
l u2 Simpósio Brasileiro de Redes de Computadores 227

Juggler: A Management Service
for CORBA Object Groups*

Marcos A. M. de Moura^ and Markus Endler
Instituto de Matemática e Estatística

Universidade de São Paulo
Rua do Matão 1010

05508-900 São Paulo - SP, Brasil
Email: {mmoura, endler}@ime.usp.br

Abstract

Since its initial specification, CORBA hás become a de Jacto standard for the
development of object-oriented distributed applications. In spite of some impor-
tant features such as support for interoperability and heterogeneity, the CORBA
specification, until very recently, neither addressed object replication nor reliable
communication between objects, which are key components to provide fault toler-
ance for distributed object systems.

Some research projects have proposed and explored a few approaches that incor-
porate fault tolerance mechanisms in CORBA but most of the systems developed
offer a rather basic support for managing groups of object réplicas. Our work
builds upon one of these systems, called OGS [3]. On the top of it, we are devel-
oping Juggler, a distributed service that provides means for flexible and automatic
management of CORBA replicated objects.

l Introduction
As the result of research in new technologies that facilitate the development of dis-

tributed systems, some architectures that support object-oriented distributed program-
ming in open environments have emerged. One of such architectures is CORBA [12],
specified by OMG to provide an object-oriented infrastructure that makes possible com-
munication between objects. CORBA emphasizes some aspects such as code reuse, sys-
tems integration and heterogeneity, but until very recently it did not address some funda-
mental problems of distributed systems (eg partial and temporary failures in the system
and consistent event ordering). However, in March 2000, OMG hás finished the tech-
nology adoption vote for Fault Tolerant CORBA (FT-CORBA) [13], which standardizes
CORBA functionalities supporting fault tolerant applications.

"Supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) - Proc. No.
98/06138-2.

'Graduate student supported in part by CNPq.



7 Fault Tolerant CORBA
Recently, OMG hás adopted a specification for Fault Tolerant CORBA (FT-CORBA)

[13], which aims to provide support for applications that require high degree of reliability
and availability. This specification basically defines interfaces for replication manage-
ment, fault detection, notification and fault recovery.

The ReplicationManager interface allows an application to add and remove members
of an object group, as well as to get location of the group members, ie object réplicas.
This interface also provides means to set the replication, membership and consistency
styles of a group, and its initial and minimum number of réplicas. The counterpart of the
ReplicationManager in Juggler's architecture is the GroupManager interface. However, in
our project we are implementing protocols that support both active and primary-backup
replication, as well as weak consistency replication and means to dynamically switch
between them, which is not specified in FT-CORBA.

The fault management in FT-CORBA is provided by a very general and well designed
architecture, which encompasses fault detectors, notifiers and fault analyzers. In Juggler
we make use of the Monitoring Service of OGS in order to detect faults. These faults
are propagated to the GroupObserver objects, which act as the fault notifiers in Juggler's
architecture. In our project we do not make any provision to support fault analyzers.
Finally, a major difference between the architecture proposed by Juggler and that of FT-
CORBA is that we do not specify mechanisms for stable storage logging, thus supporting
only a very simple recovery mechanism. At last, we should note that the main goal
when developing Juggler is to create a flexible management service for CORBA object
groups and not a generic fault tolerance infrastructure such as the one recently adopted
by OMG.

8 Conclusion
Support for fault tolerance is an usual requirement of many real-world dependable

distributed applications. Recently, some systems have been designed to support the
development of fault tolerant, highly available applications in CORBA, but they only
provide a minimal set of mechanisms for dealing with object groups.

Through our work we aim to provide high-level abstractions that ease the management
of fault tolerant CORBA applications. Juggler supports monitoring and failure recovery
of object réplicas, availability management and specification of several management poli-
cies for fault tolerant applications. The main contributíons of Juggler are the replication
of the information concerning object groups and a flexible specification of replication
policies for CORBA replicated objects. An interesting feature of our service is that the
Juggler-OGS layers are wholly portable and interoperable with different CORBA ORBs.

Despite the high cost of managing OGS groups when compared to other systems that
offer similar features, eg Electra and Eternal, we have chosen it as the main replication
management system in the software architecture adopted in project SIDAM. This deci-
sion was taken mainly due to the assumption that our computational environment may
integrate different platforms and CORBA ORBs and also because the applications that
will use the SIDAM architecture do not have high-performance requirements.

We have implemented and tested an initial prototype of Juggler through which we
have evaluated its performance and identified the major overheads associated with the



Figure 9: The time spent when creating object groups through Juggler

The other test (see Figure 10) aimed at identifying the cost of the individual steps
performed by Juggler during the group creation protocol, and the influence that the
number of Juggler processes running had on this cost. The graph in Figure 10 shows
the results for creating of a group with 2 members. Notice that the values shown in
this graph are accumulated. For instance, the "Supports multicast" values encompass
the time spent by the supports multicast itself and the time spent to create the object
réplicas (represented by the line "Réplicas creation time"). From the graph it can be
seen that the total creation time grows at a small rate as the number of Juggler processes
grows. Although our test was only for two members and up to 10 Juggler processes,
we expect this rate to be similar when the number of Juggler processes becomes larger.
We can also see that the cost of the several multicasts issued among Juggler's objects
accounts for a small fraction of the overall group creation time, and that this cost does
not grow significantly as the number of Juggler processes increases.

Figure 10: The cost of the steps performed during group creation



l S5 Simpósio Brasileiro de Redes de Computadores 239

Figure 8: Failure recovery protocol

hás been extensively tested with this CORBA ORB. We chose Java mainly because of
code portability, thus allowing the use of Juggler in different platforms without code
modification.

An initial prototype of Juggler hás been developed in order to test the group creation
protocol. For this purpose we implemented a CORBA object that represents a bank
account and then we replicated it using Juggler só as to achieve high availability. These
objects define methods to deposit and withdraw money from a bank account, and a
method to get the current balance, which is the replicated state between the object
réplicas. The tests were performed on a local 10 Mbit Ethernet network interconnecting
12 Sun SPARCstations 4, running Solaris 7, shared also by other users. The tests were
run with the TCP-NODELAY option set, which forces the immediate sending of requests,
instead of buffering them and sending them in batches.

In the first test (see Figure 9) we measured the total time spent by Juggler to create
object groups with one to ten members (object réplicas). For this test we have instanti-
ated 10 Juggler processes, each running on a different host. From the graph we can see
that as the number of réplicas in the group grows, the time needed to create the group
grows at a higher rate. For instance, groups with 2 and 4 réplicas were created in approx-
imately 2.3s and 6.4s respectively, whereas in average a group with 10 réplicas took 37.2s
to be created. This happens mainly because the access to the CORBA Naming Service
(used by OGS during the creation of object réplicas) is done, in our current prototype,
via mutual exclusion, só as to guarantee that the réplicas have a consistent group view
upon group instantiation. The lower line in the graph represents the time that the last
object replica of the group had to wait until it could register itself with CORBA Naming
Service and join the group. Hence, it can be noticed that the sequential access to this
service is the determinant factor of the total creation time of an object group, and that
the effective overhead introduced by Juggler's creation protocol is relatively small.



automatically reconfigured according to the changes in the computational environment,
such as overload of some hosts or other network problems.

Changes of the group configuration that affect only the number or the location of the
object réplicas are implemented by having Juggler automatically create and/or destroy
object réplicas on the hosts specified in the Hosts attribute of the group semantics. In
order to support also changes of the replication style we have extended the Group Admin-
istrator class made available by OGS. Essentially, our Group Administrator implements
the protocols for different replication styles (active, primary-backup, weak consistency)
and a means to dynamically switch between them without causing heavy impact on the
access time to the corresponding group (ie only a short period of time in which requests to
the group are blocked). In fact, this extension does not require any other interfaces that
application objects must implement, except the essential interface for receiving multicast
messages and notifications of view changes.

Thus, if the system administrator decides to change the replication style of a given
object group, Juggler will make a copy of the semantics associated with the group, set the
ReplicationStyle attribute accordingly and invoke the change_group operation on any
GroupManager object made available by Juggler. The GroupManager then multicasts a
message to the extended Group Administrator objects, which will then block new requests
from any Group Accessor and switch to the specific protocol required to manage message
delivery and view changes according to the new replication style.

Failure Recovery of Object Réplicas

In this section we will describe the actions performed during the automatic recovery of
a failed object replica. Suppose that the object replica, of the "MyTest" group, located at
Host C fails. Remember that the semantics associated with the "MyTest" group, which
is shown in Figure 6, specifies automatic failure recovery and a minimum of 2 object
réplicas. Figure 8 illustrates the failure recovery protocol, discussed as follows.

As soon as the object replica fails the OGS Monitoring Service invokes the no-
tify_suspicion operation on the local GroupObserver (ie located at Host C), which
causes a local call to the check_out_object operation. This operation removes the
failed object from the Object Information Table, through an update_oit multicast on
the OBSERVERS group. The GroupObserver forwards the failure suspicion to the lo-
cal GroupManager, which checks the semantics associated with the group of the failed
object. The GroupManager then instructs the local GroupActor to create a new replica
to substitute the failed object. The local GroupActor creates the object, invokes the
check jn-object operation on the local GroupObserver, which updates the Object Infor-
mation Table (through an update.oit multicast on the OBSERVERS group, not shown
in Figure 8), and returns a reference to the new object replica to the local GroupMan-
ager. The GroupManager then updates the Information concerning the group of the
failed object in the Group Information Table, through an update_git multicast on the
MANAGERS group.

6 Prototype Implementation
In order to develop Juggler we have chosen Visibroker for Java 3.2 and the Java

language. Visibroker was selected due to its vast set of features and also because OGS



l S2 Simpósio Brasileiro de Redes de Computadores 237

Figure 7: Group creation protocol

Initially, a client application invokes the create_group operation on any GroupMan-
ager object made available by Juggler (eg through the CORBA Naming Service). The
GroupManager unpacks the information contained in the Semantics object and checks
whether there are enough hosts só that the InitialReplicationDegree attribute can be sat-
isfied and if the Hosts attribute contains only valid system hosts, ie hosts in which Juggler
is currently running.

Next, the Group Manager multicasts a supports message to the ACTORS group to
know if the object réplicas can be created on the specified hosts. Then, the create_object
operation is invoked on the ACTORS group, passing the Typeld, Hosts and Critério as
arguments. Each GroupActor checks whether the host in which it is running is specified
in the Hosts argument. If this is not the case, no further action is taken. Otherwise, a
new object replica is locally created, the check_in_object operation is invoked on the lo-
cal GroupObserver (which updates the Object Information Table through an update-oit
multicast on the OBSERVERS group, not shown in Figure 7) and a reference to the new
object replica is returned to the GroupManager that requested the create_object oper-
ation. Finally, the GroupManager receives the references to the object réplicas created
and stores ali the information concerning the new group in the Group Information Table,
through an update_git multicast on the MANAGERS group.

Modification of Group Configuration

Juggler provides means for on-the-fly modification of replication policies (semantics)
for object groups. This is an important feature of our service, since it can deal with
applications whose requirements change over the time, such as an object's replication
degree or the form of synchronization among object réplicas. Moreover, this feature sup-
ports adaptive fault tolerance in the sense that applications managed by Juggler may be



InitialReplicationDegree specifies the initial number of réplicas to be created in an
object group and MimmumReplicationDegree determines the minimum number of réplicas
that are required for the given group. ReplicationStyle indicates the form of replication
used in the object group, eg primary-backup, active replication and weak consistency1.
The administrator of a fault tolerant application can configure Juggler to automatically
recover from failures of object réplicas by setting AutomaticRecovery to true. Another
option is to set this attribute in such a way that Juggler only produces notifications
whenever an object replica fails, letting the system administrator decide on the most
suitable actions to be taken. Typeld attribute specifies the repository identifier for the
type of the object réplicas. Finally, the attribute Hosts indicates where the object réplicas
of the group must be created; if it is left blank Juggler will chose randomly where to create
the object réplicas. In Figure 6 we show how to specify a group Sémantics.

II Java
Juggler.Sémantics sem = new Semantics();
// Defines the Sémantics attributes
sem.initialReplicationDegree = 2;
sem.minimumReplicationDegree = 2;
sem.replicationStyle = Juggler.ReplStyle.ACTIVE;
sem.automaticRecovery = true;
sem.typeld = "IDL:BankAccount/Account:1.0";
sem.hosts = new String[2];
sem.hosts[0] = "A";
sem.hostsfl] = "C";

Figure 6: Specification of a group Sémantics

5.2 Management Protocols
In this section we will discuss the protocols used in Juggler for group creation, failure

recovery of object réplicas and modification of the configuration of an object group. In or-
der to implement these features, Juggler defines three OGS groups, namely MANAGERS,
ACTORSund OBSERVERS. These groups comprise, respectively, ali the GroupManager,
GroupActor and GroupObserver objects running in the system network. The MAN-
AGERS group maintains a replicated Group Information Table, which contains infor-
mation about ali the object groups, such as their names, semantics and members. The
ACTORS group is responsible for the creation and destruction of object réplicas. The
OBSERVERS gioup maintains two replicated tables, namely Host Information Table and
Object Information Table, which contain information about ali the hosts where Juggler
is running and ali the object réplicas created at these hosts, respectively.

Group Creation

We will now describe how Juggler components interact in order to create a new
object group called "MyTest", whose semantics is the one specified in Figure 6. In order
to simplify this example, we will assume that no errors will occur during the creation of
the group. The necessary actions performed during this task are illustrated in Figure 7.

'The weak consistency replication style is not completely defined yet.



l ü2 Simpósio Brasileiro de Redes de Computadores 235

on an object factory. The object factory implements the GenericFactory interface, which
is like the GroupActor interface, except that the hosts parameter does not appear in both
create.object and destroy_object operations. Object factories must be implemented
by the application programmer, whose responsibility is therefore to code the operations
concerning the objects' life cycle. This frees the GroupActor object from this obligation,
raaking it a more general object factory. We assume that each GroupActor object retains
a reference to an object factory that is able to manage the objects' life cycle on the host
where the GroupActor is located.

4.2.3 GroupObserver interface

This is an internai interface of Juggler. It provides operations for keeping information
about currently active hosts and object réplicas. This interface inherits from the Notifiable
interface specified by OGS, which only defines the notify_suspicion operation. The IDL
specification of the GroupObserver interface is shown in Figure 5.

/ / IDL
interface GroupObserver : OGS::Notifiable {

void arriving_host(in string name);
void departing_host(in string name);
void check_in_object(in Host host, in Typeld typeld, in Object obj);
void check_out_object(in Object obj);
ObjectList active_objects();

Figure 5: IDL specification of the GroupObserver interface

The arrivingJiost operation is invoked to signal that the host identified by the
name parameter is ready to manage object groups. Similarly, the departing_host
operation is invoked to signal that the host identified by the name parameter cannot
manage object groups any longer. The check jn_object and check.out_object op-
erations enable the GroupObserver to have a precise information about which objects
are running on which hosts of the system. The active_objects operation returns infor-
mation about ali existing object réplicas, such as their types, locations and references.
Finally, the notify_suspicion operation, which is the unique operation inherited from
the OGS::Notifiable interface, allows the GroupObserver to receive notification about
failure suspicion of object réplicas.

5 Group Management in Juggler
In this section we focus on the main constructs and protocols used to implement

Juggler's management of object groups.

5.1 Group Configuration and Semantics

In order to support flexible management of object groups in Juggler we have designed
a structure called Semantics, which contains several criteria that guide the creation and
the configuration of object groups. The main attributes defined in this structure are as
follows.



5.1) specified by the sem parameter and with application-specific criteria, such as initial-
ization values for the object réplicas, specified by the crit parameter. If a group with
the given name already exists the GroupExists exception is raised. InvalidSemantics and
CannotMeetSemantics exceptions are raised if the semantics specified for the group is
invalid or if it cannot be enforced. The change_group and destroy _group operations
are used to modify the semantics and the criteria associated with an object group, and
to destroy an object group respectively. If there is no group with the given name the
NoSuchGroup exception is raised.

When the destroy Jiost operation is invoked ali the object réplicas running in the
host identified by name are destroyed. If the keepjrunning parameter is set to false then
the Juggler process running in the specified host is also destroyed, otherwise Juggler
is kept running. NoSuchHost exception is raised if the specified host does not exist,
ie there is no Juggler process running on it. CannotDestroyHost exception is raised
if some object replica currently active in the specified host cannot be destroyed, thus
preventing Juggler from violating the semantics associated with some object group. The
active_groups operation returns Information about existing object groups, such as their
names, members and semantics. Finally, the active Jiosts operation returns the name
of the hosts in which Juggler is currently running.

4.2.2 GroupActor interface

This is an internai interface of Juggler, meaning that it is not externally visible to
application objects. It provides operations for creation and destruction of object réplicas.
The IDL specification of the GroupActor interface is shown in Figure 4.

/ / IDL
interface GroupActor {

boolean supportsfin Typeld typeld);
Object create_object(in Typeld typeld, in HostList hosts, in Criteria crit)

raisesfNoFactory, ObjectExists);
void destroy_object(in Typeld typeld, in HostList hosts)

raises(NoSuchOb}ect);

Figure 4: IDL specification of the GroupActor interface

The supports operation checks whether it is possible to create an object whose
repository identifier (a CORBA::RepositoryIdtype) for the type of the object is specified
in the typeld parameter. When the create_object operation is invoked a new object
identified by the typeld parameter is created, but only if the GroupActor is located in a
host specified in the hosts parameter. In addition, application-specific criteria may be
specified through the crit parameter. NoFactory and ObjectExists exceptions are raised
if there is no factory to create the object and if an instance of the requested object is
already running on the host, respectively. If this operation succeeds then a reference
to the created object is returned to the callee. Finally, the destroy_object operation
destroys the object specified by the typeld parameter, but only if the GroupActor is
located in a host specified in the hosts parameter. If the requested object does not exist
the NoSuchObject exception is raised.

It is important to note that the GroupActor object, which implementa the GroupActor
interface, does not create or destroy objects itself, but invokes the appropriate operations



182 Simpósio Brasileiro de Redes de Computadores 233

Figure 2: Juggler logical architecture

GroupManager mainly deals with group creation, destruction and on-the-fly modifica-
tion of the group configuration. Furthermore, this object invokes methods on GroupActor,
which is responsible for creation and destruction of object réplicas. GroupObserver is es-
sentially responsible for failure suspicions of object réplicas and the delivery of these
notifications to the GroupManager, which takes actions to maintain the desired con-
figuration for the related group according to a semantics provided by the application
programmer.

4.2 Interfaces

Juggler is specified as a collection of CORBA IDL interfaces, namely GroupMan-
ager, GroupActor and GroupObserver. These interfaces, implemented by objects named
GroupManager, GroupActor and GroupObserver, respectively, are described as follows.

4.2.1 GroupManager interface

This interface provides the externai view of Juggler for the application's programmer.
It basically provides operations for group management and for information retrieval con-
cerning currently active object groups and hosts in the system. The IDL specification of
the GroupManager interface is shown in Figure 3.

/ / IDL
interface GroupManager {

void create_group(in string name, in Semantics sem, in Criteria crit)
raises(GroupExists, InvalidSemantics, CannotMeetSemantics);

void change_group(in string name, in Semantics sem, in Criteria crit)
raisesfNoSuchGroup, InvalidSemantics, CannotMeetSemantics);

void destroy_group(in string name)
raises(NoSuchGroup);

void destroy_host(in string name, in boolean keep_running)
raises(NoSuchHost, CannotDestroyHost);

GroupList active_groups();
HostList activeJiostsQ;

Figure 3: IDL specification of the GroupManager interface

The create_group operation is invoked by a Juggler client to create a new group
of object réplicas, uniquely identified by name, with a replication semantics (see Section



GroupObserver, and their relations with other software layers, is shown in Figure 1.

Figure 1: Juggler architecture

Juggler only uses externally visible components of OGS, namely the Monitoring Ser-
vice and the Object Group Service. Juggler uses the Monitoring Service in order to re-
ceive notifications about failure suspicions of monitored objects (ie group members). The
Object Group Service is responsible for ali operations related to group management (ie
group creation/destruction and addition/removal of members), consistency maintenance
and reliable group communication.

In OGS, the management of object groups on the server side is implemented through
Group Administrator objects, which are associated with each of the application object's
replica in the group. In addition, these objects interact with each other to execute
the consensus and voting protocols. From the perspective of the application object,
each Group Administrator object is responsible only for delivering multicast messages
and notifying group view changes to the group member attached to it. On the client
side, OGS provides Group Accessor objects (ie proxies), which enable clients to issue
invocations to the object réplicas' methods, specify the number of replies to be expected
and the desired reliability of each method invocation, without even knowing how many
réplicas exists, and where they are executing. Thus, it is the Group Accessor which does
the multicast to the corresponding Group Administrator objects, and eventually waits for
a reply from them.

The main contributions of our work are the definition of a high-level interface that
eases the management of CORBA applications based on replicated objects and an im-
plementation which replicates the information about object groups. This replication is
a key feature of Juggler since it makes possible to recover from object, host and service
failures, thus providing a robust, fault tolerant management service for CORBA objects.
Juggler's architecture is similar to that of Piranha, mainly because of its basic manage-
ment features and the distribution of information concerning object groups. However,
Juggler provides means for specifying flexible management policies for groups of object
réplicas, which is best tackled in Proteus.

4.1 Overview
Logically we can think of each object group as being managed by a Juggler process,

composed of three objects, namely GroupManager, GroupObserver and GroupActor, and
which is itself replicated. The interaction between these objects is shown in Figure 2.



182 Simpósio Brasileiro de Redes de Computadores 231

voting schemes as well as mechanisms for fault detection and notification. QuO runtime
is used to specify Quality of Service (QoS) requirements for an application and an Object
Factory is used to start or kill processes and to obtain information about the hosts of the
system.

We can distinguish two main components in the architecture of Proteus, namely an
Advisor and a Protocol Coordinator. The Advisor receives QoS requests transmitted via
the QuO runtime and fault notifications regarding application objects. It then determines
the most appropriate configuration for the related application. The Protocol Coordinator
is responsible to enforce the decisions taken by the Advisor. It interacts with Object Fac-
tories in order to start or to kill processes. Through the use of the Gateways the Protocol
Coordinator sets the appropriate replication style, type of voting, degree of replication
and type of faults to be supported by an application, according to the decision taken by
the Advisor.

Piranha and Proteus have both very interesting set of features but due to some ar-
chitectural or implementation decisions they do not fully provide suppórt for ali the
management requirements mentioned in the beginning of this section. Piranha is based
on a very robust architecture, since information about ali the objects running in the sys-
tem is replicated, enabling the service to recover ali the objects that were executing in a
failed host and to continue its normal functioning. A good feature of this service is its
suppórt for automatic failure recovery, but it still lacks adequate mechanisms for adapta-
tion and dynamic modification of application-specific availability policies, eg replication
style and fault types to be supported. Proteus provides a good suppórt for automatic
failure recovery and mechanisms that allows it to dynamically choose how to provide the
fault tolerance required by an application. Unfortunately, Proteus neither implements
functionalities that enable dynamic choice of faults to tolerate nor protocols to dynami-
cally switch between replication styles. Moreover, Proteus dependability manager is not
replicated, which makes it a very fragile management service.

4 Juggler
Juggler is a management service for groups of CORBA object réplicas. It is intended

to suppórt automatic reconfiguration and recovery of object groups and to provide means
for a flexible specification of management policies for fault tolerant CORBA applications.
These policies include several properties, such as number of réplicas, replication style
(active replica, primary-backup and weak consistency), automatic failure recovery, and
others.

Juggler is based on OGS [3], a service that supports object groups in CORBA. OGS
provides basic suppórt for creating and destroying object groups, adding and removing
group members and protocols for view change and for state transfer. We have chosen
OGS as the basis of our service mainly because it hás mechanisms for specifying different
communication and replication styles for each object group and also due to its suppórt for
monitoring and failure notification of individual objects within object groups. Further-
more, OGS provides group communication using only CORBA standardized constructs,
which guarantees portability and interoperability in this architecture. An architecturaJ
sketch oi Juggtei i\\us\,iatyag \te mam «ymponei&s, \e GroupManager, GroupActor and



3 Related Work

The incorporation of group communication mechanisms in CORBA is a useful and
efficient approach to provide reliability and fault tolerance for this architecture. However,
most systems that support these features only offer basic operations to manage objects
groups, and do not provide a high-level interface that can be used to handle more complex
replica management policies.

Distributed applications management typically requires support for automatic failure
recovery, adaptation to changes in the system environment and dynamic modification
of the application requirements by the system administrator. In order to provide this
kind of support for fault tolerant CORBA applications, some extra mechanisms and
services based on group communication were embedded in or added to some systems.
More specifically, we will describe how Piranha [8] and Proteus [14] provide some of these
aforementioned features in the Electra system and in the AQuA architecture, respectively.

3.1 Piranha

Piranha is a service composed of a collection of objects that implement notification,
failure detection and restart services for CORBA applications. Piranha acts as a network
monitor, notifying failures in replicated objects. It also works as an application manager,
providing support for automatic restart of failed objects, on-the-fly replication of stateful
objects, object migration and maintenance of a certain replication degree for CORBA
applications.

This service was built to run over Electra, a CORBA ORB that provides support for
object groups, reliable multicast, state transfer, failure detection and virtual synchrony.
Piranha user's interface shows the applications running on each host, their configuration
parameters, error messages and other kinds of notifications. Several activation criteria
can be specified during creation of replicated objects, such as hosts where to create the
réplicas, number of réplicas to be created and their life time, and the architecture, load
and performance of the hosts where the réplicas must be created. More advanced criteria
inform whether objects should be swapped out after a certain period of time without
processing requests and if Piranha should automatically restart failed objects.

3.2 Proteus

Proteus provides fault tolerance in the AQuA architecture by supporting dynamic
management of replicated distributed objects. One of its functions is to decide how to
provide fault tolerance for an application based on the availability requirements specified
by the application's programmer. This decision involves choosing the replication style
(active or passive), type of voting (algorithm and location), degree of replication and
type of faults to tolerate (crash, value and time) in order to configure the application
according to the desired availability. The other function of this dependability manager
is to support dynamic modification of the configuration of an application, based on the
decision about the most adequate fault tolerance scheme to support.

Proteus interacts very closely with other AQuA components, namely Gateway, QuO
runtime and Object Factory. A Gateway maps IIOP messages into Ensemble messages
and vice versa. It provides an infrastructure for implementing different replication and



182 Simpósio Brasileiro de Redes de Computadores 229

Moreover, ali the operations used to manage object groups are embedded in the ORB só
that any object in the system can become a group member.

In systems that adopt this approach, eg Electra [7] and Orbix+Isis [5], CORBA
requests assigned to object groups are passed to a group communication system, which is
responsible for transmitting them via reliable, ordered multicast to the group members.
The main advantages of this approach are replication transparency to client applications
and good performance of group communication. However, by modifying the ORB, it
makes these systems difficult to interoperate with other CORBA ORBs. In addition,
fault tolerant applications developed on top of these systems are inherently not portable
among different ORBs.

2.2 Interception Approach

Using the interception approach [9] ali the mechanisms that provide group communi-
cation become hidden from the ORB. The main idea here is to intercept the IIOP requests
generated by the ORB and map them onto a reliable, ordered multicast provided by a
group communication system.

The interception of the messages can be done through the use of meta-object pro-
tocols, operating systems interfaces or mechanisms provided by CORBA. Two systems
that implement the interception approach are the Eternal system [10] and the AQuA
architecture [1]. This approach hás the advantage of providing replication in a transpar-
ent way to application objects, which allows that already existing applications benefit
from fault tolerance support. Another advantage is interoperability, since a system that
adopts this approach can choose to intercept only those requests sent to object groups,
letting the ORB deal with requests to singleton objects. A disadvantage of this approach
is loss of portability, since specific mechanisms of the operating systems can be eventually
explored. In addition, similarly to the integration approach, there is a high dependence
on the group communication toolkits being used.

2.3 Service Approach

In the service approach [4] group communication is provided as a CORBA service [11]
that runs above the ORB, instead of being part of it. In this case, the ORB is not aware
of object groups but the use of the group service becomes explicit to client applications.
This may not be considered a real drawback of the approach, since a system can generate
smart proxies in order to hide the use of the group service from client applications. Two
systems that adopt this approach are OGS [3] and OFS [15].

Unlike the interception approach, where legacy applications can benefit from fault
tolerance support in a transparent way, with the service approach any group member
must implement specific callback operations in order to receive notifications about group
view changes and to process state transfer requests. The main advantages of this ap-
proach are full portability, interoperability and compliance with the CORBA standard,
since neither proprietary group communication toolkits nor the use of specific operating
systems interfaces are required.



Since the early 80's many research projects have been focusing on solving problems
related to partial failures and on aiming to guarantee predictable behavior of distributed
programs. Most models proposed by these works are usually based on replication of
processes or objects and on providing reliable group communication. With group com-
munication, distributed program's behavior becomes predictable even in case of failures,
when asynchronous communication is used and when processes or objects join or leave the
system dynamically. Thus, group communication can be considered a powerful paradigm
for the development of fault tolerant and highly available distributed applications.

Recently, many efforts have been made to make possible the incorporation of group
communication mechanisms in CORBA. In general, the systems resulting from these
works provide a CORBA environment enhanced with reliable and predictable communi-
cation, as well as mechanisms to deal with partial failures and consistent event ordering.
However, these systems only provide a rather low-íevel interface for the application pro-
grammer, in the sense that he or she hás to deal with ali the burden of replication, eg
failure recovery and management of object groups. In order to facilitate these tasks we
are developing Juggler, a distributed service that provides means for flexible and auto-
rnatic management of fault tolerant CORBA applications, instead of providing a generic
fault tolerance infrastructure such as the one recently adopted by OMG.

Juggler is a key element of the software infrastructure being developed in project
SIDAM [2] (Distributed Information Systems for Mobile Agents). This project aims at
studying the software architecture and development issues involved in the implementation
of distributed information services to be accessed by mobile clients. The application
model proposed in SIDAM was motivated by a real-life application: an on-line service
providing trame information for a metropolitan área such as São Paulo. In this context,
Juggler will be used to manage replicated instances of data objects containing traffic
information.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the main approaches to incorporate group communication mechanisms in CORBA.
Section 3 describes related works. Section 4 gives an overview of Juggler's architecture
and its component interfaces. A description of the main structures and protocols used in
Juggler is given in Section 5. In Section 6 some implementation issues are discussed. In
Section 7 we make a brief comparison between Juggler and FT-CORBA. Finally, Section
8 summarizes and concludes the paper.

2 Group Communication in CORBA
The incorporation of group communication in CORBA is a natural means of providing

fault tolerance to CORBA applications. The systems that offer such support can be
classified according to the way that group communication mechanisms are incorporated
in this environment. Thus, we can distinguish three main approaches to achieve this goal,
namely integration, interception and service, discussed as follows.

2.1 Integration Approach

The basic idea of the integration approach [6] is to modify the ORB só that, internally,
it is able to distinguish references to singleton objects from references to object groups.



group creation protocol. We are now improving the access to the CORBA Naming
Service, implementing features that allow the interpretation and dynamic modification
of thfi group semantics and developing protocols for primary-backup and weak consistency
rcplication styles.

It is important to note that the cost of the group management service offered by Jug-
gler will be payed exclusively by the applications that use it, thus neither compromising
nor degrading the overall performance of the other applications. Moreover, Juggler iiitro-
duces only little overhead to fault tolerant applications since it only hás effect during the
initial creation of object groups and when the replication style for a group is changed.

References
[1] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H. Sanders, D. E. Bakken, M. E. Berman,

D. A. Karr, and R. E. Schantz. AQuA: An Adaptive Architecture that Providos Deperidable
Distributed Objects. In Proceedings of the llth IEEE Symposmm on Reliable Distributed Systems,
pagcs 245 253, West Lafayette, Indiana, USA, October 1998. IEEE.

[2] D. M. da Silva, M. D. Gubitoso, and M. Endler. Sistemas de Informação Dis-
tribuídos para Agentes Móveis. In Proceedinys of the XXIV Brazüian Software <ind Hard-
ware Seminars (SEMISH '98), Belo Horizonte. Brazil, August 1998. SBC. Available in
http://www.ime.usp. br/ ~dilma/papers/semish98. ps.

[3] P. Fclber. The CORBA Object Group Service: A Service Approach to Objecl Groups in CORBA.
PhD thesis, École Polytcchnique Fédérale de Lausanne, Switzerland, 1998. Number 1867.

[4] P. Felber, B. Garbinato, and R.. Guerraoui. The Design of a CORBA Group Communication Service.
In Proceedings of the 15th Symposium on Re.liable Distributed Systems (SRDS '96), pages 150 161,
Los Alamitos, CA, USA, October 1996. IEEE Computer Society Press.

[5] Isis Distributed Systems Inc. and IONA Technologies Ltd. Orbix+Isis Progranimer's Guide, 1995.
Document D070-00.

[6] S. Landis and S. Maffcis. Building Reliablc Distributed Systems with CORBA. Theory and Practice.
of Object Systems, 1997.

[7] S. Maffeis. Run-Time Siipportfor Object-Oriented Distributed Programmmg. PhD thesis, University
of Zurich, Switzerland, 1995.

[8] S. Maffeis. Piranha: A CORBA Tool for High Availability. IEEE Computer, 30(4):59--66, April
1997.

[9] P. Narasimhan, L. E. Moser, and P. M. Melliar-Srnith. Exploiting the Internet Inter-ORB Protocol
Interface to Provide CORBA with Fault Tolerance. In Proceedings of the 3rd Conference on Object-
Oriented Technologies and Stjstems, Portland, OR, USA, June 1997.

[10] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Replica Consistency of CORBA Objects in
Partitionable Distributed Systems. Distributed Systems Engineering Journal, 4(3):139-150, Septem-
ber 1997.

[11] OMG. CORBAservices: Common Object Services Specification. Technical Report , Object Man-
agement Group, December 1998.

[12] OMG. The Common Object Request Broker: Architecture and Specification. Technical Report
Formal/99-10-07, Object Management Group, 1999. Version 2.3.1.

[13] OMG. Fault Tolerant CORBA: Joint Revised Submission. OMG, January 2000. Document
orbos/2000-01-19.

[14] B. S. Sabnis. Proteus: A Software Infrastructure Providing Dependability for CORBA Applications.
Master's thesis, University of Illinois, USA, 1998.

[15] G. Sheu, Y. Chang, D. Liang, S. Yuan, and W. Lo. A Fault-Tolerant Object Service on CORBA.
In Proceedings of the IEEE Symposium on Reliable Distributed Systems (SRDS '98), 1998.


