18¢ Simposio Brasileiro de Redes de Computadores 457

From High-Level Behaviour to High-Level Desgn: Use
Case Mapsto Specification and Description Language

Igor S. Sales - isales@site.uottawa.ca
Robert L. Probert - bob@site.uottawa.ca
School of Information Technology and Engineering - S.1.T.E.

Abstract

The Telecommunications industry’s demand has grown immenselyfor cost-effectivemethods
for software validation & verification of mobile products. Semi-formal methods such as Use
Case Maps andformal methods such as SDL are starting to be widely used. In this paper we
show how to integrate these two techniques in rerms of quicklwalidating high levei designsin
DL against desired abstract behaviours in UCM notation.

Keywords: Use Case Maps, SDL, Mobile Systems, Telecommunications Software Engineering

1. Introduction

Today’s customers of mobile services is an ever-faster growing market. Together with the
legacy of current telecommunications systems, new services and features are being created,
designed and sold all over the world. However, these features are more and more highly
dependent on software and more and more complex. To currently design such features is not
an easy task. Quality assurance, security, and time to market are all criticai for these products.
Designers require effective techniques and extensive design tools to achieve high leveis of
quality and security without sacrificing time to market. Some corporations which develop
mobile systems and standards are supporting their designers in the use of formal techniques
[1,2], such as the ones presented here, namely, Use Cae Maps (UCM) [3] and the
Specification and Description Language, SDL [4,5]. In this paper, we introduce a method for
rapidly converting use case maps into SDL designs. This mapping is done by a designer using
our rationale for correctly choosing which SDL structures to derive from UCMs. In Section 2,
we introduce both notations, and in section 3 we give some rules for capturing and drawing
UCMSs to represent functional requirements. Then, in section 4 we give the UCM to SDL
mapping process. Section 5 contains a case study, namely a high-level design of a Wireless
Mobile Station. Findly, in section 6 conclusions and suggestions for further research are

given.
2. Notations

Two notations are required for the full understanding of this work, Use Case Maps, UCMs
and the Specification and Description Language, SDL. These two semi-formal and formal
notations are both highly graphical. Use Case Maps are used in the early stages of design
when Use Cases [6] and Use Case Diagrams [7] are being used to capture and refine the
system requirements. The next two subsections will familiarize the reader with such notations.
Figure | illustrates this paper’s contribution.

We have presented a practical way of deriving high levei design (in SDL) starting from a
higher level behavioural and architecturad modd (in UCM). In our case study, we have chosen
Use Case Maps because this is afast and easy way to describe use cases at an early stage of
development when having very little information about the details of the sysem. We have
also applyed this technique to Wireless Mobile Sysems development.

In summary, firstwe start with use cases and we draw the UCM architectural modd, followed
by the observable messages. Then the information in the requirements (use cases, use case
diagrams) is captured in terms of general behaviour into a use case map. After reaching a
level of completeness with the UCMSs, the designer then will start developing the SDL model.
Our methods to easly generate SDL architectural and behavioura designs were explained in

detail.

Our intent is to provide a cost-effective working model such that the designer will be able to
build on top of it. With the aid of CASE tools for SDL[15,16], one can promptly vaidate and
verify it. This validation can be done by semi-automatically generating Message Sequence
Charts[17] fromthe SDL model. As we have shown, the functional requirements of the SDL
mode reflect the ones from the Use Case Maps, therefore facilitating the task of ensuring
correctness. Another possible applications for such a method is the automated generation of
test cases[18]. Once the UCM modé is ready, it is converted possibly with iterations into an
SDL model. Again, with the aid of tools for generation of test suites, one can quickly generate
a conformance test suite for instance.

We intend to improve this approach. These improvements are towards better techniques for
capturing functional requirements with use case maps and transforming these into smulation
models. We will dso work on identifying the best point in time start building the bridge
between the abstract model and the design model.

7. Acknowledgements

The authors grateful acknowledge helpful discussions with our colleagues in the TSERG
research group at the University of Ottawa, and portrait financial support from Mitel
Electronics, CITO, and the National Science and Engineering Research Council of Canada.

8. References

[1] Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., Yi, Z., Forma Methods for
Mibility Standards, IEEE 1999 Emerging Technology Symposium on Wirdess
Communication & Systems, Dallas, USA, 1990,
http://www.UseCaseMaps.org/UseCaseMaps/pub/ets99.pdf

[2] Amyot, D., Logrippo, L., Use Case Maps and LOTOS for the Prototyping and
Validation of aMobile Group Call System. To appear in Computer Communications.

[3] Buhr, R.J A., Casdlman, R. S., Use Cas= Maps for Object-Oriented Systems, Prentice
Hall Inc., 19%.

[4] Ellsberger, J., Hogrefe, D., Sarma, A., SDL: Forma Object-Oriented Language for
Communicating Systems, Prentice Hall, 1997

182 Simposio Brasileiro de Redes de Computadores 469

has the chance to send “Talk” a different path from making a cdl is taken. This is seen in
SDL mode! as an input triggering a transition from the state "WaitTalk".

User Mobile Station Wireless |
j Network

\i{andofﬂnd

Get New Same
Resources MSC?

[Exception]

|

No Roaming I_
[Exception]

B e e

Figure 19 - Handoff use case map

N Process Handoft LU

L
S MR piuit YeaNcTypa,
SN RFRasul YesNol ypoe
UPRarult DFailTyps,
REesull YesNoTyoe

Figure 20 - Handoff SDL behaviour

6 Conclusions

deterministic decision symbol. Hence, we had to program it such that it had the same SDL
behaviour twice, but in different orders.

' User Mobile Station
Ok] ;
§ Provenience
No {Networkj__j
signal® I

Not L—l [Handoff] J
T

Permitted! - N Proc\aﬂuraFn‘E'sHaﬂdsr fremrs N
! 8 5 i it BrovanEnCeT e : ! b Vi
i all Processing) g o -

| i T

| [Network ; 4 uit)

! . Initialization

i Slgnali \ﬂl]) OTHERWISE
! Error

« Netwirk
= Honaott = CalProcasiing ininoily avan = rifioliz Ao

[M r:'%mnn% Dncnnnw_'%

[Fail [Initialization

Device s:underm> ﬂ B vl g Hgnng.m
Error I' m g T
Problem
Poueringh
[Unknown
[PoweringOff] Critical
Failure] | L
(a) (b)
Figure 17 - The UCM and SDL behaviour for the Failure Handler
STt s Call Processin umsseer Talking Procedure Talking
User Mobile Station Wirgless | pesee=eeeees - - sy
1§ User Muobile Swation Wirelesy
Dial ._ Networl.:., End Netwaork |
E DiscReq :
Tulk i § Disconnected i | v
- H ¥ H {
ConnReq E l_l Diiclad |
'ConnConf § L. ._...... PSS) (18
!)
1] : Piocedurs Caifiacmuing T
. \ Wi
! Ringhuck | Asawind | :
1 I i | SIS
Tone :
et : i (= ey
Ring | Tulking i

Tulk ﬂ' .l‘.ﬂnnlnd I : Canris m m

! Angwieg
| Ring Off j— ! &

! Talking

P-unr

{a) «©)

Figure 18 - The Call Processng and the corresponding SDL behaviour

Figure 18 is an example of how the behaviour for concurrent inputs and outputs would be
represented in SDL. In this figure, part (c), one can see this diagram. The exception construct
in part (a) is not explicitly declared in (c). The interpretation given to that exception point is
of taking over the former one. Thus whenever the input "Connind” is received before the user

18° Simpésio Brasileiro de Redes de Computadores

467

[User | Mobile Station | [Mobile Station |
: Register and
1 Ready Authcr%iion [Ok] IIOk]
| [OK]]
Display [Fail]
! Self Test| Battery | Greeting _
i Status [Yes] Try Again ?
| [Fail] [Fail] Exce‘ﬁon [No]
] 1 .
! | [Fail] [Fail] [Faill
(a) (b)
Figure 15 - The Initialization and Network Initialization UCMs
Procedure Inifialization 1(T) H Procedure NetworkInitialization 1(1)
CD | [
AR | 85 Aeault OkFallype RAResult OkFallType, ! l‘\'
TAResull YesNoType: 1 i
(STRewuln —ﬂ s i = oo
X ool Leavesan

= Fail

Try Again 7

{TAResulf)

@

Figure 16 « The SDL behaviour for the Initialization procedures maps

Figures 14 through 20 describe in detail the complete mapping of the use case maps to SD1
processes. It is straightforward to follow using the rules presented in this paper applied tc
figure 15 resulting in figure 16. A few design decisions were made to simplify the behavioura
model. Figure 17(a) shows the failure handler plug-in. We thought it irrelevant t0 have
separate processes to represem single signal outputs, especialy because there is nc
concurrency in that use case map. Therefore, the solution taken was to use send symbols fo
the observable outputs rather than creating a parallel process for each. The fina effect woulc
have been the same. We also believe the design is clearer this way. In Figure 20 one can se¢
that there is a decision branch after the SDL process executes the procedure "Same MSC 77
According to the UCM in Figure 19 these two could be taken in parallel. Asthey only lead tc
two possible different situations we thought it to be easier to represent using only an any non-

5. Case study: A Mobile Station (MS) basic call specification

In this section we will show the specification of a Mobile Station in use case maps and its
appropriate respective counterpart in SDL. The first map has already been seen in Figure 9. It
represents the root map for the others that follow. The behaviour for the SDL high level
design follows. A process caled “Handoff_Process”has also been created and introduced into
the architecture shown in Figure 10. It is not shown due to lack of space and importance. This
process communicates to the network and to the user as well as to the mobile station process.
In addition, other relevant aspects of this architectural model, like the actual signa names,

have been described in Table 1.

Process MobileS tation_Process 1(1)

[+]ef
InitRes ult OkF ailType,
Netinit OkFailType,
Initialization CPResult CPType
Failure OkFailType;

off NetworkInitialization

|
PowerOn < CallProcessing

]

Inifialization | l— (InitR es ult)

= F il
Hondoff
Process
Network F
Initialization (Netinit)
=Fal =Fai
>

fute I Faiure)

Handler
Call
Processing [[—](CPResulf

‘@ = Ok
= PoweringOHf
Fallure Erurlchuilur%

Figure 14 - The SDL behaviour for the root UCM

182 Simposio Brasileiro de Redes de Computadores 465

designer may just pick one order and implement it as a single transition. Or he/she could just
as well use a decison symbol with any (non-deterministic choice) and implement all the
different combinations. For severd threads this may be a problem. However, it occurs very

rarely.

Sii—— IOulpUII__—|Oulpul3
_IDutme ol
(a) (b)

Figure 12 - Different UCM And-fork constructions

Figure 12(b) illustrates a more elaborate map. Ingead of having two single endpoints, one
path in the fork continues. As we have found the ordering to be scarcely necessary for two
dose events, again we can choose one and not even need to transform the thread into another
process creation call. i.e, smply sending “Output3” and keep on executing the second path.
Formally this second thread should be represented by another process. The suggestions above
avoid some unnecessary work as well as improve the readability of the SDL model. This
process creation construct is illustrated in Figure 11(c).

Procedure Sync_]

Process Synchro 'I{])|

Tiiignoe GnaMore 1y 1em ofe procedure S yne_)
iLetGo i |
soslF

[la
loGa Integar =]

md

e e e = S = —

Figure 13 - The synchronization process and the Sync remote procedure

Finally the most complex construct, for our scope, is the And-Join. After experimenting afew
times with different mechanisms the best way we found is to use a synchronizing process.
This process’ only purpose is to synchronize concurrent threads, without affecting the rest of
the system. In fact, this process should not even be connected to any other blocks. Every time
athread reaches a synchronizing point, it makes a remote procedure cal like the one shown in
Figure 11(d). The behaviour associated with this procedure depends again on designer
decisions. A typical synchronizing process is described in Figure 13. After synchronization,
the processes that called the “sync” procedure should decide whether they should terminate or
not. The designers should be aware that a clean way of finishing the synchronisation is to
cregte request calls to other processes For readability this may not be necessary, also
facilitating the job. This type of construct is the mostly uncommon to find in use case maps,
athough it should be consdered because it is a powerful UCM construct.

4.2. Sysem Behaviour

For deriving the system behaviour we have found a set of SDL flowchart structures that match
those of the UCMs. Responsihilities are trested as procedure calls. They may be remote
procedure cdls also.

“f(p':, l.pn, ci IDC* °"@’U”‘Tvﬂ : :rlj—l

]

L

=resp_l = resp_n
(b) Or join
|7gcnonﬁl action_I action_n
- |
| | | i [fimer & (h) timer “t”
(a) Or fork H declaration
R N i
| l t E set i ¢
reset
— | (now detat esef(!)
1 |
—[_. . (e) timcouti (f) setting 1hei (g) canceling
(c) And fork (d) And join event | timer“t” ! the timer ‘“t”

Figure 11 - SDL common structures for represeting UCMs

To represent an UCM Or-fork structure we can basically use the SDL decision symbol. In our
case above, Figure 11(a), this symbol is shown with many branches. Figure 3(a) has a
responsibility attached to the outgoing path, which in the corresponding SDL is represented
by an "0'. The way it is done is as follows: the running process i.e., the one that represents
the executing path invokes the responsibility procedure "r' with n parameters. The last
parameter is the output from its execution. This output should guide the process to which
branch to follow. In our case, one of the actions is the path taken.

In (b), we have the smplest case of correspondence. Any number of branches converge to one
single one. In other words, whatever path has been taken will lead to the same outcome. Note
that the boxes are not necessarily task symbols. They may be any valid SDL construct.

Ifthe reader is accustomed to SDL, the timeout (e,f,g,h) will aso be a very simple construct
to understand. As in UCMs, to st atimer, one only needs to declare a task symbol with the
"st" statement for that timer, as shown in (f). The timer must have been declared in the
process, asin (h). Resetting that timer requires also a simple task with the “reset” statement as
in (g). In the use case maps notation, a path is taken, usually an and-fork, to reset the timer.
This entire path that resets the timer is replaced by a single task, in most cases.

To illustrate the construction of And-Forks and And-Joins we will need some more
complicated constructs. The approach is to use parallel processes within the same scope
Beforehand, the designer should anayse the use case maps to ensure this procedure is needed.
For example, Figure 12 illustrates a case where this construct may not be needed. The

actual behaviour. Our focus is more centred on the behaviour since we are interested in
f the functional requirements.

> the
main

For
iits There are two activities involved in specifying a system architecture. The division of the

‘Call system into blocks and processes, and the connection between these components by means of
, channels.

4.1. System Architecture

System Wireless

Block MobileStation
[(toEnv)] [(toEnv)]

[(fromEnv)] [(fromEnv) L Exocess M

[(fromWN)]
[(toWN)]

1 [(toWN)] [(fromWN)]

Block WirelessNetwork L[

Figure 10 - The SDL overview of the architecture for a Mobile Station

Figure 10 describes the way the components will be organised indde the system "Wirdess'.
There is achannel that communicates to the environment, i.e. the user, and it has the signal set
“toEnv” and "fromEnv". The brackets indicate a set of signals differing from single signals. It
has been done this way in this figure for readability and portability purposes. At the same
time, the "MohileStation" block communicates with the "WirdessNetwork™" block through the
signal sets “toWN” and "fromWN". Channel names have been omitted for readability

H purposes. They are of no relevance to this work.

The channel signals are ligted in Table | below.

| ToEnv fromEnv towWN FromWN
Failure, Ready, Roaming, NotRoaming, | PowerOn, | ConnReq, | ConnConf,
RingbackTone, NoTone, Ring, RingOff, | Dial, AnswReq, | Connlnd, AnswiInd,
Disconnected, NoSignal, NotPermitted, | Talk, DiscReq | DiscInd,
SignalError, DeviceError, PoweringOff | End HandoffInd

Table| - Mobile Station sgnals

We can e that the architecture described in Figure 10 has more detailed than the one in
Figure 8. This is due to the fact that the former one is a better way of expressing the system
with the divison of signds according to the receiver roles, ie., "Usa" and "Wirdess
Network”. A drawback is due to the fact that Use Cases distinguish between the externai
?'» entities, while SDL and UCMs do not. A way to overcome this problem in SDL is to consider
or only one actor as the environment and model the others (in our case study, the network) as an

L o internai block.

10l

& T

3.2. UCM behaviour

The degree to which one can determine the UCMs behaviour depends on the familiarity of the
designer with respect to the UCM notation. It is not the intention of this work to guide the
reader on how to design use case maps in much detail. A simple start is to identify the main
steps of a use case, and describe those in terms of stubs along the sequence of actions. For
instance, when a user sends the “PowerOn” signal to the mobile station, it should, 1) runits
own start-up procedure, 2) “Register” onto the wireless network, and 3) start “Call
Processing”. In parallel to registering, the “Handoff” handling procedure should take place.

| [Mobile Station
sk forret
Handoff

[Powenng({f]

[Exception]

Power On Imualization
Network

. Okl
[Fail]
Initialization
Failure
[Ok]
Failure Handler

[Fail]

Call
Processing

[PoweringOff]

Critical
| Failure

i_____,— _ I §
Figure 9 - High-Level Behaviour UCM model

The next step is to expand each one of the stubs and draw its proper behaviour. Note that not
all obsarvable signals need to appear in only one map. In the sub-maps there may also be
more ingoing and outgoing signals. The final set of use case maps should reflect, as stated
before, all the externally observable signals.

4. Describing theprototypein SDL

The derived SDL behaviour diagrams are very useful for verifying and validating the model.
These two tasks are usually accomplished with a tool. Severa industrial-strength tools for
SDL models are available. In this section we will show the steps required to create an SDL
model starting from use case maps. First we derive the architecture definition and then the

182 Simposio Brasileiro de Redes de Computadores 461

(b), a UCM view of the same information is captured, this time in terms of actual observable
actions to and fromthe system (in this case a Mobile Station).

Mobile Station

D,
thw:r On the Power

% // obile statio == On @+

Notify
Network
Connlnd

,(7 Dial @=p

/ TalkBtn@=
Network

Uqcr
rig
(a)

Figure 7 - Use Case Diagram and Use Casz Maps

From the use case, “Turn on the mobile station" requires an action which is, for instance, a
button named “PowerOn”. In order to "Make a call", the user needs to "Did" the destination
number and hit the “Talk” button. To “Receive a Call" the user needs to be notified that
someone is trying to call him/her. This is done through, for instance and audible “Ring”. To

accept the call the user should simply press the “Talk” button.

ConnReq
Answind

(b) -

Similarly, with the network behaving as a user, it is possble to acquire the messages on the
network sde. Note that we assume the convention that start points indicate signals from an
actor to the system, and signds atached to an endpoint are used to refer to incoming signds
going to the actor. Figure 7 does not show all messages for the network side, instead, showing
avertical reticence symbol to indicate that there exists more messages to be shown.

Once all the sgnas have been captured using this method, the designer may tart building the
internal behaviour of the system. This behaviour is captured expanding the use case maps start
and end points into internai UCM paths. Note that this is not a static process, thus during the
design phase the designer may discover errors concerning the incoming and outgoing signals.
These mistakes should be corrected in an iterative way, and the affected maps redrawn.
Discussions about iterative requirements engineering processes are beyond the scope of this

paper.
3.1. UCM structure

In our approach, the first step to construct the UCM structure is to divide the system into
subsystems. The example shown in Figure 4 illustrates the breakdown of a mobile station into
components. It was broken down into the Mobile Station itself and the Network Card. For
simplicity the example in this paper one will not need a further breakdown into more
architectural entities. Thus it would look like Figure 8.

Figure 8- Final UCM architecture

components or blocks. In 5(b) the architectural details of the block “Mobile_Station” are
shown. The system architecture shows the interaction between blocks, and the block
architecture shows the interaction between processes The arrows connecting the system's
environment to blocks and the block’s environment to processes are caled channels or signal
routes. The channels have associated a set of signals with each side. Sgnals are triggers that
stimulate the behaviour of the processes. These Sgnads must all be declared indde the box
with the document symbol (System definition block, Figure 58). They were suppressed in that
figure as irrelevant to our discussion. Inside each process chart the behaviour of that process
is defined as a sat of EFSM transitions (<current state, event, condition, output actions, next

state>).

Process MS_Process 1(2)

Figure 6 - A sample SDL process chart

The behaviour described in Figure 6 is based on the use case map from Figure 4, except that
there is no Network Card entity in this SDL mode. The SDL behaviour is described in a
flowchart-like format. The first symbol of the process, right below the process name describes
the starting point of the starting transition of the process. It immediately goes to the state
"Ide'. This is a way of indicating the initial state of the process. Upon receiving the input
event "PowerOn" in the state idle, the process cals the procedure Initialization, and then
sends a message NotifyNetwork with the parameter PowerOn to the Wireless_Network block.
Moreover, it moves to the next state labelled "On". This state has its transitions defined in
another process chart labelled MS_Process 2(2) (chart 2 of 2) not shown here. Each state may
have several different inputs, and/or conditions leading to different actions and therefore
different states. The circles indicate continuation points. It is a simple feature for drawing
long diagrams that do not fit within the entire height of the chart.

3. Capturing Functional Requirements with UCMs

Functional Requirements are those behaviours that affect the user directly. These
requirements are often represented by sequences of actions/reactions called scenarios. It is not
an easy task to capture such requirements in a EFSM model [12]. However, it becomes easier
if we focus on the signals exchanged between the user and the system (the user interface or
system environment boundary). Figure 7 shows a typical extraction of functional requirement
signals using use case diagrams[13] (78) and use case maps[14](7b). On the left Sde (Figure
78) the user can turn on the mobile station, or place acall or receive a call. On the right sde

182 Simpésio Brasileiro de Redes de Computadores 459

the path in the middle, and the alternative path going out from the bottom of the clock icon
representing atimeout action. The endpointthat ends at the top of the clock indicates the path
resetting the timer. Arrows were drawn here only for clarity purposes; they are optional in
UCMs.

Finally there are bound UCMs and unbound UCMs. The meaning of bound is to be allocated
to @ component, or t0 an architectural entity [10]. Figure 4 below shows an example of an
architecture for aMaobile Station. Components are modules of the system under design.

Mobile Station
Network Card

Initialization Notify Network

Power OnQ-—O P b

Figure 4 - A sample Mobile Station Architecture

The "Power On” label next to the start point indicates an event coming from the
environment. This is the triggering event of the map above. "Mobile Station” and “Network
Card” are two components of this system. "Network Card” is a sub-component of "Mobile
Station”. The responsibility “NotifyNetwork" has to occur inside the component named
"Network Card" according to this design. When there is a polygon surrounding a UCM we
say it is bound. Inthis work we will always refer to bound use case maps.

22. Specification and Description Language - SDL

An SDL specification consists of both architecture and behaviour. Common architectural
components in SDL are referred to as systems, blocks, processes, and channels. Behavioural
constructs in SDL specify the behaviour of processes. These are expressed in terms of SDL
flowcharts, which are eqliivalem to Extended Finite State Machines (EFSM) [11].

System Wireless RingOn, RingOff, Block Mobile_Station
Notify
RingOn, RingOff,
D PowerOn, Notify

PowerOff,

Dial, Talk, End PowerOn,
PowerOff,

Mobile_Station L. ek

{:Cnnnnesp, :] MS_Process(0,)
nd

Answlind, Discl
ConnReq, DiscReq,
AnswConf

[CIJDHRCSP.] ChniRea. Dischi
N lec -onnkeq, Lischeq,
Wireless_Network Answlind, Disclnd AnswConf,

NotifyNetwork

(a) (b)
Figure 5 - A sample SDL architectural system

In Figure 5 details of an SDL system architecture for a mobile wireless protocol are shown.
On the left side, in (58), is shown the architectural decomposition of the system into

iteration

Requirements

Figure 1 — From Use Case Maps to SDL

2.1. U Case Maps - UCMs

A Use Case Map, UCMfor short, is a means of describing the causai relationships among
system events over time. A simple use case map consists of astarz point, apath, and an end
point. It is basically used to describe sequences of events, as in use cases [8], or in natural
language descriptions of functional requirements. Figure 2 shows a very smple Use Case
Map. A black circle indicates the start point. The path is drawn as a line, and the endpointas
a bar perpendicular to the thread. Figure 2 also includes the concept of a stub. One can think
of astub as being a sub-UCM. When we follow an UCM and find a stub we fall into the stub,
finding another use case map. A responsibility, indicated by an "X" along the time thread, is
an action. When time comes to that point that action must be executed.

Sb! pesponsibility

Start point . /\ S J Endpoint
\/ 75 1

Figure 2 — A sample use case map

One of the drawbacks of writing English language use cases is the difficulty of representing
the possible different outcomes and the introduction of ambiguities. With use case maps, this
job is done easily using forks. Figure 3 shows the different possible constructions in this
language. The dotted lines indicate that there is more unspecified information in the indicated
direction. In Figure 3awe can see that a responsibility is required before an or-fork since it is
the last action taken before deciding which way to follow. And-forks, shown in Figure 3 (C)
and (d), provide concurrency. The and-forksplits into two or more concurrent paths, and the
and-join synchronizes two or more paths.

h : : : .\reset)

i R ” : "
a) Or-fork b) Or-join main path (in

main path (out)

timeout (out)

¢)And-fork d)And-join e) Timer

Figure 3 - Different Use Case Map Constructions

Another interesting construct is the timer, very important for real-time embedded systems[9].
Figure 3 (€) shows how this construct works. For a timer, there is the main path that follows

182 Simpoésio Brasileiro de Redes de Computadores 471

[5] ITU, Z.100 (1996): Specification and Description Language (SDL), International
Telecommunications Union, Geneva, 199.

[6] Schneider, G., Winters, J. P., Applying Use Cases: A Practical Guide (Addison-Wesley
Object Technology Series), Addison-Wesley, 1998

[71 Alhir, S. S., UML in a Nutshell - A Desktop Quick Reference, O'Reilly & Associates,
1998

[8] Jacobson, L, et al, Object-Oriented Software Engineering (A Use Case driven
approach), ACM Press, Addison-Wesley, 1992.

[9 Selic, B., Rumbaugh, J., Using UML for Modeling complex Real-Time Systems,
ObjecTime Ltd, 1998

[10] Buhr, R. J. A., Use Case Maps as Architectural Entities for Complex Systems, 1998,
published on the website http://www.UseCaseM aps.org papers directory.

[11] Turner, K. J., Using Formal Description Techniques: An introduction to Estelle,
LOTOS, and SDL, John Wiley & Sons, 1993,

[12] Dssouli R., Bochmann, G.V., Lahav, Y., SDL: The Next Millennium, Proceedings of
the ninth SDL Férum, Montreal, Canada, Elsevier Science Ltd., Canada, 1999.

[13] Booch G., Rumbaugh, J., Jacobson, L, The Unified Modelling Language User Guide,
Addison-Wesley, 1998.

[14] Buhr, RJA., Casselman, R.S,, High-Level Design of Object-Oriented and Real-Time
Systems. A Unified Approach with Use Case Maps, Prentice Hall, 1995,

[15 Teeogic AB, Tddogic TAU toolset, Malmo Sweden http://www.telelogic.com
[16] Verilog Inc., Verilog ObjectGEODE toolset, France, http://www.verilogusa.com

[17] ITU, Z. 120 (1996): Message Sequence Chart (MSC), International Telecommunications
Union, Geneva, 199%.

[18] Probert, R. L., Williams, A. W., Fagt Functiona Test Generation Using an SDL model,
Proceedings of the 12™ International Conference on Testing Communicating Systems,
IWTCS’99, Klummer Publishers, Hungary, 1999.

