
18- Simpósio Brasileiro de Redes de Computadores 457

From High-Level Behaviour to High-Level Design: Use
Case Maps to Specification and Description Language

IgorS. Sales - isales@site.uottawa.ca
Robert L. Probert - bob@site.uottawa.ca

School of Information Technology and Engineeríng - S.I.T.E.
*

Abstract

The Telecommunications industry's demand hás grown immensely for cost-effective methods
for software validation & verification of mobile products. Semi-formal methods such as Use
Case Maps and formal methods such as SDL are starting to be widely used. In this paper we
show how to integrate these two techniques in terms ofquickly validating high levei designs in
SDL against desired abstract behaviours in UCM notation.

Keywords: Use Case Maps, SDL, Mobile Systems, Telecommunications Software Engineeríng

1. Introduction

Today's customers of mobile services is an ever-faster growing market. Together with the
legacy of current telecommunications systems, new services and features are being created,
designed and sold ali over the world. However, these features are more and more highly
dependent on software and more and more complex. To currently design such features is not
an easy task. Quality assurance, security, and time to market are ali criticai for these products.
Designers require effective techniques and extensive design tools to achieve high leveis of
quality and security without sacrificing time to market. Some corporations which develop
mobile systems and standards are supporting their designers in the use of formal techniques
[1,2], such as the ones presented here, namely, Use Case Maps (UCM) [3] and the
Specification and Description Language, SDL [4,5]. In this paper, we introduce a method for
rapidly converting use case maps into SDL designs. This mapping is done by a designer using
our rationale for correctly choosing which SDL structures to derive from UCMs. In Section 2,
we introduce both notations, and in section 3 we give some rules for capturing and drawing
UCMs to represent functional requirements. Then, in section 4 we give the UCM to SDL
mapping process. Section 5 contains a case study, namely a high-level design of a Wireless
Mobile Station. Finally, in section 6 conclusions and suggestions for further research are
given.

2. Notations

Two notations are required for the full understanding of this work, Use Case Maps, UCMs
and the Specification and Description Language, SDL. These two semi-formal and formal
notations are both highly graphical. Use Case Maps are used in the early stages of design
when Use Cases [6] and Use Case Diagrams [7] are being used to capture and refine the
system requirements. The next two subsections will familiarize the reader with such notations.
Figure l illustrates this paper's contribution.



We have presented a practical way of deriving high levei design (in SDL) starting from a
higher levei behavioural and architectural model (in UCM). In our case study, we have chosen
Use Case Maps because this is a fast and easy way to describe use cases at an early stage of
development when having very little Information about the details of the system. We have
also applyed this technique to Wireless Mobile Systems development.

In summary, first we start with use cases and we draw the UCM architectural model, followed
by the observable messages. Then the information in the requirements (use cases, use case
diagrams) is captured in terms of general behaviour into a use case map. After reaching a
levei of completeness with the UCMs, the designer then will start developing the SDL model.
Our methods to easily generate SDL architectural and behavioural designs were explained in
detail.

Our intent is to provide a cost-effective working model such that the designer will be able to
build on top of it. With the aid of CASE tools for SDL[15,16], one can promptly validate and
verify it. This validation can be done by semi-automatically generating Message Sequence
Charts[17] from the SDL model. As we have shown, the functional requirements of the SDL
model reflect the ones from the Use Case Maps, therefore facilitating the task of ensuring
correctness. Another possible applications for such a method is the automated generation of
test cases[18]. Once the UCM model is ready, it is converted possibly with iterations into an
SDL model. Again, with the aid of tools for generation of test suites, one can quickly generate
a conformance test suite for instance.

We intend to improve this approach. These improvements are towards better techniques for
capturing functional requirements with use case maps and transforming these into simulation
models. We will also work on identifying the best point in time start building the bridge
between the abstract model and the design model.

7. Acknowledgements

The authors grateful acknowledge helpful discussions with our colleagues in the TSERG
research group at the University of Ottawa, and portrait financial support from Mitel
Electronics, CITO, and the National Science and Engineering Research Council of Canada.

8. References

[1] Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., Yi, Z., Formal Methods for
Mibility Standards, IEEE 1999 Emerging Technology Symposium on Wireless
Communication & Systems, Dallas, USA, 1999.
http://www.UseCaseMaps.org/UseCaseMaps/pub/ets99.pdf

[2] Amyot, D., Logrippo, L., Use Case Maps and LOTOS for the Prototyping and
Validation of a Mobile Group Call System. To appear in Computer Communications.

[3] Buhr, R. J. A., Casselman, R. S., Use Case Maps for Object-Oriented Systems, Prentice
Hall Inc., 1996.

[4] Ellsberger, J., Hogrefe, D., Sarma, A., SDL: Formal Object-Oriented Language for
Communicating Systems, Prentice Hall, 1997



l S5 Simpósio Brasileiro de Redes de Computadores 469

hás the chance to send "Talk" a different path from making a call is taken. This is seen in
SDL model as an input triggering a transition from the state "WaitTalk".

6. Conclusions



deterministic decision symbol. Hence, we had to program it such that it had the same SDL
behaviour twice, but in different orders.

Figure 18 - The Call Processing and the corresponding SDL behaviour

Figure 18 is an example of how the behaviour for concurrent inputs and outputs would be
represented in SDL. In this figure, part (c), one can see this diagram. The exception construct
in part (a) is not explicitly declared in (c). The interpretation given to that exception point is
of taking over the former one. Thus whenever the input "Connlnd" is received before the user



l S5 Simpósio Brasileiro de Redes de Computadores 467

(a) (b)

Figure 16 • The SDL behavíour for the Initialization procedures maps

Figures 14 through 20 describe in detail the complete mapping of the use case maps to SD1
processes. It is straightforward to follow using the rules presented in this paper applied te
figure 15 resulting in figure 16. A few design decisions were made to simplify the behavioura
model. Figure 17(a) shows the failure handler plug-in. We thought it irrelevant to havt
separate processes to represem single signal outputs, especially because there is nc
concurrency in that use case map. Therefore, the solution taken was to use send symbols foi
the observable outputs rather than creating a parallel process for each. The final effect wouk
have been the same. We also believe the design is clearer this way. In Figure 20 one can se«
that there is a decision branch after the SDL process executes the procedure "Same MSC ?"
According to the UCM in Figure 19 these two could be taken in parallel. As they only lead te
two possible different situations we thought it to be easier to represent using only an any non



5. Case study: A Mobile Station (MS) basic call specification

In this section we will show the specification of a Mobile Station in use case maps and its
appropriate respective counterpart in SDL. The first map hás already been seen in Figure 9. It
represents the root map for the others that follow. The behaviour for the SDL high levei
design follows. A process called "Handoff_Process" hás also been created and introduced into
the architecture shown in Figure 10. It is not shown due to lack of space and importance. This
process communicates to the network and to the user as well as to the mobile station process.
In addition, other relevant âspects of this architectural model, like the actual signal names,
have been described in Table l.



465

designer may just pick one order and implement it as a single transition. Or he/she could just
as well use a decision symbol with any (non-deterministic choice) and implement ali the
different combinations. For several threads this may be a problem. However, it occurs very
rarely.

Figure 12 - Different UCM And-fork constructions

Figure 12(b) illustrates a more elaborate map. Instead of having two single endpoints, one
path in the fork continues. As we have found the ordering to be scarcely necessary for two
dose events, again we can choose one and not even need to transform the thread into another
process creation call. i.e., simply sending "OutputS" and keep on executing the second path.
Formally this second thread should be represented by another process. The suggestions above
avoid some unnecessary work as well as improve the readability of the SDL model. This
process creation construct is illustrated in Figure 11 (c).

Finally the most complex construct, for our scope, is the And-Join. After experimenting a few
times with different mechanisms the best way we found is to use a synchronizing process.
This process' only purpose is to synchronize concurrent threads, without affecting the rest of
the system. In fact, this process should not even be connected to any other blocks. Every time
a thread reaches a synchronizing point, it makes a remote procedure call like the one shown in
Figure ll(d). The behaviour associated with this procedure depends again on designer
decisions. A typical synchronizing process is described in Figure 13. After synchronization,
the processes that called the "sync" procedure should decide whether they should terminate or
not. The designers should be aware that a clean way of finishing the synchronisation is to
create request calls to other processes. For readability this may not be necessary, also
facilitating the job. This type of construct is the mostly uncommon to find in use case maps,
although it should be considered because it is a powerful UCM construct.



To represent an UCM Or-fork structure we can basically use the SDL decision symbol. In our
case above, Figure ll(a), this symbol is shown with many branches. Figure 3(a) hás a
responsibility attached to the outgoing path, which in the corresponding SDL is represented
by an "o". The way it is done is as follows: the running process, i.e., the one that represents
the executing path invokes the responsibility procedure "r" with n parameters. The last
parameter is the output from its execution. This output should guide the process to which
branch to follow. In our case, one of the actions is the path taken.

In (b), we have the simplest case of correspondence. Any number of branches converge to one
single one. In other words, whatever path hás been taken will lead to the same outcome. Note
that the boxes are not necessarily task symbols. They may be any valid SDL construct.

If the reader is accustomed to SDL, the timeout (e,f,g,h) will also be a very simple construct
to understand. As in UCMs, to set a timer, one only needs to declare a task symbol with the
"set" statement for that timer, as shown in (f). The timer must have been declared in the
process, as in (h). Resetting that timer requires also a simple task with the "reset" statement as
in (g). In the use case maps notation, a path is taken, usually an and-fork, to reset the timer.
This entire path that resets the timer is replaced by a single task, in most cases.

To illustrate the construction of And-Forks and And-Joins we will need some more
complicated constructs. The approach is to use parallel processes within the same scope.
Beforehand, the designer should analyse the use case maps to ensure this procedure is needed.
For example, Figure 12 illustrates a case where this construct may not be needed. The

4.2. System Behaviour

For deriving the system behaviour we have found a set of SDL flowchart structures that iratch
those of the UCMs. Responsibilities are treated as procedure calls. They may be remote
procedure calls also.



actual behaviour. Our focus is more centred on the behaviour since we are interested in
functional requirements.

4.1. System Architecture

There are two activities involved in specifying a system architecture. The division of the
system into blocks and processes, and the connection between these components by means oi
channels.

Figure 10 - The SDL overview of the architecture for a Mobile Station

Figure 10 describes the way the components will be organised inside the system "Wireless".
There is a channel that communicates to the environment, i.e. the user, and it hás the signal set
"toEnv" and "fromEnv". The brackets indicate a set of signals differing from single signals. It
hás been done this way in this figure for readability and portability purposes. At the same
time, the "MobileStation" block communicates with the "WirelessNetwork" block through the
signal sets "toWN" and "fromWN". Channel names have been omitted for readability
purposes. They are of no relevance to this work.

The channel signals are listed in Table l below.

ToEnv
Failure, Ready, Roaming, NotRoaming,
RingbackTone, NoTone, Ring, RingOff,
Disconnected, NoSignal, NotPermitted,
SignalError, DeviceError, PoweringOff

fromEnv
PowerOn,
Dial,
Talk,
End

toWN
ConnReq,
AnswReq,
DiscReq

FromWN
ConnConf,
Connlnd, Answlnd,
Disclnd,
Handoffínd

Table l - Mobile Station signals

We can see that the architecture described in Figure 10 hás more detailed than the one in
Figure 8. This is due to the fact that the former one is a better way of expressing the system
with the division of signals according to the receiver roles, i.e., "User" and "Wireless
Network". A drawback is due to the fact that Use Cases distinguish between the externai
entities, while SDL and UCMs do not. A way to overcome this problem in SDL is to consider
only one actor as the environment and model the others (in our case study, the network) as an
internai block.



3.2. UCM behaviour

The degree to which one can determine the UCMs behaviour depends on the familiarity of the
designer with respect to the UCM notation. It is not the intention of this work to guide the
reader on how to design use case maps in much detail. A simple start is to identify the main
steps of a use case, and describe those in terms of stubs along the sequence of actions. For
instance, when a user sends the "PowerOn" signal to the mobile station, it should, 1) run its
own start-up procedure, 2) "Register" onto the wireless network, and 3) start "Call
Processing". In parallel to registering, the "Handoff' handling procedure should take place.

Figure 9 - High-Level Behaviour UCM model

The next step is to expand each one of the stubs and draw its proper behaviour. Note that not
ali observable signals need to appear in only one map. In the sub-maps there may also be
more ingoing and outgoing signals. The final set of use case maps should reflect, as stated
before, ali the externally observable signals.

4. Describing the prototype in SDL

The derived SDL behaviour diagrams are very useful for verifying and validating the model.
These two tasks are usually accomplished with a tool. Several industrial-strength tools for
SDL models are available. In this section we will show the steps required to create an SDL
model starting from use case maps. First we derive the architecture definition and then the



l S2 Simpósio Brasileiro de Redes de Computadores 461

(b), a UCM view of the same information is captured, this time in terms of actual observable
actions to and from the system (in this case a Mobile Station).

Figure 7 - Use Case Diagram and Use Case Maps

From the use case, "Turn on the mobile station" requires an action which is, for instance, a
button named "PowerOn". In order to "Make a call", the user needs to "Dial" the destination
number and hit the "Talk" button. To "Receive a Call" the user needs to be notified that
someone is trying to call him/her. This is done through, for instance and audible "Ring". To
accept the call the user should simply press the "Talk" button.

Similarly, with the network behaving as a user, it is possible to acquire the messages on the
network side. Note that we assume the convention that start points indicate signals from an
actor to the system, and signals attached to an endpoint are used to refer to incoming signals
going to the actor. Figure 7 does not show ali messages for the network side, instead, showing
a vertical reticence symbol to indicate that there exists more messages to be shown.

Once ali the signals have been captured using this method, the designer may start building the
internai behaviour of the system. This behaviour is captured expanding the use case maps start
and end points into internai UCM paths. Note that this is not a static process, thus during the
design phase the designer may discover errors concerning the incoming and outgoing signals.
These mistakes should be corrected in an iterative way, and the affected maps redrawn.
Discussions about iterative requirements engineering processes are beyond the scope of this
paper.

3.1. UCM structure

In our approach, the first step to construct the UCM structure is to divide the system into
subsystems. The example shown in Figure 4 illustrates the breakdown of a mobile station into
components. It was broken down into the Mobile Station itself and the Network Card. For
simplicity the example in this paper one will not need a further breakdown into more
architectural entities. Thus it would look like Figure 8.

User Network

Figure 8 - Final UCM architecture



components or blocks. In 5(b) the architectural details of the block "Mobile_Station" are
shown. The system architecture shows the interaction between blocks, and the block
architecture shows the interaction between processes. The arrows connecting the system's
environment to blocks and the block's environment to processes are called channels or signal
routes. The channels have associated a set of signals with each side. Signals are triggers that
stimulate the behaviour of the processes. These signals must ali be declared inside the box
with the document symbol (System definition block, Figure 5a). They were suppressed in that
figure as irrelevant to our discussion. Inside each process chart the behaviour of that process
is defined as a set of EFSM transitions (<current state, event, condition, output actions, next
state>).

Figure 6 - A sample SDL process chart

The behaviour described in Figure 6 is based on the use case map from Figure 4, except that
there is no Network Card entity in this SDL model. The SDL behaviour is described in a
flowchart-like format. The first symbol of the process, right below the process name describes
the starting point of the starting transition of the process. It immediately goes to the state
"Idle". This is a way of indicating the initial state of the process. Upon receiving the input
event "PowerOn" in the state idle, the process calls the procedure Initialization, and then
sends a message NotifyNetwork with the parameter PowerOn to the Wireless_Network block.
Moreover, it moves to the next state labelled "On". This state hás its transitions defined in
another process chart labelled MS_Process 2(2) (chart 2 of 2) not shown here. Each state may
have several different inputs, and/or conditions leading to different actions and therefore
different states. The circles indicate continuation points. It is a simple feature for drawing
long diagrams that do not fit within the entire height of the chart.

3. Capturing Functional Requirements with UCMs

Functional Requirements are those behaviours that affect the user directly. These
requirements are often represented by sequences of actions/reactions called scenarios. It is not
an easy task to capture such requirements in a EFSM model [12]. However, it becomes easier
if we focus on the signals exchanged between the user and the system (the user interface or
system environment boundary). Figure 7 shows a typical extraction of functional requirement
signals using use case diagrams[l3] (7a) and use case maps[14] (7b). On the left side (Figure
7a) the user can turn on the mobile station, or place a call or receive a call. On the right side



l S5 Simpósio Brasileiro de Redes de Computadores 459

the path in the middle, and the alternative path going out from the bottom of the clock icon
representing a timeout action. The endpoint that ends at the top of the clock indicates the path
resetting the timer. Arrows were drawn here only for clarity purposes; they are optional in
UCMs.

Finally there are bound UCMs and unbound UCMs. The meaning of bound is to be allocated
to a component, or to an architectural entity [10]. Figure 4 below shows an example of an
architecture for a Mobile Station. Components are modules of the system under design.

The "Power On" label next to the start point indicates an event coming from the
environment. This is the triggering event of the map above. "Mobile Station" and "Network
Card" are two components of this system. "Network Card" is a sub-component of "Mobile
Station". The responsibility "Notify Network" hás to occur inside the component named
"Network Card" according to this design. When there is a polygon surrounding a UCM we
say it is bound. In this work we will always refer to bound use case maps.

2.2. Specifícation and Description Language - SDL

An SDL specification consists of both architecture and behaviour. Common architectural
components in SDL are referred to as systems, blocks, processes, and channels. Behavioural
constructs in SDL specify the behaviour of processes. These are expressed in terms of SDL
flowcharts, which are eqüivalem to Extended Finite State Machines (EFSM) [11].

In Figure 5 details of an SDL system architecture for a mobile wireless protocol are shown.
On the left side, in (5a), is shown the architectural decomposition of the system into



2.1. Use Case Maps - UCMs

A Use Case Map, UCM for short, is a means of describing the causai relationships among
system events over time. A simple use case map consists of a start point, a path, and an end
point. It is basically used to describe sequences of events, as in use cases [8], or in natural
language descriptions of functional requirements. Figure 2 shows a very simple Use Case
Map. A black circle indicates the start point. The path is drawn as a line, and the endpoint as
a bar perpendicular to the thread. Figure 2 also includes the concept of a stub. One can think
of a stub as being a sub-UCM. When we follow an UCM and find a stub we fali into the stub,
finding another use case map. A responsibility, indicated by an "X" along the time thread, is
an action. When time comes to that point that action must be executed.

One of the drawbacks of writing English language use cases is the difficulty of representing
the possible different outcomes and the introduction of ambiguities. With use case maps, this
job is done easily using forks. Figure 3 shows the different possible constructions in this
language. The dotted lines indicate that there is more unspecified information in the indicated
direction. In Figure 3a we can see that a responsibility is required before an or-fork since it is
the last action taken before deciding which way to follow. And-forks, shown in Figure 3 (c)
and (d), provide concurrency. The and-fork splits into two or more concurrent paths, and the
and-join synchronizes two or more paths.

Another interesting construct is the timer, very importara for real-time embedded systems[9].
Figure 3 (e) shows how this construct works. For a timer, there is the main path that follows



182 Simpósio Brasileiro de Redes de Computadores 471

[5] ITU, Z. 100 (1996): Specification and Description Language (SDL), International
Telecommunications Union, Geneva, 1996.

[6] Schneider, G., Winters, J. P., Applying Use Cases: A Practical Guide (Addison-Wesley
Object Technology Series), Addison-Wesley, 1998

[7] Alhir, S. S., UML in a Nutshell - A Desktop Quick Reference, O'Reilly & Associates,
1998

[8] Jacobson, L, et ai, Object-Oriented Software Engineering (A Use Case driven
approach), ACM Press, Addison-Wesley, 1992.

[9] Selic, B., Rumbaugh, J., Using UML for Modeling complex Real-Time Systems,
ObjecTime Ltd, 1998

[10] Buhr, R. J. A., Use Case Maps as Architectural Entities for Complex Systems, 1998,
published on the website http://www.UseCaseMaps.org papers directory.

[11] Turner, K. J., Using Formal Description Techniques: An introduction to Estelle,
LOTOS, and SDL, John Wiley & Sons, 1993.

[12] Dssouli R., Bochmann, G.V., Lahav, Y., SDL: The Next Millennium, Proceedings of
the ninth SDL Fórum, Montreal, Canada, Elsevier Science Ltd., Canada, 1999.

[13] Booch G., Rumbaugh, J., Jacobson, L, The Unified Modelling Language User Guide,
Addison-Wesley, 1998.

[14] Buhr, R.J.A., Casselman, R.S., High-Level Design of Object-Oriented and Real-Time
Systems: A Unified Approach with Use Case Maps, Prentice Hall, 1995.

[15] Telelogic AB, Telelogic TAU toolset, Malmo Sweden http://www.telelogic.com

[16] Verilog Inc., Verilog ObjectGEODE toolset, France, http://www.verilogusa.com

[17] ITU, Z. 120 (1996): Message Sequence Chart (MSC), International Telecommunications
Union, Geneva, 1996.

[18] Probert, R. L., Williams, A. W., Fast Functional Test Generation Using an SDL model,
Proceedings of the 12th International Conference on Testing Communicating Systems,
IWTCS'99, Klummer Publishers, Hungary, 1999.


