perform
tasks such as media compression and decompression. The requirements imposed on the
behaviour of the services being provided to an application by the system support are known as
quality of service (QoS) requirements.

The main problem faced by applications with QoS requirements is to guarantee that
system services will be performed while respecting ali of the QoS requirements imposed by

* A slightly reduced version of this paper hás been published in the Proceedings of the 20* IEEE International
Conference on Distributed Computing Systems (ICDCS), Taipei, Taiwan, April 2000.

»This work was performed while the first author was pursuing his Ph.D. in Computer Science at Trinity College.
He is now a researcher with Departamento de Automação e Sistemas at Universidade Federal de Santa Catarina.

182 Simpósio Brasileiro de Redes de Computadores 557

Translation and mapping have a special role in our architecture, which covers a wide
range of QoS information specified at a high levei of abstraction. In Quanta and Arcade, the
mapping and translation of parameters is simplified because of their limited platform
coverage. Quanta adopts a translation mechanism similar to the one proposed by us, but there
are many differences that can be observed. Quanta translators, equivalent to our filters,
involve a more complex translation procedure. In addition, they are not accessible to the user,
and the addition of new classes of applications or network protocols implies that changes have
to be made to the middleware itself. Arcade defines a QoS language for specification of
constraints. Arcade could be emulated by Quartz by using an application-level QoS filter that
interprets its QoS specification language and by providing a system filter and agent that
interact with the Chorus kernel. In addition, we still provide support for establishing network
QoS constraints.

In [20], Waddington affirms that single QoS managers such as the QoS broker adopted by
the OMEGA architecture [21] 'require a huge amount of mapping and management knowledge
to support large-scale distributed applications, and the service management through a single
entity is too centralised and severely inflexible'. We don't incur this problem because QoS
agents encapsulate only the support necessary for specification of QoS capabilities for the
corresponding application field and interaction with the reservation protocols supported by the
end-system. Flexibility and extensibility are guaranteed by the use of filters and component-
specific QoS agents, instead of a monolithic structure such as that adopted by the QoS broker.
Issues regarding resource reservation are handled by the corresponding protocol associated to
the component that provides the resources, with the component-specific agent being
responsible only for the interface with these protocols. Scalability is an intrinsic characteristic
that results from the lightweight and distributed nature of the architecture.

Flexibility and extensibility are favoured by the design of the proposed architecture.
These characteristics are especially important for supporting QoS in open, heterogeneous
systems. QoS architectures such as QoS-A [3] and XRM/xbind [4] are tightly integrated with
the network infrastructure, limiting their use in open systems. Finally, it is important to make
clear that Quartz is targeted at a wide range of platforms, a matter that is not considered by the
other architectures with QoS capabilities described in the literature só far.

5. Conclusions and Future Work

In this paper we have introduced a QoS architecture that deals with QoS constraints
present in distributed applications. Quartz makes the lower-level aspects of resource
reservation transparent for the application, although allowing the necessary control through
notification in the case of resource adaptation. Quartz was designed to allow its use in
heterogeneous platforms, enabling its integration into frameworks for the development of
distributed computing applications with QoS requirements. The design of the architecture
allows its easy extension to support new classes of applications, operating systems and
communication infrastructures by adding components written by the application programmer.

We have developed a prototype of the Quartz architecture that hás been used to provide
mechanisms for QoS specification and enforcement to applications with QoS requirements.
Applications built on top of this prototype show that Quartz handles heterogeneity at both
system and application levei efficiently, without incurring severe performance penalties. In
the future, we intend to extend the platform coverage of the architecture by implementing new
components that would provide support for a wide range of network protocols and operating
systems.

initialise it. The overhead caused by the initialisation of Quartz occurs only once, while the
request overhead occurs every time the application requests a new set of QoS requirements to
be enforced. There is no overhead imposed on the data transmission, which depends only on
the networking infrastructure and on the resources reserved for the communication channel.

4.7. Other Applications

In addition to being used in heterogeneous environments, Quartz can be used in different
application áreas. Besides the use of Quartz for data transfer applications (such as the remote
copy example) other applications are being implemented on top of Quartz in the áreas of
distributed multimedia (the Quartz/CORBA Framework and the Distributed Music Rehearsal
Studio) and real-time telecommunications (the telephone switch application).

The Quartz/CORBA Framework allows distributed multimedia applications to transfer
áudio and video over the network. Media control can be performed remotely by interacting
with regular CORBA objects [15], while the flow of media uses the CORBA A/V streaming
mechanism [16]. The enforcement of QoS requirements specified by the application is
performed transparently by Quartz. The QoS parameters specified through the CORBA A/V
streaming mechanism are interpreted by Quartz by using a new application filter, the A/V
streams filter. After being translated by this filter, the QoS parameters are further processed
by the translation unit and result in reservations at system levei.

The Distributed Music Rehearsal Studio [17], which is an application that is being built
on top of the Quartz/CORBA Framework, allows musicians to play together despite being
geographically separated. The music rehearsal is done by plugging musical instruments to
computers interconnected by a network. The sound produced by each partner is multicast to
the others, mixed, and reproduced in order to provide a feedback to the musician. The QoS
requirements incurring from the bandwidth necessary for transmitting the áudio and from the
performing of encoding and decoding operations are interpreted and enforced by Quartz.

The telephone switch application simulates the allocation and connection of phone trunks
and the process of routing phone calls. A circuit switch filter interprets the requirements that
are present at application levei, which are basically the limited switching times of phone calls
established by telecommunication regulators. This results in deadlines imposed on the
switching process, which are set through a deadline scheduling fllter and agent. At the
network levei, a phone circuit fllter and agent allow phone trunks to be allocated for the call.

The application examples built on top of Quartz show the adequacy of the mechanisms
for specification of QoS provided by Quartz and its suitability for enforcement of QoS in
open systems. In each of the examples, the QoS parameters seen by the application, either
when it specifies its QoS requirements or when it receives a QoS notification, are in the form
of application-specific parameters which are suitable for the particular application área. The
resulting parameters at system levei allow the reservation of resources to be performed by
using the reservation protocols available in the underlying system.

4.8. Comparison with Other QoS Architectures

One of the most important characteristics of the proposed QoS architecture is its capacity
to handle QoS at both operating system and network leveis. This contrasts with other systems
described in the literature that are either network-oriented (and mostly ATM-oriented) such as
Quanta [18] or that are purely system-level QoS architectures such as Arcade [19]. In
addition, independence of operating system and network support provides a common way to
handle QoS in open systems, which are naturally distributed and heterogeneous.

l S2 Simpósio Brasileiro de Redes de Computadores 565

In order to handle the notion of QoS understood at application levei, we nave
implemented a data packet application filter, which interprets QoS as understood by
applications transmitting data packets. The QoS parameters understood by this filter are
described by Table 7. A clear mapping may be noticed between these parameters and the
generic application-level parameters presented in Table 1. This mapping is implemented by
the data packet application filter.

The remote copy application allows the user to specify QoS requirements by providing
values for packet size and packet rate as well as service guarantee (i.e. best-effort, unloaded or
deterministic) through a graphical interface. These values are passed to the QoS agent and
then processed by the data packet filter, by the QoS interpreter, which translates and balances
requirements, and by the corresponding component filters. Finally, the corresponding
component agents reserve the necessary lower-level resources by interacting with the
reservation protocols supported by the network and the operating system.

4.6. Evaluation and Analysis

Importam conclusions can be reached based on the observation of the remote copy
example and on the results of performance measurements executed with this example.

The remote copy example shows that the resource provider can be changed without
interfering with the application code. Independently from the reservation protocol used at the
network levei - i.e. RSVP or ATM - equivalent behaviour was observed from the
application's point of view in regard to the provision of QoS. This shows that, by using
Quartz, the reservation mechanism became transparent for the application despite the different
characteristics of the lower-level reservation protocols. Consequently, applications using
Quartz are highly portable, since the code necessary for requesting QoS behaviour is kept
unchanged independently of the underlying system that is providing resources for the
application. The use of different component agents and filters in this example shows that
Quartz can be used in different platforms, and that the filters can be combined freely in order
to reflect the characteristics of the underlying system.

Performance tests have shown that the overhead added by Quartz to the application is
very small. Table 8 shows typical values of the overhead imposed by Quartz for the remote
copy application. This data was obtained on a Pentium Pró 200 MHz by using the profiling
tools that accompany Microsoft Visual C++ 5.0.

Table 8 - Overhead Imposed by Quartz

The total overhead caused by Quartz in a single reservation (i.e. the time taken to specify,
translate and interact with the resource reservation protocols) is of about 1.2 millisecond for
both ATM and RSVP. This value is considerably less that it takes to open a socket (about l O
ms) or to obtain the host (which in our testbed varied from 5 to 40 ms). The initialisation of
Quartz is also considerably fast even for RSVP, which takes relatively long to initialise; since
in ATM the reservation mechanism is integrated with the transport, no extra time is taken to

The ATM filter translates ATM parameters understood by the ATM Agent and, like other
fílters, supports interface QzTranslation. The translation process occurs in two ways,
downwards from the generic set of system-level QoS parameters defined by Quartz into
ATM-specific QoS parameters, and upwards from ATM-specific parameters into generic
system-level parameters.

The ATM agent gets the ATM QoS parameters and performs reservation of bandwidth by
interacting with the ATM service provider for Winsock2. In addition, it reports any change in
QoS occurred in the network by issuing upcalls through the QzUpcall interface.

4.4. The Windows NT Sub-System

At the operating system levei we have adopted Windows NT as the platform for the
deployment of this prototype of Quartz. As a result, a system agent and a filter have been
developed for this operating system.

The provision of QoS in Windows NT is limited. We make use of the real-time priority
class and of mechanisms for memory locking to provide a more predictable service, which is
still non-deterministic. Consequently, only two QoS parameters are defined for Windows NT:

• winNT: :PriorityLevei: defines the priority levei of a process; used by the operating
system to schedule access to the processor.

• winNT: :MemoryPaging: determines if the memory allocated by the process will be subject
to paging operations, which introduce unpredictable delays and may degrade performance.

The Windows NT filter translates between Windows NT parameters and the generic
system-level parameters defined by Quartz in both ways. It inherits from class
QzTranslation and implements the translation methods defined by this class.

The system agent for Windows NT sets the priority levei of the client application and
controls the execution of paging operations. In addition, it issues upcalls when the requested
guarantees (e.g. deterministic guarantees) cannot be provided.

4.5. The RCP Application

A remote copy daemon and client, equivalent to the UNIX 'rcp' daemon and command,
have been implemented using the prototype. This application is able to use either TCP, UDP
(including multicast) or ATM for data transfer, and a graphical interface allows the user to
select the required protocol and the desired QoS parameters. Quartz was used as a means of
reserving resources for the multiple network supports without adding complexity to the
application. According to the network reservation protocol being used, a suitable pair of
system agent and filter is plugged into the QoS agent. The RSVP agent and filter are used for
TCP and UDP, while ATM requires its own filter and agent.

Parameter Name
DPkt:
DPkt :
DPkt:
DPkt:

DPkt:

DPkt:

:PacketSize
: DelayBetweenPackets
: EndToEndDelay

: ErrorRatío
:Guarantee
: Securi tyLevel

Description
Size of packets (in bytes)
Time between production of two packets (in |is)
Time between production and consumption of a packet (in |is)
Acceptable error ratio (in bits per million)
Guarantee levei (best-effort, deterministic, etc.)
Security levei (none, encrypted, etc.)

Table 7 - Parameters Recognised by the Data Packet Filter

182 Simpósio Brasileiro de Redes de Computadores 563

4.2. The RSVP Sub-System

We have implemented a system filter and a system agent for the RSVP protocol. In
addition to the network support provided by the operating system, we use the implementation
of RSVP developed by Intel, called PC-RSVP, currently in beta version.

The RSVP filter is responsible for translating QoS parameters understood by the RSVP
protocol, and supports the public interface QzTransiation. The translation process occurs in
two ways, downwards from the generic set of system-level QoS parameters defined by Quartz
into RSVP-specific QoS parameters, and upwards from RSVP-specific parameters into
generic system-level parameters. The QoS parameters defined for RSVP use a token bucket to
model the data traffic. The parameters recognised by the RSVP filter are listed and described
by Table 5.

Parameter Name
RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

RSVP:

:TokenRate
:BucketSize
:PeakRate
:MinPoliced
:MaxPktSize
:Rate
:SlackTerm
: FlowType
:DataTTL

:ReservationStyle

:Policy

Description
Rate in which tokens are produced (in bytes/s)
Size of the bucket (in bytes)
Maximum data rate (in bytes/s)
Minimum amount of data subject to the policy (in bytes)
Maximum packet size (in bytes)
Rate (in bytes/s; only for deterministic service)
Slack (in microseconds; only for deterministic service)
Type of data flow (deterministic, best-effort, etc.)
Time to live (in hops; local área by default)
Style of reservation filter (fixed filter by default)
Policy to be used by the policy control component

Table 5 - RSVP QoS Parameters

The RSVP agent performs resource reservations upon receipt of a call to QoSRequest and
calls method QoSReport on the upcall interface when application-level adaptation is
necessary.

4.3. The ATM Sub-System

A system filter and system agent for ATM networks have also been implemented.
ForeRunner LÊ 155 Mbps PC cards and a Fore Systems ASX 100 switch have been used for
this purpose. We also rely on the WinSock2 service provider that is supplied by Fore Systems
together with the hardware.

The parameters defined for the ATM sub-system are listed and described by Table 6.
These parameters correspond to the fields of the data structure used for performing resource
reservations using Fore Systems' ATM Service Provider for WinSockl. Consequently, the
ATM Agent just hás to collect this information, fill in a data structure and call the appropriate
routine provided by WinSock2 in order to perform a reservation.

Parameter Name
ATM: :PeakCellRate
ATM: : SustainableCellRate
ATM: :MaxBurstSÍze

ATM: :QoSClass

ATM: :Tagging

Description
Max. rate in which cells are produced (in cells/s)
Long-term cell rate (in cells/s)
Maximum cell burst (in ms)
Type of data flow (CBR, VBR, best-effort, etc)
Tag non-compliant cells as subject to be discarded

Table 6 - ATM QoS Parameters

The common core of the implementation consists of the components of the architecture
that are independent of the lower-level platform and of the application área. Two categories of
components make up the Quartz core: components responsible for translation of QoS
parameters, such as filters and the QoS interpreter, and the agents, such as network and
operating system agents and the QoS agent. Two interfaces are defined by Quartz, one for
each categories of components. In addition, one interface is defined for allowing interaction
between the components of the architecture and their clients.

Two standard translation components make up the Quartz core: the default QoS
interpreter and the bypass fllter (the default filter, which simply forwards QoS parameters
untouched).The interface supported by translation components, called QzTransiation, is
described in Pseudo-IDL in Figure 3. This class defines the methods that perform translation
of QoS parameters in both directions of translation, handling parameters stored in a data
structure called QzQos.

struct QzQoSParam {
string param__name;
unsigned long param_value;

typedef sequence <QzQoSParam> QzQoS;

interface QzTransiation (
QzQoS TranslateQoSDownwards (in QzQoS upper_qos);
QzQoS TranslateQoSUpwards (in QzQoS lower_qos);

Figure 3 - Pseudo-IDL of Translation Components

The standard interface of a system agent is called QzSystemAgent. This interface defines
the operation QoSRequest, which is used by the application to specify QoS requirements.
This interface is supported by the network and operating system agents and by the QoS
Agent. The QoS Agent is a skeleton in which other components are plugged in and out in
order to reflect changes in the surrounding environment. The replacement of components
encapsulated by the QoS Agent does not affect the interfacing with the user, who still sees the
interface of the QoS Agent as the standard means of interaction with Quartz.

The application hás to support the upcalls defined by class Qzupcaii which are used for
reporting changes in the QoS seen at application levei due to resource adaptation.
Applications using Quartz must support this interface by inheritance or encapsulation. The
QoS Agent also inherits from QzUpcail in order to receive notifications issued by network
and operating system agents, which are handled and forwarded to the application if needed.
Figure 4 shows the Pseudo-IDL of the system agent and the upcall interface.

interface QzSystemAgent {
void QoSRequest (in QzQoS requested_qos);

interface QzUpcall
void QoSReport (in QzQoS adapted_qos),

Figure 4 - Pseudo-IDL of the System Agent and the Upcall Interface

The Quartz prototype hás also system agents and filters for RSVP, ATM, and for the real-
time tnechanisms provided by Windows NT, which are presented in the following sections.

l S2 Simpósio Brasileiro de Redes de Computadores 561

Quartz QoS Agent

Translation Unit

Figure 2 - Detailed Structure of the QoS Agent

Finally, the system agents use the values of the QoS parameters provided by the
translation unit to perform the necessary reservation of resources using the corresponding
reservation protocol. Each system agent is familiar with the public interface of the
corresponding reservation protocol, being able not only to request reservations but also to
monitor the usage of the resources allocated to it and to receive notifications from the protocol
informing it of the occurrence of resource adaptation.

The Quartz architecture supports heterogeneity by encapsulating the QoS mechanisms
necessary for interacting with a specific resource reservation protocol or application área into
a replaceable component with a standardised interface, which are plugged into the architecture
whenever the associated protocol or application área is in use. Changes at application levei
can be accommodated by replacing the application filter. Similarly, changes at system levei
imply the replacement of system filters and agents. These components may be selected from a
component library provided by Quartz or implementèd by the user.

4. lmpIementation,Validation and Evaluation

We have developed a functional prototype of the Quartz architecture in order to analyse
its behaviour when supporting applications with QoS requirements. In this section we present
this prototype and a number of applications built on top of it for validation purposes. Finally,
we evaluate Quartz in face of the requirements imposed on it and compare it to the other
architectures presented in the literature.

4.1. The Quartz Prototype

The prototype is composed of a set of fíxed components that form the common core of
the architecture and a series of replaceable components that can be plugged into this core
whenever necessary. The prototype was written in C++ on top of Windows NT.

A third idea based on resource adaptation, which mixes both approaches mentioned
previously, hás been considered as a viable and necessary alternative to both. Resource
reservation combined with adaptation yields a more flexible approach for providing QoS to
applications. In this approach, resources are seen by applications as guaranteed during some
time, but their availability can vary over long periods. This technique allows resources to
become unavailable due to reasons such as hardware failure, system reconfiguration, or
because they are required by an application with higher priority. Applications are responsible
for estimating their initial resource requirements and for negotiating their reservations with
Quartz. In addition, applications have to be able to adapt their behaviour at run time based on
feedback received from Quartz.

Quartz provides support for QoS adaptation at both system and application leveis. In the
Quartz architecture, some QoS requirements such as cost and delay are defined by the sum of
resources provided by both the operating system and the network. Consequently, losing
resources from one source may be compensated by requesting more resources from another
source. When this is possible, the adaptation occurs only at the system levei, completely
transparent from the application's point of view, and the quality seen by the application is not
affected. If adaptation at system levei fails, Quartz notifíes the application, which hás to adapt
its requirements in order to decrease the consumption of resources. This can be done for
example by reducing the quality of a video stream or changing the compression method used
for data transfer.

The notification message sent by Quartz to the application carries QoS parameters
understood at application levei, which reflect the changes in resources reserved at system
levei. During this process, a set of system-level QoS parameters is translated into application-
level QoS parameters by using the reverse translation path provided by the translation
components.

3.5. Architectural Components

Each component defined by Quartz encapsulates a particular task in the overall problem
of QoS specification and enforcement in an open, heterogeneous environment.

The QoS agent, the central component of the Quartz architecture, is responsible for
implementing the QoS mechanisms necessary for the provision of services with the quality
requested by the user. This involves two main tasks: the translation of QoS parameters
between different leveis of abstraction, and the interaction with the underlying reservation
mechanisms provided by the resource reservation protocols present in the system. The QoS
agent, as illustrated by Figure 2, is composed of a translation unit and multiple system agents
associated with the reservation protocols responsible for administering the use of resources.

The translation unit contains a QoS interpreter and QoS filters. QoS filters can be
subdivided into application and system filters, which are responsible for translating their
respective sets of QoS parameters to and from the generic set of parameters at the same
abstraction levei. The QoS interpreter establishes the mapping between the two sets of generic
parameters defined by Quartz. During this process, the balancing agent, which is basically a
resource trader encapsulated by the interpreter, balances the usage of resources between the
network and the operating system. When either the operating system or network reduces the
resources allocated to the application due to resource adaptation, the balancing agent tries to
compensate for the loss of resources on one side by requesting more resources from the other.
If this process succeeds, nothing changes from the application point of view, but when it fails,
the application must be notified and asked to adapt its requirements.

182 Simpósio Brasileiro de Redes de Computadores

Table 4 - Example of Parameter Balancing

Quartz is also required to allow dynamic changes in the distribution of resources to be
performed by the system. This must occur without causing loss of service consistency at
application levei. Any change in the reservation of resources at lower-level must be reported
to the application by using QoS parameters that are understood at high levei. This implies that
the QoS architecture hás to perform a reverse translation of parameters before informing the
application that QoS hás changed.

3.3. QoS Enforcement and Resource Reservation

Quartz must provide transparency of QoS and reservation mechanisms from the
application's point of view. This implies that the interaction with the reservation protocols
present in the underlying system, which is necessary to guarantee the QoS to be provided to
the application, must be performed by Quartz. However, different resource reservation
protocols may be present in an open environment, and each of the existing reservation
protocols hás its own interface and its own mechanisms for resources allocation.

Quartz is able to interact with different reservation protocols by defining, for each
reservation protocol, a component that encapsulates ali the mechanisms necessary for
interacting with it. By adopting this strategy, we hide from the application the differences
between the way different protocols allow resources to be reserved. This hás the important
effect of increasing the portability of applicatíons across different platforms, and makes it
easier to extend the architecture in order to support new resource reservation protocols. The
components defined by the Quartz architecture will be described in detail in section 3.5.

3.4. QoS Adaptation

One important trend in the área of resource reservation protocols is the provision of
support for resource adaptation [10]. Initial studies in this área defended the provision o f
deterministic guarantees in the allocation of resources, which would be valid for the entire
lifetime of the application that requested the resource reservation. However, severa/
drawbacics appear in effotts to provide completely guaranteed resource reservation due to the
impossibility of guaranteeing the availability of resources in computer systems subject to
hardware reconfíguration or failure. Aiming to overcome this probíem, another school of
thought proposed the development of adaptive applications to deal with the changes in
resource availability during the provision of service. However, purê adaptation does not sol vê
the problems faced by applications with strong QoS requirements, which are not satisfied by
the best-effort systems currently available.

one translator for every reservation protocoí supported, and vice-versa. Quartz addresses these
issues through the use of an extensible, multi-step translation unit.

In order to avoid having a translator for each combination of application field and
reservation protocoí, Quartz adopts a three-step translation process. Applications specify their
application-specific QoS parameters, which are first translated into a set of generic
application-level parameters defmed by Quartz. These parameters are further translated into a
set of generic system-level parameters and balanced between the network and the operating
system. Finally, generic system-level parameters are translated into the system-specific
parameters understood by each of the reservation protocols present in the underlying system.

The sets of generic application-level and generic system-level parameters recognised by
Quartz during the transiatíon process are listed in TabJe J and Table 2 respectivety. Parameter
names are suffíxed by a tag that identifies the corresponding abstraction levei. Threshold
values can be specified by suffixing parameter names with 'Max' for specifying maximum
values and 'Min' for minimum values.

Parameter Name
App: :DataUnitSize
App: .-DataünitRate
App: :EndToEndDelay
App: :ErrorRatio
App: : Guarantee
App : : Cos t
App: :SecurityLevel

Description
Size of data units produced by the application (in bytes)
Rate of data units produced by the application (in units/s)
Time between data production and consumption (in usec.)
Acceptable error (in bits per million)
Levei of service guarantee (best-effort, deterministic, etc.)
Financial cost (currency per data unit or per second)
Security mechanism (none, encrypted, etc.)

Table 1 - Generic Application-Level QoS Parameters

Parameter Name
Net: :Bandwidth
Net: :PacketSize

Net::Delay andoS::Delay
Net: :ErrorRatio

Sys: : Guarantee

Net::Cost and03::Cost
Sys : : SecurityLevel

Description
Bandwidth provided by the network (in bits/s)
Size of data packets (in bytes)
Transmission and processing delays (in jisec.)
Acceptable transmission error (bits per million)
Leveis of service guarantee for both network and O.S.
(best-effort, unloaded, deterministic, etc.)
Financial cost (currency per connection or time)
Security mechanism (none, encrypted, etc.)

Table 2 - Generic System-Level QoS Parameters

These sets of generic parameters have been chosen based on the generic notion of QoS
present at the corresponding abstraction levei. Despite the generalisation necessary for the
middleware to be able to handle these parameters, the power of expression of the application
is not affected because requirements are expressed by using application-specific parameters.
Since the generic parameters are close to the notion of QoS present at each levei of
abstraction, ít is easy to establish an efficient mapping and perform a low-complexity
translation process between the generic parameters and the application and system-specific
sets of parameters.

Table 3 illustrates the transformation undergone by a parameter at the different leveis of
the translation process (in this case, áudio quality is translated into a set of RSVP parameters).
Table 4 illustrates the case of a parameter (in this example, the overall delay) that must be
balanced between the network and the operating system.

185 Simpósio Brasileiro de Redes de Computadores 557

This levei of flexibility is achieved by Quartz by adopting an architectural design based on
interchangeabie components, in which components able to handle QoS for different
reservation mechanisms can be plugged into the architecture dynamically. In addition, support
for new reservation protocols can be added to the architecture without the necessity of porting
the whole infrastructure. Instead, a new component that interacts with the new reservation
protocol can be written by the programmer.

3.2. QoS Specification and Translarion

QoS parameters have to be translated between different leveis of abstraction to be
meaningful for the mechanisms present at a particular levei. Two main leveis of abstraction
can be identified: the application levei and the system levei. Requirements specified at
different leveis are related, but differ strongly in their interpretation. An application parameter
is generally related to an idea present only at this levei, for example the number of frames of
video shown per second in a video broadcast application. At system levei this corresponds to
requirements on the network bandwidth needed to transfer data, the processing time needed to
handle the information, the amount of memory used by the application, etc.

For the user it is easier to abstract from the system levei and concentrate on his own view
of quality. However, many QoS architectures do not provide mechanisms for mapping QoS
requirements between different leveis of abstraction, forcing the user to deal with a system-
level notion of quality that may not be clear for him. Furthermore, the application área in
which a QoS architecture can be utilised varies enormously. For example, a QoS parameter
such as 'frequency range' for an áudio application would be completely meaningless for an
application based on data transfer. The same could be said about a parameter such as 'window
size', useful for video but not meaningful for áudio. Therefore, a balance must be achieved
between the needs of different application fields regarding the manner in which QoS
requirements are expressed and the generalisation necessary for the architecture to be
deployed over heterogeneous platforms. Any attempt to define a common set of parameters
for QoS specification to be employed by the application to specify QoS requirements would
constrain its expressiveness in a very damaging manner. Consequently, the mechanisms for
QoS specification provided by Quartz must be flexible enough to accept different formais of
QoS parameters and extensible in order to recognise a potentially infinite set of parameters.

The QoS parameters specified by the application must be interpreted appropriately by
Quartz in order to perform the reservation of resources at lhe lower levei. This implies
Iranslating the parameters from their original formal into parameters that are understood
internally by lhe architecture. In order Io Iranslale parameters, a mapping must be established
between parameters at different leveis. Mappings are not usually one-to-one between
parameters, but may be one-to-many, many-to-one or many-lo-many. This implies lhat
resources might be interchangeabie, and thal balancing requirements and resources is anolher
task thal hás to be performed by the architecture. Although lhe whole mapping may be
complex, the process of translation typically consists in simple arithmetic operations over a
limited sei of variables.

For lhe particular case in which several different application áreas and reservalion
protocols must be supported, the translation process hás to deal with different sets of
parameters appropriate for lhe environment into which it is inserted. Since the crealion of
direct (one-step) translators for X application fields deployed on top of Y resource reservalion
protocols would need lhe definilion of X * Y translators, this solution seems to be
unacceplable. The addilion of support for a new kind of applicalion should nol imply wriling

2.2. QoS Architectures

QoS architectures are responsible for integrating QoS mechanisms in computational
systems in order to organise the resources provided by the system in a consistent manner with
the intent of fulfilling the QoS requirements imposed by the user. In other words, QoS
architectures aim to fill the gap between resource reservation protocols, situated at a low levei
of abstraction, and the application levei.

To allow the utilisation of the mechanisms provided by networks and operating systems
with resource reservation capabilities at user levei, several QoS architectures have been
defined in the literature [1]. However, most of these architectures have limitations in the way
they allow QoS to be specified, or related to the way they enforce QoS using the resources
provided by the underlying system support. These architectures typically target only a specific
configuration of processing and communication hardware, constraining their utilisation in
open, heterogeneous systems. Furthermore, support for dynamic resource adaptation is
typically limited or completely absent. These drawbacks, and the strategies adopted by us
with the aim of solving them, are discussed in more detail in the next section.

3. The Quartz Architecture

We have designed and implemented a QoS architecture with the intent of addressing the
limitations of previous proposals in the área. The Quartz architecture is based on a highly
flexible, extensible, and platform-independent design that allows it to be used in different
application áreas and in conjunction with a variety of different resource reservation protocols.

3.1. llandling Heterogeneity at Application and System Levei

The main goal considered in the development of Quartz was to provide support for
heterogeneous environments. This implies that the architecture should be able to handle the
different protocols and hardware that can coexist in an open, distributed and heterogeneous
platform. Similarly, the architecture is expected to provide support for very diverse
applications, which may have different ways to express and handle QoS requirements.

Figure l illustrates the use of the Quartz QoS architecture in a heterogeneous
environment. Applications requiring QoS enforcement use the mechanisms provided by
Quartz to specify their requirements. In order to enforce the required QoS, Quartz employs
the resource reservation protocols available in the target network and operating system.

Desktop OS Internai Real-TimeOS ATM Link

Figure 1- Quartz in a Heterogeneous Environment

In order to handle heterogeneity, Quartz must not only be capable of being ported to
different platforms, but it also hás to be capable of handling QoS for an application when the
lower-level resource reservation protocol changes without requiring recompilation. For
example, if the application is able to transfer data using both ATM and TCP/IP, the QoS
architecture hás to be able to perform QoS reservations for both protocols by adapting itself
internally instead of requiring a new port of the architecture to be linked to the application.

182 Simpósio Brasileiro de Redes de Computadores 555

2. Quality of Service

'Quality of Service', or QoS for short, is the keyword used to represent the set of
requirements imposed by a user (human being or software component) on the behaviour of
the services being provided to an application by the underlying system support.

QoS is defined by the ISO OSI/ODP group as 'a set of qualities related to the collective
behaviour of one or more objects' [7]. Other authors try to clarify this definition. For
example, Vogel et ai. [5] state that QoS 'represents the set of quantitative and qualitative
characteristics of a distributed multimedia system necessary to achieve the required
functionality of an application'. We adopt a very similar definition, except that we do not
constrain the application of QoS to distributed multimedia systems, but also extend the
application of QoS to any system with constraints related to response time, performance,
and/or output quality. This includes, besides distributed multimedia, other áreas such as real-
time systems, cooperative work and high capacity storage servers.

ISO, along with the concept of QoS, defines a complete terminology for dealing with
QoS. Their concern is mainly with the application of QoS to the specification of
communication services at network levei. We prefer to adopt their terminology slightly
modified to encompass diverse áreas of application.

2.1. Resource Reservation

The concept of resource reservation provides the predictable system behaviour necessary
for applications with QoS constraints. Reservation mechanisms have to keep track of the use
of the limited set of resources provided by the system, and receive requests from new users
interested in using these resources. New requests are subject to admission tests based on
current resource usage and the guarantee leveis requested by the user. Reservations are then
accepted, if enough resources are available, or rejected if not. The problem of allocating
limited resources becomes even more complex if we consider that current computational
systems are basically heterogeneous, subject to mobility and constant reconfiguration, but still
have to provide a dependable and accurate service in a limited response time.

Mechanisms for resource reservation are being incorporated into networks and operating
systems in order to guarantee the avaüabffity of resources for applications. The concept of
resource reservation, as well as QoS, originated in work on communication networks and was
subsequently extended to other components of computational systems. In the área of computer
networks, the development of ATM [8] represented a significant advance towards the
provision of QoS-constrained communication services. Aiming to provide similar behaviour,
but working at the logical network levei, the IETF is adding reservation capabilities to its
suite of protocols, including the resource reservation protocol (RSVP) [9], which handles QoS
at the network levei, and the real-time transport protocol (RTP), which works at the transport
levei. At the operating system levei, some work hás been developed to extend operating
systems to provide more predictable behaviour suitable for applications with QoS constraints.
Real-time operating systems, such as QNX [10] and Chorus [11], have mechanisms that
provide time-constrained services. Following the same direction, desktop operating systems
such as Linux [12] and Windows NT [13] are being adapted to provide behaviour suitable for
applications with QoS constraints.

Despite providing an important contribution towards the provision of QoS for
applications, resource reservation protocols are situated at a low levei of abstraction, which is
not suitable for the application programmer to deal with.

the application. A myriad of resources may have to be provided by the underlying system to
perform a service, ranging from local resources such as memory and CPU to network
bandwidth and other remotely located resources. Modern networks and operating systems
provide predictable behaviour through the use of resource reservation mechanisms. However,
most applications do not benefit from these mechanisms because distributed computing
middleware is still being adapted to make use of them.

QoS architectures describe middleware that provides applications with mechanisms for
QoS specification and enforcement. These architectures organise the resources provided by
the system with the intent of fulfilling the QoS requirements imposed by their client. Many
different types of hardware, operating system and network infrastructures and protocols
coexist in open systems, and multiple resource reservation protocols populate this complex
environment. Nevertheless, applications with QoS constraints expect similar behaviour from
the underlying system súpport independently of the particular characteristics of the hardware,
operating system and network súpport present in the lower-level platform. Consequently,
allowing applications to reserve resources via a middleware layer implies that the differences
between reservation protocols have to be masked by the middleware itself.

Substantial work on QoS architectures can be found in the literature (see [1] for a
survey). However, the architectures proposed só far consider only part of the overall problem
of QoS specification and enforcement [2].

Our focus in the study of QoS architectures is on the provision of QoS-constrained
services in open, heterogeneous and distributed computing systems. The QoS architectures
proposed só far typically have a strong dependency on a particular computing platform. Real-
time operating systems combined with ATM are the most popular platforms for the
development of QoS architectures because of their suitability for the implementation of QoS
mechanisms for resource reservation. Examples of such architectures are QoS-A [3] and
Xbind [4]. This tight dependency on a specific platform constrains their application in open
environments, where heterogeneity is an intrinsic characteristic. Some architectures are also
targeted at particular application áreas, with distributed multimedia being the one where the
technology is most mature because of several research projects that have explored this topic
(see [5] for a review of QoS in distributed multimedia systems).

In addition, other important problems can be identified in the QoS architectures presented
in the literature. Some architectures constrain the expressiveness of the user in the
specification of QoS requirements and lack transparency from the lower levei, forcing the
user to deal with a notion of QoS that is not familiar for him. In some cases, due to the tight
integration of the architecture with the lower-level platform, the user must know the
characteristics of the available reservation mechanisms in order to make use of the
architecture, while a higher levei of transparency would be more appropriate. Furthermore, in
most architectures súpport for resource adaptation is very limited, if not completely absent.

In this paper we present Quartz, a generic QoS architecture that addresses the limitations
of previous proposals in this área [6]. This is achieved by adopting a highly flexible,
extensible, component-based platform-independent design, which supports user transparency
from the underlying system and at the same time is suitable for open distributed systems.

The remainder of this paper is organised as follows. Section 2 surveys this área of
research. Section 3 explains in detail the proposed QoS architecture. Section 4 presents a
prototype implementation, describes a number of applications that have been built on top of
this prototype, analyses the obtained results and compares Quartz to other QoS architectures.
Finally, section 5 presents some conclusions and plans for future work.

Acknovvledgements

This work was supported by grants from CAPES (http://www.capes.gov.br) and from lona
Technologies (http://www.iona.com). The authors would like to thank David 0'Flanagan and
John Segrave-Daly for the development of the CORBA A/V Streams Mechanism and the
Distributed Music Rehearsal Studio respectively.

References

[1] C. Aurrecoechea, A. Campbell and L. Hauw "A Survey of Quality of Service
Architectures", MPG Group, University of Lancaster, Internai report MPG-95-18, 1995.

[2] R. Steinmetz and L.C. Wolf "Quality of Service: Where are We?", IWQoS'97
Proceedings, May 1997.

[3] A. Campbell, G. Coulson and D. Hutchison, "A Quality of Service Architecture", ACM
Computer Communications Review, Vol. 24(2), April 1994.

[4] A. Lazar, K-S. Lim and F. Marcocini "Realizing a Foundation for Programmability of
ATM Networks with the Binding Architecture", IEEE Journal of Selected Áreas in
Communication, Vol. 7, September 1996.

[5] A. Vogel et ai. "Distributed Multimedia & QoS: A Survey", IEEE Multimedia, Vol.
2(3), Summer 1995.

[6] F. Siqueira and V. Cahill "Delivering QoS in Open Distributed Systems", FTDCS'99
Proceedings, December 1999.

[7] International Organization for Standardization "Information Technology: Quality of
Service Framework", ISO/IEC JTC1/SC21 DIS 13236 ICS 35.020, 1995.

[8] International Telecommunication Union "B-ISDN Protocol Reference Model and Its
Application", ITU-T Recommendation 1.321, April 1991.

[9] R. Braden et ai. "Resource Reservation Protocol (RSVP)". IETF RFC 2205, September
1997.

[10] D. Hildebrand "An Architectural Overview of QNX", QNX White Paper, 1999.
[11] Sun Microsystems "Sun Embedded Telecom Platform - Combining the Power of

Solaris with the Real-time Performance of ChorusOS", White Paper, 1999.
[12] V. Yodaiken "The RT-Linux Approach to Hard Real-time", White Paper, October 1997.
[13] Microsoft Corporation "Real-time Systems and Microsoft Windows NT", White Paper,

June 1995.
[14] J. Gecsel "Adaptation in Distributed Multimedia Systems", IEEE Multimedia, Vol.

4(2), April 1997.
[15] Object Management Group "The Common Object Request Broker: Architecture and

Specifícation (Revision 2.0)", OMG Document PTC/96-03-04, March 1996.
[16] lona Technologies, Lucent Technologies, Siemens-Nixdorf "Control and Management

of Audio/Video Streams", OMG Document Telecom/97-05-07, July 1997.
[17] J. Segrave-Daly "The Design and Implementation of a Distributed Rehearsal Studio

Application", Final Year Project, Comp. Science, Trinity College Dublin, June 1999.
[18] S. Dharanikota and K. Maly "Quanta: Quality of Service Architecture for Native

TCP/IP over ATM Networks", HPDC'96 Proceedings, February 1996.
[19] I. Demeure, J. Farhat and F. Gasperoni "A Scheduling Framework for the Automatic

Support of Temporal QoS Constraints", IWQoS'96 Proceedings, March 1996.
[20] D. Waddington, C. Edwards and D. Hutchison "Resource Management for Distributed

Multimedia Applications", ECMAST'97 Proceedings, May 1997.
[21] K. Nahrstedt, and J. M. Smith "The QoS Broker", IEEE Multimedia, Vol. 2(1), April

1995.

