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Abstract

This paper describes the addition of a piece of software, a rollback manager, to implement
state saving and rollback management for optimistic federates in the High Level Architecture
(HLA). This mechanism uses computational reflection techniques to create a rollback
manager metaobject that extends the low-level time management services provided by HLA.
The main propose of the rollback manager is to relief the federate from the burden of handling
problems related to the federate Sate saving management and recovery. Some experimental
results are shown to prove the feasibility of the proposed mechanism.
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| Introduction

The research activitiesin distributed simulation can be classed in two main &eas. The PADS
(Parallel and Distributed Smulation) area has itS emphasis on how to achieve high
performance in distributed simulations while insuring all the causdity constraints between
events being processed in parallel. Two main approaches were proposed to solve this
problem: the conservative approach (Chandy and Misra 1979) and the optimistic one
(Jefferson 1985) (Jefferson and Sowizral 1985). The second area, called DIS (Distributed
Interactive Smulation), looks for the development of highly interactive simulation
environments, allowing remoteuserstointeract inreal-time.

Severd problems remained open in both &eas, mainly related to performance aspects,
efficient network usage, Smulation code reuse, and interoperability in heterogeneous
environments. To cover these issues, the US DoD proposed the High Level Architecture
initiative (DMSO 1997), defining a standard architecture for the modeling and simulation of
complex systems. It is a software environment designed to ease the interoperability among
different models, through standard interfaces. Also, it uses object orientation techniques to
allow component reuse.

However, as shown hereafter, some HLA sarvices are very low-level and hard to use
when building simulation models that use peculiar time synchronization schema. In this paper
we present a generic rollback manager, able to detect causality violations and providing all the
state saving and rollback mechanisms needed by optimistic simulation entities, transparently.

This paper is organized as follows. section 2 presents the main HLA architectural
agpects, section 3 explores the HLA time management mechanisms, section 4 presents the
computational reflection concepts used to define the rollback manager, which is fully defined
in section 5; finally, section 6 shows some experimental results.



9 CONCLUSIONS

The use of computational reflection techniques in the presented work showed to be useful, to
simplify building optimistic federates. All the aspects related to rollback operations can be
taken in charge by the rollback manager in behalf of the federate. This approach helps hiding
the complexity of the optimistic approach from the simulation model programmer.

The manager is capable to identify the need for a rollback, as well as to take all the
proper actions to ensure that the federate returns to a safe state before the causality violation.
It also takes for itself the responsibility of canceling messages improperly sent to other
federates. The rollback manager will accomplish tasks that are common to every optimistic
federate, and does not depend on a specific federate behavior. The federate code becomes
simpler, because the whole control and management of the rollback are under the manager's
responsibility.

The tests carried out with the rollback manager presented in this paper were done by
manually substituting the RTI method call, to the metaobject methods. This procedure was
used for the validation of the proposed mechanism. With the use of areflective language, the
method deviations can be done in a transparent way. Such a language allows to define and
transparently manage reflective objects. All the method invocations to the base objects are
transparently deviated to their respective metadevel objects. There are several programming
languages supporting metaobject protocols ( Kiczales et al. 1993). One of them can be used to
implement the rollback manager proposed here. The most used languages are: CLOS,
OpenC++ and OpenJava. As all the RTI code is available in C++, the OpenC++ language
would be a good choice, as it uses the C++ syntax. In the specific case of our proposal, &
better choice would be OpenJava (Tatsubori 1997). In OpenJava, all the reflective objects are
defined through the OpenJava MOP (MetaObject Protocol). The OpenJava code is
preprocessed to generate standard Java code. However, OpenJava is not yet mature (current
version is 10) and does not support some characteristics essential to the development of
distributed simulations using the HLA architecture. As OpenJava, there are other proposals
for Java reflective implementations, like MetaXa (Golm 1998), that could be incorporated to

this work.
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Figure 8 : Overhead Factors Evolution

If the increased overhead factor of computational reflection techniques is under a 10 factor,
the advantage of those techniques is worthwhile (Chiba 1993). The results of these
measurements show that the factor is dmost stable in 1.5, so the use of areflexive rollback
manager can be considered worthwhile.

This overhead can be reduced by a proper application design. The simulation
prototype was design just to show the mechanism proposed feasibility. The source code could
be optimized to reduce this overhead.

Another very important point in this proposed mechanism is the fact that the rollback
manager is initialized only when the federate assumes a optimistic behavior. Thus, if the
federate never invokes the flushQueueRequest method from the RTIAmbassador class, the
simulation performance will not be affected.

The rollback manager was implemented as an additional class that is instantiated only
when the federate invokes the flushQueueRequest method, as mentioned before. When this
class is instantiated, there is an increase of the total memory amount alocated by the
simulation execution. This memory utilization increase was measured and the values are

showed in the figure 9.

'Smulation |Allocated Memory (Mb) ]
| Total Resident

Without RM 15 10

\With RM 16 13 ‘

[Overhead 6,67% 30% |

Figure 9 : Memory Allocation

The memory utilization was calculated using standard Solaris operating system commands
and tools. Thus, these commands outputs are not exacts but can be used to measure the
memory allocationoverhead.

The impact of the proposed mechanism on the system performance remains acceptable, but
more extensive measurements should be done before giving concrete results.



In this simulation, two messages (updateAttributeValues and reflectAttributeValues)are
exchanged among the federates through the RTI. These messages must be intercepted and
analyzed by the rollback manager, so this procedure adds an extra processing time to the
execution. Therefore, when the number of messages increases, the computational overhead
increases as well. The figure 6 shows the execution times before and after adding the rollback

manager.
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Figure 6 : Difference among execution times (in minutes)

One important point to be analyzed is the relationship among the execution times. As suggesisd
(Chiba 1993), this relationship defines the overhead factor by computational reflection technigues

The overhead factors are calculate dividing the execution time with the rollback manager by |
origina execution time. They are shown in the figure 7.

Execution Times

Number of Interactions: 500 |1000 1500 [2000
Without Rollback Manager 2’33 14’27 16’32’ |8°22”
With Rollback Manager (RM) (3’38’ [6°24°"|9°31"" | 12’16’
Factor 145 146 |147 |148

Figure 7 : Overhead Factors

The results of these measurements show that the simulation execution with rollback manag
amost 1.5 times slower than the originad simulation execution. The evolution of this overhead

factor is presented on figure 8.
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Therefore, the federate doesn't need to worry about the cancellation of this event. If an
improper processing has resulted in sending some messages to other federates, the manager
will request their cancellation through the RTI method Retract. The rollback manager keeps
track of all messages sent and their handles.

6 EXPERIMENTAL RESULTS

To vdidate this proposad, a smple federation involving severd optimistic federates was
developed. In this work we are using RTI version | .3 for C++. A Javabinding package is also
being used for the development of Java federates. Our development platform is a Solaris 2.6
Sun workstation with the Java Development Kit 1.1.6. The prototype federation is currently
being tested, and some measurements are done. In this simulation, the federate state size was
200 bytes.

The incluson of a rollback manager increase the total execution time of this
simulation. This overhead is due to the reflection on method invocations. These method
invocations represent the message transfere among federates and the RTI. The message
timestamps are checked by the rollback manager, in order to the causality constraints. This
procedure adds some overhead to the overall simulation performance. In order to measure this
overhead we did some experiments with the prototype simulation. The first experiment was
built changing the number of interactions in the simulation execution. Firgt, the origind was
executed several times to obtain the average execution time. The number of interactions
ranged from 500 to 2000 to measure the simulation performance without the rollback
manager. The values, in minutes and seconds, obtained are shown in figure 4.

|Simulation Number of Interactions
500 | 1000 | 1500 | 2000
1 2'21" [ 4°25" [6°42" | B’30"
2 2'42" |4'24" | 6'44" | 8’ 16"
3 2'29" 14'35" [6'12" | 818"
4 2'33"(4'31"|6'37" | 822"
5 2°41"14'22" 623" | 827"

Figure 4 : Execution times without the Rollback Manager

The same experiment was repeated adding the rollback manager to perform the rollback
procedure, instead of leaving this task to the federate. The execution times obtained showed
us the overhead caused by the inclusion of the rollback manager. The values, in minutes and
seconds, are shown in the figure 5.
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can consider all the received events in a generic way. When recelving a TSO message the
manager will compare its timestamp t,;, with the current logica time t. (the rollback manager
is a the same simulation time as the federate it manages). If t,, < t. a causality violation is
detected, and the manager should restore the federate state to a previous safe state [S; , ts] with
ts < tm . The rollback manager should also keep track of all messages sent by the federate
during t; <t <t., ie. after the [Ss, t;] checkpoint, to be able to cancel them. Therefore, the
manager can invoke the Rezract method on the RTI to cancd messages sent to other federates.
For doing this, the manager should keep track of all the message handles
(EventRetractionHandles)for the messages sent during the time interval [t, ; t. ]. Also, the
manager can receive cancellation requests for messages improperly sent by other federates.
The RTI will forward to the receiver the cancdllation requests through the requestRetraction
callback. Normally it is up to the federate to implement the needed procedures to deal with
these cancellation messages. In our proposal, the rollback manager will perform this task.

52 The Rollback Manager Operation

In our schema, the messages received are passed to the rollback manager and later forwarded
to the optimistic federate. The messages received with attributes (Attribute Handle Value Pair
Set) or parameters (Parameter Handle Value Pair Set) can be two: ReflectAttributeValues
(RAV) and Receivelnteraction (RI). In this case, before forwarding the messages to the
federate, the rollback manager should save the old attribute values and the federate state to
allow a possible rollback.

This mechanism can be presented through a time diagram with all the interactions
between the entities (federate, manager and RTI), as shown in the figure 3. This figure shows
the interactions during the normal execution of an optimistic federate. When the manager.
detects a message older than the current time (tp, < tc), it interacts with the federate and the
RTI to execute the rollback. The RTI normally cals the requestRetraction method on the
federate when a message already delivered to it should be canceled. The event handler
EventRetractionHandle for that message is passed with the request, which is intercepted by
the manager. Using this handler, the rollback manager can recover the old values for the
attributes or parameters. The old vaues were passad to the federate through the methods

ReflectAttributeValues and Receivelnteraction.
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Figure 3. Time diagram for theinteractions
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operaions in optimistic federates, as flushQueueRequest and timeAdvanceGrant. Using this
approach, the federate can adopt an optimistic behavior without worrying about possible
rollbacks. To the rollback manager be able to control rollbacks transparently, it should keep
periodic snapshots of the federate's internai state (state checkpoints), in order to restore some
previous state when a rollback occurs. Thus, the rollback manager should have access to the
federate's Sate at any time. To provide that, each federate should implement two callback
methods that give controlled access to its internai state. As the rollback manager only needs
access to the federate's state to save its current state and to restore a previous state, it is
enough to implement two methods providing these operations' : a gezStare(S,, t. ) method,
which returns the federate's current state in the [S,, t.] state vector, and the sezState(S, tc ),
which restores the federate's state to the state saved in the state vector [Se, t.]. The rollback
manager uses the getState method to maintain a list of previous states of the federate, and the
setState method to restore a previous state, when a rollback occurs. Using this approach, the
implementation of optimistic federates becomes easier; its sole responsibility about rollbacks
isthe correct implementation of the methods getState() and sezState().

Using the state saving methods, the rollback manager can save the federate state at
given times in which all TSO events sent to the federate are guaranteed. An event is
conddered safe if it can be processed without any cancellation risk in the future, unless its
retraction is explicitly requested. The calls to IheflushQueueRequest method are intercepted
by the rollback manager, which interacts whit the RTT to obtain the TSO messages. This is
donein two phases: initially the rollback manager uses a conservative approach to receive the
TSO messages from the RTI. Through the method nextEventRequest, it requests that RTI
deliver all the messages RO available ingde its input queue and all the messages TSO with
time stamps smaller than the federate current time. When there are no more TSO messages
that match this requirement, the RTI authorizes the federate time to advance, through a
callback to the timeAdvanceGrant method. This callback passes a future time value tf as a
parameter, to indicate that the federate's logical time can be advanced to t; . At this point, the
manager had pessmistically received all the safe messages, so the RTI can guarantee that all
the TSO messages with time stamps smaller than t; had been ddivered. This time tf can be
considered as a checkpoint time, indicating a point in the simuJation time where the state of
the federate is safe, with no rollback risks. Thus, the manager saves the federate's State at tf as
a checkpoint, using the getSate call defined above. After this pessimist phase, the manager
calls the flushQueueRequest method on the RTI. At this point, the RTI will deliver all other
TSO messages st to the federate, without worrying about their timestamps. These messages
are conddered unsafe and can suffer rollback, since the RTI doesn't guarantee that messages
with smaller timestamps won't be sent to that federate in the future. If arollback occurs, the
rollback manager has access to all the needed information to undo the processing improperly
done, to cance scheduled events, and to restore the last safe state of the federate.

51 TheRoallback Procedure

If the federate receives a message older than its current logica time t, , the federate's state
should be rolled back to aprevious safe state, in order to guarantee the causality constraints.
The rollback manager can detect the need of a rollback operation, because it receives all the
messages addressad to the optimidtic federate. In HLA, there are four major event types that
can change objects and their attributes. These events should be managed separately by the
rollback manager, to allow it to maintain the whole control on all modifications performed in
the federate state. These events will be described in the next items of this text; at this point we

' These operations were inspired from Isis System (Birman 1998). for the replicds state management in groups of fault tolerant processes.



Our work, presented in this paper, consists in the use of computational reflection
techniques to build a generic rollback manager. This manager is charged to detect causality
violations and to provide all state saving and rollback mechanisms needed by a federate, ina
transparent way. It frees the simulation programmer of programming tasks not related to the
simulation model itself.

4 Computational Reflection

Computational reflection is a development technique that allows a system to interact with
itself, through a self-representation. Using this, the system can control its own behavior,
allowing a clear separation between the functionality provided by the system to end users and
the functions provided to configure and manage the system. This is done through a st of
structures used by the system to represent its own aspects, both structural and computational.
According (Maes 1987), areflexive architecture computational system is congtituted by two
leveis. a base level and a meta levei. The base level is responsible for solving problems
belonging to an externai domain, normally related to the system's functionality. The meta
level is in charge of the control and management of the base levei. This alows a better
modularity, separating the application code (base levei) from the management code (meta

levei).
5 A Rollback Manager

The mechanism proposed here provides an automatic and generic way to deal with the
requestRetraction calbacks, freeing the optimistic federates (and the programmer) of this
complex task. Our proposal uses some computational reflection techniques (Maes 1987) to
create a time management metalevel between the RTI and each federate. The time
management method calls between them are intercepted (reflected) by the rollback manager,
which implements the rollback management in behalf of the federate. The figure 2 illustrates

the general structure of the proposed mechanism:

B b‘ RTIAmbassador r—‘.[ [

e ———————

Rollback Manager

m=>om

FedAmbassador

Figure 2. The rollback manager

Using this approach, the rollback manager takes to itself the control of the federate's state
rollback, including canceling received or sent messages. The federate will continue calling the
same methods of the RTIAmbassador class to interact with the RTI and it will receive RTI
callbacks through the same FederateAmbassador class methods. However, some time
management method calls will be intercepted and addressed to the rollback manager. Only
some time management methods, mostly related to retraction operations, are intercepted; all
the other methods are passed directly to the RTIAmbassador and FederateAmbassador
implementations. The methods that should be reflected are those related to time management




182 Simpésio Brasileiro de Redes de Computadores

recelver. RO messages are simply put in the FIFO input queue of the receiving federate, and
are immediately available to it. TSO messages are put in the timeordered input queue of the
receiving federate, and delivered to it in time-stamp order. A TSO message can be delivered
to a federate only when no more messages having a smaller timestamp will be received by
that federate.

3.3 Time advance approaches

Thelogica time advance in the federates is done explicitly: the federate requests the RTI to
advance its logical time and then waits for a confirmation callback. This procedure is needed
toinsure that the federate will not receive any TSO message with atimestamp smaller than its
local logical time. This condition should be guaranteed by the TSO message delivery
mechanism of the RTI. Thus, the federate logical time only can advance when authorized by
theRTI.

Due to the large diversity of simulations, the requirements in time management can
vary largely from a simulation to another. The three most common approaches for time
management in HLA are time stepped, event driven and optimistic (Fujimoto 1998). In the
event-driven approach, the events are processed according their timestamp order, thus the
logical time advance is bound to the events timestamps. This corresponds to the conservative
approach. In the optimistic approach, the events can be processed in any order.

34 TheOptimisticapproach

In the optimistic approach, the messages carrying events are delivered to the federates without
consdering their timestamp order. The federate uses the flushQueueRequestmethod to ask the
RTI all TSO messages present in its input queue. After delivering the messages, the RTI
invokes the calback method timeAdvanceGrant in the federate, authorizing it to advance its
logical time.

If the federate receives an outeoferder time-stamped message, it should rollback its
local execution, to correctly consider the ordering of all messages received. This recovery
procedure includes unrolling the simulation to a execution point before the out-of-order
message timestamp, reprocessing events, canceling scheduled events, and canceling
messages erroneously sent to other federates. The message cancellation is done using through
RTI method Retract, used with the flushQueueRequesservice (figure 1).

Federate flushQueueRequest RTI
>

timeAdvanceGrant

Retract

I

Figure 1. Optimistic federate retraction

If the message to be canceled was already delivered to another federate, it should also be
rolled back. The RTI calls its requestRetraction callback method, and the federate should then
undo any processing done for events received improperly. All these federate actions should be
implemented by the simulation programmer.



The High Levei Architecture congtitutes a common technical framework for modeling and
execution of distributed simulations. Its main components are the Object Model Templates,
the HLA Compliance Rules, and the Runtime Infrastructure(DMSO 1997).

Each HLA simulation is defined by afederation, in which a group offederates interact
exchanging dataand events. Theseinteractions are defined using the Object Model Templates ' |
- OMT, which dlows describing the objects that congtitute the federation, their attributes, and
relationships. Each federation defines a Federation Object Model - FOM, describing all the
shared information (objects, attributes, associations, and interactions) used in the federation.
Beyond FOM, the Smulation Object Model (SOM) describes objects, attributes, and
interactions that can be used externally. To be consdered as according the HLA
specifications, the federation should respect the ten HLA Compliance Rules. They define the
responsibility and relationships among all the federation components.

The federates interact using the RunTime Infrastructure - RTI, which can be seen asa
distributed generic operating system that provides communication and coordination services
to the federates. All interactions in the federation should be done through the RTI. The
interaction between a federate and the RTI uses method cals from two different classes:
RTIAmbassador and FederateAmbassador. The RTIAmbassador dlass contains all methods
offered by the RTI to the federates. Its implementation is done by the RTI and is not
accessible to the simulation programmer. On the other hand, the FederateAmbassador classis
an abstract class, implemented by the simulation programmer, that identifies all methods that
each federate should provide to the RTI for callback operations on the federate itself.

The services provided by the HLA to federates are classed in six categories (DM SO
1997). The focus of this paper is on the Time Management category, which provides
coordination and logica time services to the federates.

2 TheHigh Leve Architecture

3 Time Management in HLA

The main time management aspects covered by the HLA specification are thefederates’ time
policies, the message ordering definitions,and the logical time advance strategies.

3.1 Timepolicies

In HLA, federates can adopt different time policies, resulting in different behaviors with
respect to the federation logical time. A federate can adopt a timeregulating policy, alowing
it to produce time-stamped events. Some federates can use a rimeeonstrained policy, forcing
it to consume time-stamped events (sent by time-regulating federates). Thus, a given federate
can be regulating, constrained, regulating and constrained, or not regulating nor constrainea
(the initial default behavior). The federates can enable or disable these time policies at any.
time, through RTI method calls. A federation can have federates using any of these time

policies.

3.2 Message ordering

Much of the time management is done by the correct ordering of messages sent by the
federates. The RTI manages input queues for each federate. Messages are stored in the RTI
queues according the existence of timestamps (TSO - Time-Samp Ordered messages) or not
(RO - Receive Ordered messages), and according the time policies used by the sender and the

——




ro de Redes de Computadores 193

management in the high levei architecture”. SCS Smulation Magazine, December 1998.

s and experiments in computational reflection”. In Proceedings of the ACM Conference on
mming Systems, Languages and Applications , pages 147-156, October 1987.

Vletax: .a_nd the future of reflection". In OOPSLA'98 Workshopon Reflective Programming in C++
9 ancq_LéT/er, Canada, October 1998.
11118



