
A Distributed Environment for
Solving Optimization Problems1

Fernando L. Dotti, Maurício de O. Cristal, Celso M. da Costa, Maurício L. Nunes
{ fldotti, mcristal, celso, mnunes } ©inf.pucrs.br

Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática - Programa de Pós-Graduação em Ciência da Computação

Av. Ipiranga, 6681 - Prédio 16 - CEP 90619-900 - Porto Alegre - RS - Brazil
Fone/fax:+55 51 320 36 11

Felipe Martins Müllcr
felipe@inf.ufsm.br

Universidade Federal de Santa Maria - Departamento de Eletrônica e Computação
Programa de Pós-Graduação em Engenharia de Produção

UFSM/CT/DELC -CEP 97105-900- Santa Maria - RS - Brazil
Fone: + 55 55 220 83 69; Fax: +55 55 220 80 30

Abstract

This paper presents a distributed environment to support cooperation among institutions
researching in the fleld of Operations Research, more specifically Optimization Algorithms.
The proposed architecture for this environment respects the autonomy and heerogeneity of the
cooperating institutions, promoting the organized reuse of solutions and enabling the workload
to be shared by the cooperating institutions. The five functional blocks that build the structure of
the architecture have their interfaces discussed. An implementation in Java/RMI is described.
This implementation is currently being tested in a scenario involving two universities. Algorithms
implementing classical heuristics are supported.

Key words: Distributed Systems, Optimization Techniques, Cooperation, Autonomy,
Heterogeneity, Java/RMI

l Introduction

Due to the growing competition in various sectors of the economy (industry, commerce, or
services), there is a well defined trend towards the Optimization of current processes in order to
achieve lower costs, better efficiency, and higher flexibility. Optimization techniques are thus
becoming almost mandatory and widely used. Optimization problems are no rare complex,
involving lots of variables, and having a combinatorial structure.

Therefore, the Operations Research scientific community is investing research efforts in this
área. Better and new aJgorithms for solving combinatoriaJ problems are under investigation in
various research centers. Very often, these algorithms have similar structure, could reuse parts
of the solutions, as well as use same input data sets to be tested. Metaheuristic methods (see

1 Project partially supported by FAPERGS and CNPq/ProTem - Brazil.

Besides the extensions above mentioned, in the next phase of the prqject the Plan Manager should
be developed.

7 References
[1] FUGGETA, A., PICCO, G. P., and VIGNA, G. Understanding Code Mobility.

Transactions on Software Engineering. IEEE, v.24, 1998.
[2] CARZANINGA, A., PICCO, G. P., and VIGNA, G. Designing Distributed Applications

With Mobile Paradigms. [s.J.], [199-].
[3] KNUDSEN, P.. Comparing Two Distributed Computing Paradigms - A Performance Case

Study. M. S. Thesis, University of Troms0, 1995.
[4] OMG-Document. Common Object Request Broker Architecture. 1997.

http://www.omg.org. corba.
[5]OMG-Document. CORBA Services: Common Object Services Specification. 1997.

http://www. omg. org. corba.
[6] SIEGEL, J. CORBA fundamentais and programming. New York, NY : J. Wiley, 1996. 693p.
[7] HENFNG, Michi. Binding, Migration and Scalability in CORBA. Communications of the

ACM, vol 41, no 10, october 1998.
[8] VINOSKI, S. New Features for CORBA 3.0. Communications of the ACM, vol 41, no 10,

October 1998.
[9] VINOSKI, S. CORBA: Integrating Diverse Applications Within Distributed Heterogeneous

Environments, IEEE Communications Magazine, 1997.
[10] Open Distributed Processing: Annex A - Tutorial on Trading Function. pp. 28. 1998.
[11] ORFALI, R. and Harkey, D. Client/server Programming with Java and CORBA Second

Edition; New York, NY: John Wiley and Sons Inc
[12] FARLEY, J. Java Distributed Computing. The Java Series. Califórnia: O'Reilly Associates.

1998.
[13] CORNELL, G. and HORSTMANN, C. S. Core Java. Makron Books, São Paulo, 1997. 807

P-
[14] GAREY, M. R. and JOHNSON, D. S., Computers and Intractibility: a Guide to the Theory

of NP-Completeness, Freeman, San Francisco, 1979.
[15] ZANAKIS, S. H. and EVANS, J. R., Heuristic "optimization", why, when, and how to use it,

Interfaces, 11(5), 1981.
[16] BAL, H. E., KAASHOEK, M. F., and TANEMBAUM, A. S., Orca: a language for parallel

programming of distributed systems. IEEE Transactions on Software Engineering, Vol.
18(3), March 1992, pp. 190-205.

[17] AUSTJJM, S. An introduction to genetic algorithms, AI Expert, March, pp. 49-53, 1990.
[18] DAVIS, L. (Ed.) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY,

1991.
[19] EGLESE, R.W. Simulated annealing: a tool for operational research, European Journal of

Operational Research, 46, pp. 271-281, 1990.
[20] FRANÇA, P. M., GENDREAU, M., LAPORTE, G., and MÜLLER, F. M. A tabu search

heuristic for multiprocessor scheduling with sequence dependent setup times, International
Journal of Production Research, Elsevier Science Publishers, Vol. 43(1), pp. 79-89, 1996.

[21] GLOVER, F., Tabu search: part I, ORSA Journal on Computing, Vol. l, pp. 190-206, 1989.

l e2 Simpósio Brasileiro de Redes de Computadores 205

Manager as it is. Our choice for a Java only implementation using RMI, is because CORBA
revealed to have some limitations and sometimes to be cumbersome to use. The programmer hás
to deal with two languages (e.g. IDL and the implementation language); no object by value
passing is allowed, which sometimes leads to problems while implementing; code portability is
not always possible in the practice because some products do not yet implement the Portable
Object Adapter. Also due to the plans to implement some parts of the architecture with mobile
code, the option for a Java only implementation seemed to be more realistic since migration and
moHity of CORBA objects is more complicated than with Java/RMI.
One of the advantages in the integration of legacy optimization algorithms is that their interface is
simple, they receive input data, process and returns the output data. Input and output data have
the form of byte strings. It is simple to implement Java modules to launch (Runtime.exec())
optimization processes and connect to the input and output streams to provide input and retrieve
output data.
• Java support: The experience using Java is satisfactory, but not free of problems. The
learning curve is acceptable and prototyping is quite fast. For distributed computing, there are
some advantages if compared to CORBA, as listed above. However, the lack of a formal
defmition of the language semantics lets the programmer sometimes without the needed support.
This is true specially when the programmer comes into detail in the use of the threads library.
Group communication support was also felt important although not available.
• Trader Service: With respect to the CORBA-Services [5], we have made an attempt to use a
free version of the Trader Service [10] [5]. Using the Trader, we would have to either have each
optimization algorithm running and achievable through a CORBA interface awaiting for requests,
or have an Implementation Repository to launch the appropriate implementation whenever a
request happens.
In the first case, processes would be awaiting for requests, resulting in processing costs.
Furthermore, transient interfaces [7] would have to be used and this would impact in the
administration of the Centers, since references to a service could become invalid. We have made
the attempt to use the Trader with persistent references [7] and use an Implementation
Repository. However, since we have not found a ORB with an Implementation Repository and a
Trader, we would have to use two ORBs (two manufacturers), one supporting the Trader and
another with the Implementation Repository. This was not possible because at that time the
manufacturers did not grant that the references obtained in a ORB could be exported to the Trader
written for the other ORB. Therefore we have implemented in Java our own way to find and
launch optimization algorithms in a distributed context.
• Policies for load balancing: currently, the decision of where to execute an algorithm, given
that several nodes are candidate, is based on the number of processes already running in each
node. Extensions are planned to consider a load indicator that considers the heterogeneity of the
nodes. Also, we do not consider the costs of transferring input and output data to and from the
place where the process executes because the volume of input and output data of optimization
algorithms is easily handled by current networks.
• Mobile code: work is in progress to identify the possibility of using mobile code paradigms
[1][2][3] in the architecture proposed. Until now it turned out that mobile code can be a well
suited approach to implement the search of a better place to execute, request the execution in the
chosen place, and deliver the results back to the originator. This is because for this case design is
more intuitive and programming seems to be more intuitive than the classical approach.

To build this metacomputing environment, a key module is the metaNEOS resource broker.
This module is responsible for the global resource allocation. It manages schedulers defined by
metaNEOS, interacts with schedulers local to the nodes non exclusively dedicated to metaNEOS
processing, as well as deal with heterogeneity aspects in the environment. metaNEOS plans to
support local resource allocation using techniques defined in CONDOR [31] and GLOBUS [34].

The table below compare important aspects of the projects commented with the environment
described in this paper.

Supports

Programming
languages
Administrator

Request
submission

Resource
allocation /
infrastructure

'rototype/
implementation

NetSolve
Numerical
libraries
Only C and
Fortran
Not mentioned

By compiled
programs

Nodes dedicated
to the project

Available

NEOS
Optimization
algorithms
Ali languages

Not centralized,
each
administrator is
responsible for
one solver.

By email,
WWW and
sockets through
an interface
application
Nodes dedicated
to the project

Available

metaNEOS
Optimization
algorithms
Ali languages

Not centralized,
each
administrator is
responsible for
one solver.

B y email,
WWW and
sockets through
an interface
application
Nodes dedicated
and non-
dedicated to the
project
Vot available yet

This paper
Optimization
algorithms
Ali languages

Centralized,
each
administrator is
responsible for a
group of nodes
(center)
ByWWW

Nodes dedicated
to the project(*)

Available

(*) Our architecture runs also on nodes non-dedicated to the project. However, the load
balancing mechanism does not yet take into consideration other sources of load.

Table 1: NetSolve, NEOS and metaNEOS aspects compared to this paper

6 Conclusions and Future Work

This paper presents the architecture and implementation of a distributed environment to
promote the cooperaüon in the research área of Operations Research, more specifically
Optimization Algorithms. The current implementation is under test in a distributed environment
involving two universities (Pontifícia Universidade Católica do Rio Grande do Sul and
Universidade Federal de Santa Maria) both in Brazil, 500km far from each other. Below, we
organize our concluding remarks in 5 main parts.
• CORBA: CORBA [4][8] is currently pointed as platform for integration of legacy
applications [9]. We have not used it in our implementation. However, as Optimization Centers
are autonomous, it could be used within a center, keeping the cooperative interface of the Center

18- Simpósio Brasileiro de Redes de Computadores 203

Figure 8 represents the processing of a request after the center with lowest load hás been selected.
If the user request is synchronous, thread l blocks and waits for the end of the execution notified
through the returnResult. If not (asynchronous) the user interface is unblocked and thread l sends
an electronic mail to the user with the result.

2. Always synchronized

Figure 8: Request processing

5 RelatedWork

Concerning related work, three research projects can be mentioned: NetSolve [30], NEOS
[32] and MetaNEOS [33]. NetSolve was developed at Tennessee University together with the
Oak Ridge National Laboratory. NEOS (acronym for Network-Enabled Optimization System
Server) and MetaNEOS were developed by Argonne National Laboratory. Below, architectural
and functional aspects of these projects are briefly commented.

NetSolve builds a distributed environment where users can submit requests to remote
servers supporting numerical libraries. Communication modules called agents are responsible for
receiving requests from the user and submitting them to the appropriate server. This environment
eases the access to those libraries supporting their location, download and installation. After [30]
these are time consuming tasks for the academic community.

NetSolve agents support communication among servers and are responsible to fmd out the
better server for a given requisition through a load balancing policy. The architecture developed
for NetSolve allows for servers or agents to be dynamically started and killed without
compromising the integrity of the system. Fault tolerance aspects were also considered in the
architecture.

NEOS is an environment developed to allow the resolution of optimization problems using
he internet. It works following a standardized structure for input data and hás a list of registered
optimization problem solvers. Through the internet, the user chooses the problem solver, informs
the input data set, and issues a request. At the end of the execution, the users receives back the
results and run time statistics. To each registered problem solver a manager is assigned which is
responsible for the computational resources needed by the server and for answering possible
questions coming from users. To cope with resource allocation management (e.g. load balancing)
in a distributed environment, NEOS uses the CONDOR environment [31].

The metaNEOS project [33] is a proposal to add functionality to the already existing
environment supported by NEOS. It aims at solving optimization requests in a metacomputing
environment. A metacomputing environment is an abstraction to represent the computational
resources existing in an infrastructure of loosely coupled processor nodes (e.g. the Internet). The
user transparently uses the computational power of the environment without being aware of
distribution aspects.

SBRC 2000

that supports it. This query results in a node reservation in the consulted center associated to
theprocessld;

• executeSelectedCenter: after a center discovers the federating center with lowest load
for an algorithm, this method is used to ask the selected center to execute its request;

• release: the other consulted centers (non-selected) are asked to release the reservation;
• returnResult: when the selected center ends the execution, it returns the result to the

requester center by calling this method.

Detailed Request Execution

The user may issue synchronous or asynchronous execution requests. In the synchronous
request, the user waits for the end of the operation, while in the asynchronous request the user
receives the result by electronic mail. Both methods involve the search for the node with lowest
load in the federation.

When a request is issued to a Center, it consults ali federating Centers to discover where the
request should be processed. Two policies are explicit here: a) exhaustive search in the
federation for the best location, and b) search performed every time a request is issued. These
policies were chosen because optimization algorithms are CPU bound and the communication
and computing costs to find a place to execute is worthy if the best place is found in the
federation.

The second policy grants that the decision is taken based on the freshest state of the
federation in terms of load (since when the search is performed, a Center blocks/reserves the best
option until the originating center either submits the request or releases the reservation with the
center). The reservation with a center follows a soft-state approach, i.e., if the originating center
does not answer, either submitting the request or releasing the reservation, the reservation expires
and the resources are released. This policy is to avoid invalid reservations in the case of failure of
the originating center or in the communication with it.

The search for the node with lowest load is done through synchronous communication. During
this process, for each center in the table of federating centers, a thread is started to communicate
with that center asking for the load of the node with lowest load in that center supporting the
wanted algorithm (using lookForLowestLoad). Each center receiving the request searches in its
nodes for the node with lowest load for that algorithm. The originating center compares ali loads
returned and selects the center with the lowest one. Figure 7 represents this process.

Request to

Figure 7: Load Balancing

l S2 Simpósio Brasileiro de Redes de Computadores 201

• getCenterName: returns the name of a center;
• addCenter: adds a center identiflcation (an URL) in the Center Table. This operation

enables the remote center to federate with this one receiving service requests issued by this
center as well as issuing service requests to this center;

• dropCenter: deletes the center identiflcation of the Center Table. Ends the cooperation
between this center and the remote center;

• addNode: adds a node identiflcation (an URL) in the Node Table. With this operation a new
node is inserted in an optimization center;

• dropNode: deletes the node identiflcation of the Node Table;
1 listNodes: returns ali nodes contained in the Node Table.

The service interface of the Center Manager is defined as follows:

public String execute(String algorithmld, String urlDataSetName,
boolean SyncComm, String userEmail);

public String addDataSet(String dataSetName);
public Vector queryAHAlgorithms () ;
public Vector queryAllDataSets();

Figure 5: CMService interface

execute: used by the user interface to submit an optimization request to a center manager.
The process involved in executing a request is described bellow, in subsection "Detailed
Request Execution";
addDataSet: the inclusion of input data sets is a task that the user may start through the
CMService interface. The data set included by the user is kept by the center in a data base (as
presented in Figure 2.B), it remains in that base for a default time confígured by the
administrator and after that it is excluded from the center. The parameter DataSetName
reports the name that will be used to store the data set in the center. This function returns the
complete URL for the stored data set. The URL returned is the data set identifier in the
system;
queryAllAlgorithms: returns ali available algorithms in the federation. The user
interface needs this method to present to the client ali available algorithms, such that the
client may select one of them;
queryAllDataSets: returns ali available data sets in the federation.

The cooperation interface of the Center Manager is defined as follows:

public intlookForLowestLoad(String algorithmld, String processld);
public void executeSelectedCenter(Reguest objRequest,

String returnToCenter);
public void release(String processld);
public void returnResult(String result, String processld);

Figure 6: CMCooperation interface

lookForLowestLoad: through this method a federating center may ask if the algorithm
with algorithmld is supported and, in case afílrmative, the load associated to the node

SBRC2000

More specifically, this section discusses the setup of the whole environment, the interfaces
supported by each module, and shows the steps involved in the processing of an optimization
request in the federation.

Setup ofthe environment

The system administrator is responsible for choosing the nodes in a network that will
participate in an Optimization Center. In each of those nodes, a Node Manager is installed,
offering the respective service and management interfaces. The control of the Node Managers is
made through their management interface. The administrator updates the Algorithms Table of
each node in the Center.

The administrator configures then the Center Manager, offering service and management
interfaces. The configuration of this module includes setting Unified Resource Locators to
identify the Node Managers (i.e. the URL of their service interfaces) of the nodes in the Center,
and the Center Managers of federating Optimization Centers (i.e. the URL of their cooperation
interface).

Interface Definitions

The management interface of the Node Manager is defined as follows:

public void addAlgorithm(String algorithmld, String algorithmPath,
String algorithmParameters);

public void dropAlgorithmfString algorithmld);
public int queryLoad(String algorithmld);
public Vector l is tAlgori thmf);

Figure 3: NMManagement interface

• addAlgorithm: adds an optimization algorithm in the Algorithms Table of a node. The
algorithmld must be unique in the node and the executable files already downloaded to
the algorithmPath directory in the node;

• dropAlgorithm: withdraw the algorithm from the Algorithms Table of a node.
• queryLoad: returns the number of optimization processes running in this node, it answers at

the same time if the node supports a given algorithm;
• listAlgorithm: returns a list of ali available algorithms in this node.

The management interface of the Center Manager is defined as follows:

public String getCenterName();
public void addCenter(String urlCenterManager);
public void dropCenter(String urlCenterManager);
public void addNode(String urlNodeManager);
public void dropNode(String urlNodeManager);
public Vector listNodes();

Figure 4: CMManagement interface

18? Simpósio Brasileiro de Redes de Computadores 199

heuristic will serve as input for the next one. Parameters to control this execution like number of
repetition of a given cycle in the graph are also specified by the metaheuristic as well.

Metaheuristics specify what we have called an "execution Plan". The Plan Manager,
showed in Figure 2.C, is responsible to manage the execution of a metaheuristic specified or
chosen by the user. This module is a user of the Center Manager and issues optimization
requests to execute classical heuristics in the federation, corresponding to single execution steps
of the Plan. The results of a single execution answered by the Center Manager will serve as
parameter for another request. The intermediate results are stored in containers, the Plan
Manager deals only with references to these storage places.

Before executing, the specification of a metaheuristic hás to pass through a verification phase
where it is checked if each single step (optimization algorithm used) of the Plan can be supported
by the federation. The choice of where to execute each single classical heuristic is transparent to
the Plan Manager, being a responsibility of the Center Manager. Studies are to be carried out
about how to choose the best node to perform an execution step taking into consideration the
whole execution Plan.

The Plan Manager keeps information about already submitted metaheuristics, such that users
may choose among an available one or submit a new one. The Plan Manager offers the following
interfaces:

• A service interface, called PMService, offering the users the possibility of submitting new
metaheuristic specifications or choosing among already submitted ones. This interface
offers also the possibility of Consulting heuristics, metaheuristics, and input data sets
available in the context of the federation;

• A management interface, called PMManagement, through which the human manager of
the Optimization Center is able to control the base of metaheuristics and to modify other
properties internai to the Plan Management Module.

User Interface

The User Interface is the module responsible for interacting with human users of an
Optimization Center. While the interface communicates with a center, the service perceived by
Vte usei is relative to the whole federation. The User Interface may communicate with the Plan
Management Module for submitting metaheuristics or with the Center Management Module to
use classical heuristics. As optimization algorithms may have long execution times, the interface
offers the possibility for the user to receive the results in an asynchronous manner, via e-mail for
instance. With this, the user can launch a request and disconnect from the center.

4 Implementation

The implementation described here is limited to 4 of the 5 modules: User Interface, Center
Manager, Node Manager and Executor. With these modules, users may publish, share and solve
classical heuristics. The Plane Management Module is left for a second phase, i.e. metaheuristics
are not supported in this implementation.

With exception of the Executor Modules, which represent legacy algorithms already
implemented in various languages, the other modules were implemented in Java. The interfaces
described in the architecture are mapped to Java/RMI interfaces [l 1][12][13].

Center Management

The Center Manager, showed in Figure 2.B, controls an Optimization Center which is
comprised of nodes devoted to the execution of optimization algorithms and may cooperate with
other Optimization Centers. For such cooperation, the Center Management Module interfaces
with its counterpart in another Optimization Center. This module accepts optimization requests
from user or cooperating modules and delegates it to the most appropriate internai node, using the
Node Management Modules. The Center Manager keeps three main structures:

• A table of nodes or machines in the Optimization Center: this structure keeps information
about the nodes working in the Center;

• A table offederating Optimization Centers: this structure keeps information about other
Optimization Centers that a Center may federate with;

• A table of requisitions: offers information relative to each ongoing optimization process
in the Center, keeping a process identification and the current state of the process
(consulting load, executing, ready).

The Center Management Module offers the following interfaces:
• The service interface, called CMService, allows user modules to request optimization

services. For the user modules, the Center Management Module represents the whole
federation because the requests may be passed to any other federating Optimization
Center through the cooperation interface. This interface supports also user modules to
query about supported algorithms and input data sets in the federation, as well as to
publish new input data sets in the federation;

• The cooperation interface, called CMCooperation, allows an Optimization Center to pass
optimization requests to federating Optimization Centers (registered in the table of
centers). Before asking a federating Center to perform an optimization request, there is a
phase in which centers consult the availability of the algorithm in the other centers and the
existing load in the nodes where the algorithm is supported. More details are described in
the implementation section. The cooperation interface allows also to consult for
algorithms and input data sets available in a center;

• The management interface, called CMManagement, allows a human manager in the
Optimization Center to modify the properties of the center. Nodes can be added and
deleted from the center, federating centers can be registered and excluded.

Plan Management

The structure described up to the Center Management Module supports user modules to
request execution of a single execution step, i.e. supports requests to a given optimization
algorithm with a given input data set. The Optimization Center that receives this request from the
user modules finds out through the federation the best center and node to execute that request.
The request is then processed and the results are returned to the originating center, which then
returns it to the user module that issued the request. This whole structure is enough for
"heuristic" optimization algorithms.

"Metaheuristic" algorithms base on classical algorithms. They specify data dependencies
between classical heuristics in a chained execution, which can be seen as a graph where nodes
represent the execution of a classical heuristic and branches represent that the output from a

l S2 Simpósio Brasileiro de Redes de Computadores 197

Figure l: Proposed Architecture

The Node Manager offers two interfaces:
• The service interface, called NMService, allows user modules (the Center Management

Module) to ask about the load in the node and to require Optimization algorithms to be
performed in that node.

• The management interface, called NMManagement, allows a human manager in the
Optimization Center to consult and modify the properties of the node by Consulting, inserting
and deleting existing Execution Modules.

Figure 2: (A) The Node Manager, (B) Center Manager, (C) Plan Manager

196 SBRC2000

[19][24][25], Genetic [18][17][23][26] and Memetic algorithms. Optimization algorithms are
heavily CPU bound, they receive input data, process it, and give an output. Input and output are
normally not volumous.

3 The Architecture

The main objective of the architecture described is to offer an environment to support the
cooperation between persons and institutions researching in the área of combinatorial
Optimization. The following features are identified:
• Distribution: the scenario is inherently distributed, as various institutions physically dispersed

may want to cooperate;
• Autonomy and Cooperation: due to the autonomy of the institutions, a hierarchical approach

is regreted, and a cooperative one is followed. Each institution is able to provide a support
infrastructure confígured according to the local decisions, called an "Optimization Center".
Optimization Centers may cooperate with each other to solve Optimization problems issued
by their users. In this case a group of Optimization Centers will build a "Federation";

• Heterogeneity: as a consequence of autonomy, the heterogeneity of computational
infrastructures must be taken into consideration;

• Reusability: due to the similar structure of combinatorial algorithms, reuse of Solutions is to
be promoted. Reuse of available input data sets is to be supported too.

The architecture here described considers these features. The implementation described in the
next section brings more detailed aspects about this architecture. Each Optimization Center hás
five kind of modules: Executors, Node Managers, a Center Manager, a Plan Manager, and User
Interfaces. Figure l depicts the whole architecture.

The functional modules may have various computational interfaces. Each module is a unit of
distribution, i.e. the various modules can be allocated to different nodes in a computer network.
The computational interfaces are defined following an object oriented methodology, as well as
the information passed between the modules. Each module of the architecture is discussed next.

Executor Module

Represents available Optimization algorithms. These algorithms may be available for
different computational platforms, and may be written in different programming languages.
Coupling them to the architecture is a case of integration of legacy applications.

Node Management

The Node Manager, showed in Figure 2.A, manages a physical node which participates in an
Optimization Center. It controls the execution of Executor Modules registered with that node.
Upon requisition for an Optimization algorithm, it searches the appropriate Executor Module,
fires the execution and returns the results back to the requiring module. The node manager thus
keeps a table with information about supported algorithms and associated Executor Modules.

195

Section 2) combine various solutions in a higher levei one, whereby it is important to easily
combine (chain) executions of existing algorithms.

In order to promote the research work in this área (Operations Research - Optimization
Algorithms), this paper proposes a distributed environment supporting a structured way to
exchange results among researchers. Due to the intrinsic characteristics of distribution and
autonomy of cooperating parts (research centers, universities, enterprises, etc.), this environment
is organized in the form of a federation of cooperating optimization centers. Each optimization
center is capable of supporting the life-cycle of optimization algorithms, that can be published
both in the form of source code as well as running processes solving optimization requests. A
center supports also a base of ínput data sets to test optimization algorithms. This base can be
extended with contributions from the users. In the context of a federation, optimization centers
share processing power cooperating to better solve the requests issued by users of that federation.

This text is organized as follows. In Section 2 we give a brief overview of optimization
techniques. In Section 3 a distributed architecture to support the cooperative environment is
proposed. In Section 4 an implementation of this architecture is described. A distributed
environment based on this implementation is being tested involving two universities. In Section
5 conclusions and future developments are outlined.

2 Optimization Techniques - A Histórica! Perspective

The class of problems we focus here is the one with combinatorial structure. It is known that
most combinatorial problems of practical interest can be classified as NP-Complete, for which
there are no known efficient algorithms, i.e. algorithms that achieve an optimal solution in a
polynomial time [14] (Garey e Johnson -1979).

As exact polynomial algorithms probably do not exist, research efforts were directed to
investigate methods to achieve good solutions to combinatorial problems in reasonable times. Só,
approximated or heuristic methods gained in importance as they allow to treat real problems of
considerable dimensions in reasonable processing times. However, the quality of the solutions
obtained through classical heuristics was not satisfactory for ali the problems in the class
considered. Therefore, the discussion of which heuristic is better suited to what problem
emerged. This could lead to an exhaustive analysis of ali of them, comparing the complexity of
the implementation, quality of solutions, computational efficiency, robustness and só on [15]
(Zanakis & Evans - 1981) [16] (Bali & Magazine - 1981). Such a detailed study could point to
the use of one heuristic for a given problem. However, using only one heuristic the good
qualities of the others could be wasted. The idea of organizing these heuristics in a team comes
up to use the better characteristics of each one and achieve better solutions than using isolated
heuristics.

In addition to this, research efforts have been also directed towards metaheuristics [27].
Metaheuristics are coupled to the classical heuristics resulting in better solutions mainly because
they can transcend local optimality and add knowledge to search structures.

Só, optimization algorithms can be classified in heuristic and metaheuristic. In the class of
heuristic algorithms, there are "construction" and "improvement" algorithms. Constructive
algorithms generate a first solution to a problem (e.g. Nearest Neighbor, Nearest Insertion, Farest
Insertion, Cheapest Insertion). Improvement algorithms start from a given solution and modify it
to make enhancement (e.g. Lin-Kernígham). Metaheuristic algorithms may manage a chain or
flow of executions of classical heuristics, e.g. Tabu Search [20][21][22], Simulated Annealing

i o- simpósio Brasileiro ae Redes de Computadores 207

[22] GLOVER, F., Tabu search: part II, ORSA Journal on Computing, Vol. 2, pp. 4-32,
1990.

[23]GOLDBERG, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

[24] KIRKPATRICK, S., GELATT Jr., C. D., and VECCHI, M. P. Optimization by simulated
annealing, Science, Vol. 220, pp. 671-680, 1983.

[25] van LAARHOVEN, P. J. M., and AARTS, E. H. L. Simulated Annealing: Theory and
Applications, Reidel, 1987.

[26] MICHALEWICZ, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, 1992.

[27] TSUBAKITANI, S. e EVANS, J. R., An empirical study of a new metaheuristic for the
traveling salesman problem, Q A-1992-05 Working Paper, Dept. of Quantitative Analysis,
College of Business Administration, University of Cincinnati, 1992.

[28] WIRFS-BROCK, R. J. e JOHNSON, R. E. Surveying current research in object oriented
design. Communications of ACM, 32(9): 104-124, Sept. 1990.

[29] COULORIS, G., DOLLIMORE, J. e KINDBERG, T. Distributed Systems: Concepts and
Design, Addison-Wesley, 1994.

[30] CASANOVA, H., AND DONGARRA, J., NetSolve: A Network server for solving
computacional science problems, Technical Report CS-95-313, University of Tennessee,
Knoxville, Tennessee, 1995.

[31] LITZKOW, M. J., LIVNY, M., AND MUTKA, M. W., Condor - A hunter for idle
workstations, in Proceedings of the 8th International Conference on Distributed Computing
Systems, Whashington, District of Columbia, 1988, IEEE Computer Society Press, pp. 108-
111.

[32] CZYZYK, J., MESNIER, M.P. AND MORE, J.J., The Network-Enabled Optimization
System (NEOS) Server, Preprint MCS-P615-1096, Argonne National Laboratory, Argonne,
Illinois, 1997.

[33] METANEOS: METACOMPUTING ENVIRONMENTS FOR OPTIMIZATION, propose
available at http://www.mcs.anl.gov/metaneos, 1998.

[34] GLOBUS RESOURCE MANAGER SPECIFICATION. Globus working note, available at
http://www.globus.org, 1997.

