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Abstract

This paper describes the addition of a piece of software, a rollback manager, to implement
state saving and rollback management for optimistic federates in the High Levei Architecture
(HLA). This mechanism uses computational reflection techniques to create a rollback
manager meta-object that extends the low-level time management services provided by HLA.
The main propose of the rollback manager is to relief the federate from the burden of handling
problems related to the federate state saving management and recovery. Some experimental
results are shown to prove the feasibility of the proposed mechanism.
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l Introduction

The research activities in distributed simulation can be classed in two main áreas. The PADS
(Parallel and Distributed Simulation) área hás its emphasis on how to achieve high
performance in distributed simulations while insuring ali the causality constraints between
events being processed in parallel. Two main approaches were proposed to solve this
problem: the conservative approach (Chandy and Misra 1979) and the optimistic one
(Jefferson 1985) (Jefferson and Sowizral 1985). The second área, called DIS (Distributed
Interactive Simulation), looks for the development of highly Interactive simulation
environments, allowing remote users to interact in real-time.

Several problems remained open in both áreas, mainly related to performance aspects,
efflcient network usage, simulation code reuse, and interoperability in heterogeneous
environments. To cover these issues, the US DoD proposed the High Levei Architecture
initiative (DMSO 1997), defining a standard architecture for the modeling and simulation of
complex systems. It is a software environment designed to ease the interoperability among
different models, through standard interfaces. Also, it uses object orientation techniques to
allow component reuse.

However, as shown hereafter, some HLA services are very low-level and hard to use
when building simulation models that use peculiar time synchronization schema. In this paper
we present a generic rollback manager, able to detect causality violations and providing ali the
state saving and rollback mechanisms needed by optimistic simulation entities, transparently.

This paper is organized as follows: section 2 presents the main HLA architectural
aspects; section 3 explores the HLA time management mechanisms; section 4 presents the
computational reflection concepts used to define the rollback manager, which is fully defined
in section 5; finally, section 6 shows some experimental results.



9 CONCLUSIONS

The use of computational reflection techniques in the presented work showed to be useful, to
simplify building optimistic federates. Ali the aspects related to rollback operations can be
taken in charge by the rollback manager in behalf of the federate. This approach helps hiding
the complexity of the optimistic approach from the simulation model programmer.

The manager is capable to identify the need for a rollback, as well as to take ali the
proper actions to ensure that the federate returns to a safe state before the causality violation.
It also takes for itself the responsibility of canceling messages improperly sent to other
federates. The rollback manager will accomplish tasks that are common to every optimistic
federate, and does not depend on a specific federate behavior. The federate code becomes
simpler, because the whole control and management of the rollback are under the manager's
responsibility.

The tests carried out with the rollback manager presented in this paper were done by
manually substituting the RTI method call, to the metaobject methods. This procedure was
used for the validation of the proposed mechanism. With the use of a reflective language, the
method deviations can be done in a transparent way. Such a language allows to define and
transparently manage reflective objects. Ali the method invocations to the base objects are
transparently deviated to their respective meta4evel objects. There are several programraing
languages supporting metaobject protocols ( Kiczales et ai. 1993). One of them can be used to
implement the rollback manager proposed here. The most used languages are: CLOS,
OpenC++ and OpenJava. As ali the RTI code is available in C-H-, the OpenC++ language
would be a good choice, as it uses the C++ syntax. In the specific case of our proposal, a
better choice would be OpenJava (Tatsubori 1997). In OpenJava, ali the reflective objects are
defined through the OpenJava MOP (MetaObject Protocol). The OpenJava code is
preprocessed to generate standard Java code. However, OpenJava is not yet mature (current
version is 1.0) and does not support some characteristics essential to the development of
distributed simulations using the HLA architecture. As OpenJava, there are other proposals
for Java reflective implementations, like MetaXa (Golm 1998), that could be incorporated to
this work.
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Figure 8 : Overhead Factors Evolution

If the increased overhead factor of computational reflection techniques is under a 10 factor,
the advantage of those techniques is worthwhile (Chiba 1993). The results of these
measurements show that the factor is almost stable in l .5, só the use of a reflexive rollback
manager can be considered worthwhile.

This overhead can be reduced by a proper application design. The simulation
prototype was design just to show the mechanism proposed feasibility. The source code could
be optimized to reduce this overhead.

Another very important point in this proposed mechanism is the fact that the rollback
manager is initialized only when the federate assumes a optimistic behavior. Thus, if the
federate never invokes the flushQueueRequest method from the RTIAmbassador class, the
simulation performance will not be affected.

The rollback manager was implemented as an additional class that is instantiated only
when the federate invokes the flushQueueRequest method, as mentioned before. When this
class is instantiated, there is an increase of the total memory amount allocated by the
simulation execution. This memory utilization increase was measured and the values are
showed in the figure 9.

Simulation

Without RM
With RM
Overhead

Allocated Memory (Mb)
Total
15
16
6,67%

Resident
10
13
30%

Figure 9 : Memory Allocation

The memory utilization was calculated using standard Solaris operating system commands
and tools. Thus, these commands outputs are not exacts but can be used to measure the
memory allocation overhead.

The impact of the proposed mechanism on the system performance remains acceptable, but
more extensive measurements should be done before giving concrete results.



In this simulation, two messages (updateAttributeValues and reflectAttributeValues) are
exchanged among the federates through the RTI. These messages must be intercepted and
analyzed by the rollback manager, só this procedure adds an extra processing time to the
execution. Therefore, when the number of messages increases, the computational overhead
increases as well. The figure 6 shows the execution times before and after adding the rollback
manager.

Execution Times

Figure 6 : Difference among execution times (in minutes)

One important point to be analyzed is the relationship among the execution times. As su;
(Chiba 1993), this relationship defines the overhead factor by computational reflection techniques

The overhead factors are calculate dividing the execution time with the rollback manager by l
original execution time. They are shown in the figure 7.

Number of Interactions:
Without Rollback Manager
With Rollback Manager (RM)
Factor

Execution Times
500
2'33"
3'38"
1.45

1000
4'27"
6'24"
1.46

1500
6'32"
9'31"
1.47

2000
8'22"
12'16"
1.48

Figure 7 : Overhead Factors

The results of these measurements show that the simulation execution with rollback manageis
almost 1.5 times slower than the original simulation execution. The evolution of this overhead
factor is presented on figure 8.
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Therefore, the federate doesn't need to worry about the cancellation of this event. If an
improper processing hás resulted in sending some messages to other federates, the manager
will request their cancellation through the RTI method Retract. The rollback manager keeps
track of ali messages sent and their handles.

6 EXPERIMENTAL RESULTS

To validate this proposal, a simple federation involving several optimistic federates was
deveioped. In this work we are using RTI version l .3 for C++. A Java binding package is also
being used for the development of Java federates. Our development platform is a Solaris 2.6
Sun workstation with the Java Development Kit 1.1.6. The prototype federation is currently
being tested, and some measurements are done. In this simulation, the federate state size was
200 bytes.

The inclusion of a rollback manager increase the total execution time of this
simulation. This overhead is due to the reflection on method invocations. These method
invocations represent the message transfere among federates and the RTI. The message
timestamps are checked by the rollback manager, in order to the causality constraints. This
procedure adds some overhead to the overall simulation performance. In order to measure this
overhead we did some experiments with the prototype simulation. The first experiment was
built changing the number of interactions in the simulation execution. First, the original was
executed several times to obtain the average execution time. The number of interactions
ranged from 500 to 2000 to measure the simulation performance without the rollback
manager. The values, in minutes and seconds, obtained are shown in figure 4.

Figure 4 : Execution times without the Rollback Manager

The same experiment was repeated adding the rollback manager to perform the rollback
procedure, instead of leaving this task to the federate. The execution times obtained showed
us the overhead caused by the inclusion of the rollback manager. The values, in minutes and
seconds, are shown in the figure 5.
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can consider ali the received events in a generic way. When receiving a TSO message the
manager wíll compare its timestamp tm with the current logical time tc (the rollback manager
is at the same simulation time as the federate it manages). If tm < tc a causality violation is
detected, and the manager should restore the federate state to a previous safe state [Ss, tj with
ts < tm . The rollback manager should also keep track of ali messages sent by the federate
during ts < t < t c , i.e. after the [Ss , ts] checkpoint, to be able to cancel them. Therefore, the
manager can invoke the Retract method on the RTI to cancel messages sent to other federates.
For doing this, the manager should keep track of ali the message handles
(EventRetractionHandles) for the messages sent during the time interval [ls ; tc ]. Also, the
manager can receive cancellation requests for messages improperly sent by other federates.
The RTI will forward to the receiver the cancellation requests through the requestRetraction
callback. Normally it is up to the federate to implement the needed procedures to deal with
these cancellation messages. In our proposal, the rollback manager will perform this task.

5.2 The Rollback Manager Operation

In our schema, the messages received are passed to the rollback manager and later forwarded
to the optimistic federate. The messages received with attributes (Attribute Handle Value Pair
Set) or parameters (Parameter Handle Value Pair Set) can be two: ReflectAitríbuteValues
(RÃV) and Receivelnteraction (RI). In this case, before forwarding the messages to the
federate, the rollback manager should save the old attribute values and the federate state to
allow a possible rollback.

This mechanism can be presented through a time diagram with ali the interactions
between the entities (federate, manager and RTI), as shown in the figure 3. This figure shows
the interactions during the normal execution of an optimistic federate. When the manager
detects a message older than the current time (tm < tc), it interacts with the federate and the
RTI to execute the rollback. The RTI normally calls the requestRetraction method on the
federate when a message already delivered to it should be canceled. The event handler
EventRetmctionHandle for that message is passed with the request, which is intercepted by
the manager. Using this handler, the rollback manager can recover the old values for the
attributes or parameters. The old values were passed to the federate through the methods
ReflectAttributeValues and Receivelnteraction.

Figure 3. Time diagram for the interactions
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operations in optimistic federates, as flushQueueRequest and timeAdvanceGrant. Using this
approach, the federate can adopt an optimistic behavior without worrying about possible
rollbacks. To the rollback manager be able to control rollbacks transparently, it should keep
periodic snapshots of the federate's internai state (state checkpoints), in order to restore some
previous state when a rollback occurs. Thus, the rollback manager should have access to the
federate's state at any time. To provide that, each federate should implement two callback
methods that give controlled access to its internai state. As the rollback manager only needs
access to the federate's state to save its current state and to restore a previous state, it is
enough to implement two methods providing these operations' : a getState(Sc, tc ) method,
which returns the federate's current state in the [Sc, tc] state vector, and the setState(Sc, tc ),
which restores the federate's state to the state saved in the state vector [Sc, tc]. The rollback
manager uses the getState method to maintain a list of previous states of the federate, and the
setStale method to restore a previous state, when a rollback occurs. Using this approach, the
implementation of optimistic federates becomes easier; its sole responsibility about rollbacks
is the correct implementation of the methods getState() and setState().

Using the state saving methods, the rollback manager can save the federate state at
given times in which ali TSO events sent to the federate are guaranteed. An event is
considered safe if it can be processed without any cancellation risk in the future, unless its
retraction is explicitly requested. The calls to lhe flushQueueRequest method are intercepted
by the rollback manager, which interacts whit the RTI to obtain the TSO messages. This is
done in two phases: initially the rollback manager uses a conservative approach to receive the
TSO messages from the RTI. Through the method nextEventRequest, it requests that RTI
deliver ali the messages RO available inside its input queue and ali the messages TSO with
time stamps smaller than the federate current time. When there are no more TSO messages
that match this requirement, the RTI authorizes the federate time to advance, through a
callback to the timeAdvanceGrant method. This callback passes a future time value tf as a
parameter, to indicate that the federate's logical time can be advanced to t f . At this point, the
manager had pessimistically received ali the safe messages, só the RTI can guarantee that ali
the TSO messages with time stamps smaller than tf had been delivered. This time tf can be
considered as a checkpoint time, indicating a point in the simuJation time where the state of
the federate is safe, with no rollback risks. Thus, the manager saves the federate's state at tf as
a checkpoint, using the getState call defmed above. After this pessimist phase, the manager
calls the flushQueueRequest method on the RTI. At this point, the RTI wíll deliver ali other
TSO messages sent to the federate, without worrying about their timestamps. These messages
are considered unsafe and can suffer rollback, since the RTI doesn't guarantee that messages
with smaller timestamps won't be sent to that federate in the future. If a rollback occurs, the
rollback manager hás access to ali the needed information to undo the processing improperly
done, to cancel scheduled events, and to restore the last safe state of the federate.

5.1 The Rollback Procedure

If the federate receives a message older than its current logical time tc , the federate's state
should be rolled back to a previous safe state, in order to guarantee the causality constraints.
The rollback manager can detect the need of a rollback operation, because it receives ali the
messages addressed to the optimistic federate. In HLA, there are four major event types that
can change objects and their attributes. These events should be managed separately by the
rollback manager, to allow it to maintain the whole control on ali modifications performed in
the federate state. These events will be described in the next items of this text; at this point we

These operations were inspired from Isis System (Birman 1993). for the replica's state managemem in groups of fault tolerant processes.



Our work, presented in this paper, consists in the use of computational reflection
techniques to build a generic rollback manager. This manager is charged to detect causality
violations and to provide ali state saving and rollback mechanisms needed by a federate, in a
transparent way. It frees the simulation programmer of programming tasks not related to the
simulation model itself.

4 Computational Reflection

Computational reflection is a development technique that allows a system to interact with
itself, through a self-representation. Using this, the system can control its own behavior,
allowing a clear separation between the functionality provided by the system to end users and
the functions provided to configure and manage the system. This is done through a set of
structures used by the system to represent its own aspects, both structural and computational.
According (Mães 1987), a reflexive architecture computational system is constituted by two
leveis: a base levei and a meta levei. The base levei is responsible for solving problems
belonging to an externai domain, normally related to the system's functionality. The meta
levei is in charge of the control and management of the base levei. This allows a better
modularity, separatíng the application code (base levei) from the management code (meta
levei).

5 A Rollback Manager

The mechanism proposed here provides an automatic and generic way to deal with the
requestRetraction callbacks, freeing the optimistic federates (and the programmer) of this
complex task. Our proposal uses some computational reflection techniques (Mães 1987) to
create a time management metalevel between the RTI and each federate. The time
management method calls between them are intercepted (reflected) by the rollback manager,
which implements the rollback management in behalf of the federate. The figure 2 illustrates
the general structure of the proposed mechanism:

Figure 2. The rollback manager

Using this approach, the rollback manager takes to itself the control of the federate's state
rollback, including canceling received or sent messages. The federate will continue calling the
same methods of the RTlAmbassador class to interact with the RTI and it will receive RTI
callbacks through the same FederateAmbassador class methods. However, some time
management method calls will be intercepted and addressed to the rollback manager. Only
some time management methods, mostly related to retraction operations, are intercepted; ali
the other methods are passed directly to the RTlAmbassador and FederateAmbassador
implementations. The methods that should be reflected are those related to time management
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receiver. RO messages are simply put in the PIFO input queue of the receiving federate, and
are immediately available to it. TSO messages are put in the timeordered input queue of the
receiving federate, and delivered to it in time-stamp order. A TSO message can be delivered
to a federate only when no more messages having a smaller timestamp will be received by
that federate.

3.3 Time advance approaches

The logical time advance in the federates ís done explicitly: the federate requests the RTI to
advance its logical time and then waits for a confirmation callback. This procedure is needed
to insure that the federate will not receive any TSO message with a timestamp smaller than its
local logical time. This condition should be guaranteed by the TSO message delivery
mechanism of the RTI. Thus, the federate logical time only can advance when authorized by
the RTI.

Due to the large diversity of simulations, the requirements in time management can
vary largely from a simulation to another. The three most common approaches for time
management in HLA are time stepped, event driven and optimistic (Fujimoto 1998). In the
event-driven approach, the events are processed according their timestamp order, thus the
logical time advance is bound to the events timestamps. This corresponds to the conservative
approach. In the optimistic approach, the events can be processed in any order.

3.4 The Optimistic approach

In the optimistic approach, the messages carrying events are delivered to the federates without
considering their timestamp order. The federate uses theflushQueueRequest method to ask the
RTI ali TSO messages present in its input queue. After delivering the messages, the RTI
invokes the callback method timeAdvanceGrant in the federate, authorízing it to advance its
logical time.

If the federate receives an outoforder time-stamped message, it should rollback its
local execution, to correctly consider the ordering of ali messages received. This recovery
procedure includes unrolling the simulation to a execution point before the out-of-order
message timestamp, reprocessing events, canceling scheduled events, and canceling
messages erroneously sent to other federates. The message cancellation is done using through
RTI method Retract, used with theflushQueueRequest service (figure 1).

Figure l. Optimistic federate retraction

If the message to be canceled was already delivered to another federate, it should also be
rolled back. The RTI calls its requestRetraction callback method, and the federate should then
undo any processing done for events received improperly. Ali these federate actions should be
implemented by the simulation programmer.



3 Time Management in HLA

The main time management aspects covered by the HLA specification are the federates' time
policies, the message ordering definitions, and the logical time advance strategies.

3.1 Time policies

In HLA, federates can adopt different time policies, resulting in different behaviors with
respect to the federation logical time. A federate can adopt a timeregulating policy, allowing
it to produce time-stamped events. Some federates can use a timeeonstrained policy, forcing
it to consume time-stamped events (sent by time-regulating federates). Thus, a given federate
can be regulating, constrained, regulating and constrained, or not regulating nor constrainea
(the initial default behavior). The federates can enable or disable these time policies at any
time, through RTI method calls. A federation can have federates using any of these time
policies.

3.2 Message ordering

Much of the time management is done by the correct ordering of messages sent by the
federates. The RTI manages input queues for each federate. Messages are stored in the RTI
queues according the existence of timestamps (TSO - Time-Stamp Ordered messages) or not
(RO - Receive Ordered messages), and according the time policies used by the sender and the

2 The High Levei Architecture

The High Levei Architecture constitutes a common technical framework for modeling and
execution of distributed simulations. Its main components are the Object Model Templates,
the HLA Compliance Rules, and the Runtime Infrastructure (DMSO 1997).

Each HLA simulation is defined by a. federation, in which a group oi federates interact !
exchanging data and events. These interactions are defined using the Object Model Templates |
- OMT, which allows describing the objects that constitute the federation, their attributes, and
relationships. Each federation defines a Federation Object Model - FOM, describing ali the
shared information (objects, attributes, associations, and interactions) used in the federation.
Beyond FOM, the Simulation Object Model (SOM) describes objects, attributes, and
interactions that can be used externally. To be considered as according the HLA
specifications, the federation should respect the ten HLA Compliance Rules. They define the
responsibility and relationships among ali the federation components.

The federates interact using the RunTime Infrastructure - RTI, which can be seen as a
distributed generic operating system that provides communication and coordination services
to the federates. Ali interactions in the federation should be done through the RTI. The
interaction between a federate and the RTI uses method calls from two different classes:
RTIAmbassador and FederateAmbassador. The RTIAmbassador class contains ali methods
offered by the RTI to the federates. Its impJementation is done by the RTI and is not
accessible to the simulation programmer. On the other hand, the FederateAmbassador class is
an abstract class, implemented by the simulation programmer, that identifies ali methods that
each federate should provide to the RTI for callback operations on the federate itself.

The services provided by the HLA to federates are classed in six categories (DMSO
1997). The focus of this paper is on the Time Management category, which provides
coordination and logical time services to the federates.
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