A Solution for the Consensus Problem in a
Mobile Environment *

Nadjib BADACHE Michel HURFIN Raimundo MACEDO

USTHB IRISA - INRIA LaSiD-CPD-UFBA
Institut d’informatique Campus de Beaulieu = Campus de Ondina
16111 Bab-Ezzouar 35042 Rennes Cedex 40170-110 Salvador BA

Algeria France Brazil
badache@ist.cerist.dz hurfin@irisa.fr macedo@ufba.br
Abstract

Atomic Broadcast, Non-Blocking Atomic Commitment or View Synchrony are
classic agreement problems encountered when designing or implementing
fault-tolerant distributed systems. Specific protocols that solve such agreement prob-
lems can be designed based on a common building block, namely the Consensus
service. Unfortunately, the consensus problem has no deterministic solution in an
asynchronous distributed system that is subject to even a single process crash failure.
Among the solutions proposed to circumuvent this impossibility result, the concept of
unreliable failure detectors proposed by Chandra and Toueg is particularly attractive.
They defined a protocol that solves the consensus problem when the assumption that
the underlying failure detector belongs to the class S holds true. Efficient solutions
to practical agreement problems can be obtained by changing the validity property
which characterized the original consensus problem. The Chandra-Toueg’s protocol
can be extended to cope with the new definitions of the validity property.

This paper presents an extension of their protocol allowing this fundamental
agreement problem to be solved in a mobile environment. In such an environment,
the problem is more challenging: based on their initial states, a set of mobile hosts
must agree on a common decision despite disconnections, changes of location and
failures of mobile/fized hosts.

keywords: Asynchronous Distributed Systems, Mobile Computing, Fault Tol-
erance, Consensus Problem, Unreliable Failure Detectors.

*A less extensive version of this paper appeared in the Proc. of the 18th IEEE International Perfor-
mance, Computing, and Communications Conference, IPCCC’99, Feb/1999, Poenix, Arizona, USA. See
The second author is supported by a France Telecom/CNET Grant 981B123 and the third author is
supported by CNPq Grants 300013/87-6 (Project BCG) and 680067/95-7 (Project LOCUS/ProTeM-CC
111

1 Introduction

The wide use of portable computers and the advances in wireless networking technolo-
gies have greatly enhanced mobile computing which is now a major trend in both the
computer and telecommunication industries. Intrinsically, a mobile host (i.e., a portable,
handheld or embedded computer) changes its location periodically. The communications
infrastructure that ties together mobile hosts is a mix of traditional wired networks and
wireless networks (cellular phone networks, satellite microwave networks and local area
networks based on infrared, microwave or radio transmission techniques). The connection
to the network is usually temporary with periods of (voluntary/involuntary) disconnec-
tion. Mobile systems are often subject to environmental adversities which can cause loss
of messages or data [15]. A mobile host can crash or suffer from frequent and intermittent
disconnections from the rest of the network. Thus, designing fault-tolerant distributed
applications in such environments is a complex endeavor.

In recent years, several paradigms have been identified to simplify the design of fault-
tolerant distributed applications in a conventional static system. The Consensus paradigm
is one of the most fundamental since it abstracts other agreement problems. Given a fixed
set of processes, the consensus problem is defined as follows: each process proposes an
initial value to the others and, despite failures, all non-crashed processes have to agree
on a common decision value, which depends on the initial proposals. Any solution to this
basic problem can be used to solve other problems such as non-blocking atomic commit-
ment or atomic broadcast [6, 11, 12, 14]. Non-blocking atomic commitment requires all
participants in a transaction to take the same decision, namely COMMIT or ABORT the
transaction. Atomic broadcast allows processes to agree on both a set of messages and
a single delivery order for these messages. In both examples, a consensus service can be
used as a basic building block. The semantics associated with the proposed and decided
values differ from one agreement problem to another. Yet, the difficulty is always the
same: the decision should not be postpone forever (termination property) and has to be
unanimous (agreement property).

Due to its wide applicability, the consensus problem has been extensively studied
6, 7, 8,9, 10, 11, 12, 13, 14, 16]. Unfortunately, this problem has no deterministic
solution in an asynchronous distributed system that is subject to even a single process
crash failure [10]. Intuitively, this is because (in an asynchronous setting) it is impossible
to distinguish a very slow process (or a process with which communications are very slow)
from a crashed process with any certainty. Among the solutions proposed to circumvent
this impossibility result, the concept of unreliable failure detectors proposed by Chandra
and Toueg is particularly attractive [6]. In this approach, each process is equipped with a
failure detector module which provides it with a list of processes it currently suspects to
have crashed. A failure detector can make mistakes by not suspecting a crashed process
or by erroneously suspecting a correct one. Failure detector’s classes have been defined
by Chandra and Toueg [6] in terms of two abstract properties, namely completeness and
accuracy. Several protocols have been proposed to solve the consensus problem, assuming
that a majority of processes does not crash and that the underlying failure detector belongs
to the class OS (see section 2.2). It has been shown in [7] that these conditions are the
weakest ones to solve the consensus problem. These protocols are in no way trivial: this
is due to the fact that they do not require reliable failure detectors.

Despite its usefulness, no work has been devoted to this problem in a mobile comput-
ing environment (to our knowledge), although a shorter version of our work also appeared
in [3]. Unfortunately , existing protocols are not suited to a mobile environment: the con-
sensus problem is even more challenging in such an environment. The aim of this paper is
to identify the inadequacies of existing protocols and to propose a solution to the consen-
sus problem in a mobile computing environment. The rest of this paper is organized as
follows: in Section 2, protocols that solve the consensus problem in a conventional asyn-
chronous distributed system, are discussed. In particular, the Chandra-Toueg’s protocol
is briefly described. Section 3 describes the mobile system model we use. A protocol to
solve the consensus problem in a mobile environment is presented in Section 4. This so-
lution extends the Chandra-Toueg’s protocol to cope with mobility. Finally, we conclude
in Section 5. (A correctness proof is given in Appendix A.)

2 Consensus in a Static System

2.1 The Consensus Problem

We consider an asynchronous distributed system consisting of n processes denoted py,
D2, - -, Pn. Processes communicate and synchronize by sending and receiving messages
through channels. The distributed system is asynchronous: no assumptions are made as
to the relative speed of processes or message transfer delays. Each pair of processes is
connected by a reliable link!. A process may fail solely by crashing, i.e., by prematurely
halting; it behaves correctly (i.e., according to its specification) until it possibly crashes.
By definition, a correct process is a process that does not crash during the course of an
infinite run.

In the consensus problem, all correct processes have to reach a common decision on
some value v, which must belong to the set of proposed values. The consensus problem
is defined in terms of two primitives called propose and decide. Initially each process p;
selects a value v; from a set of possible values and invokes the primitive propose with
this value as a parameter: we say that p; proposes v;. A process ends its participation in
the consensus by executing decide(v): we say that it decides the value v. Formally the
following properties have to be held :

e Termination: Every correct process eventually decides some value.
e Agreement: No two processes decide differently.

e Validity: If a process decides v, then v was proposed by some process.

In [10], Fischer, Lynch and Paterson have shown that consensus cannot be solved
deterministically in an asynchronous system that is subject to even a single crash failure.
This impossibility stems from the difficulty in determining whether a process has actually
crashed or whether it is simply very slow. To overcome this difficulty, Chandra and Toueg
propose to augment the asynchronous model of computation with the concept of unreliable
failure detectors [6].

! This property is assumed for sake of simplicity. As shown in [5, 9], the proposed protocol can also
be extended to cope with “fair lossy channels”.

2.2 Unreliable Failure Detectors

A distributed failure detector is a set of n failure detector modules, one per process. The
failure detector module attached to p; is an oracle in charge of giving hints about processes
suspected to be faulty: it maintains a list Suspected; containing the identities of processes
it currently suspects to have crashed. The failure detector is referred to as unreliable since
each module can make mistakes by erroneously adding or removing processes to its list of
suspects.

A failure detector is defined in terms of two abstract properties, namely completeness
and accuracy. Roughly speaking, completeness requires that a failure detector suspects
every process that actually crashes, while accuracy restricts the mistakes that a failure
detector can make.

In [6], Chandra and Toueg define eight classes of failure detectors, depending on the
nature of the completeness and accuracy properties. In this paper, we are interested in
the OS class of failure detectors. This class of failure detectors which has been proved to
be sufficient to solve consensus [6], and even to be the weakest one [7], is specified by the
following two properties :

e Strong Completeness:
FEventually every process that crashes is permanently suspected by every correct pro-
cess.

e Eventual Weak Accuracy:
There 1s a time after which some correct process is never suspected by any correct
process.

2.3 Comnsensus Protocols based on ¢S Failure Detectors

Several protocols designed to work with &S failure detectors have been proposed [6, 13,
16]. They all require that a majority of processes is correct. They all are based on the
rotating coordinator paradigm and proceed in consecutive asynchronous rounds. Each
round r is coordinated by a predetermined process p. defined by ¢ = (r mod n)+1. Thus,
processes deal with a crash of the current coordinator by moving to the next round. The
accuracy property of the failure detector ensures that there will be eventually a round
during which the coordinator will not be suspected. The number of rounds performed
by each process is arbitrary: it depends on the occurrence of failures and also on the
behavior of the failure detector modules. Consequently, it is possible that not all the
processes decide in the same round. So, in each protocol, a specific locking mechanism
ensures there is a single decision value.

While Chandra-Toueg’s protocol uses a centralized scheme (all messages are to/from
the coordinator), the two others use a decentralized scheme (each process sends messages
to all processes). In all the protocols, the coordinator of round r tries to impose a
particular value as the decision value. Yet, in Chandra-Toueg’s protocol, this value is
not necessarily the estimate of the coordinator at the time it starts round r: on the
contrary, this value is computed after the coordinator has gathered estimates from other
processes. For this reason, this protocol (unlike the two others) can be extended to solve
a slightly different problem (See Section 2.5). This quality persuaded us to select the
Chandra-Toueg’s protocol as the basis of the proposed solution.

2.4 The Original Chandra-Toueg’s Protocol

In this protocol, each process p; manages a local variable that represents its current
estimate of the decision value (initially, the value of the estimate is equal to the initial
value v; proposed by p;). During the execution of the successive rounds, this value is
updated and converges to the decision value. More precisely, each round is divided into 4
phases.

1. In the first phase, each process sends to the current coordinator its own estimate of
the final value.

2. The second phase is only executed by the coordinator. It gathers estimates from
a majority of processes?, and selects the estimate whose timestamp is the greatest
one®. Then the coordinator suggests this estimate by sending it to all the processes.

3. In the third phase each process p; waits for the receipt of a new estimate from the
coordinator. Either p; suspects the coordinator to have crashed or p; receives and
adopts the new estimate. In the former case, a process sends a negative acknowl-
edgment to the coordinator. In the latter case it sends a positive acknowledgment
and updates the timestamp associated with its new estimate by setting it to the
current value of its round counter.

4. The fourth phase is only performed by the coordinator. It waits for a majority of
acknowledgment messages. If it receives only positive acknowledgments, it reliably
broadcasts a decision message!. Otherwise, the coordinator proceeds to the next
round.

Note that an estimate is irremediably locked as soon as a majority of processes have
sent a positive acknowledgment to the coordinator: then, no other value can be selected
to be the final decision. When a process terminates round r, it immediately proceeds to
round 7 + 1, except if it has received a decision message with the value v. In this case,
the process decides the value v and terminates.

2.5 An Extended Consensus Problem

As formulated, the consensus problem is a pure agreement problem. Each process proposes
a credible outcome to the consensus service which then forces the adoption of one of these
values. Before launching a consensus, a process has to compute the initial value it will
proposed, bearing in mind that this value will perhaps become the decision value. Thus,
to solve practical agreement problems, processes must generally execute a preliminary
exchange phase before executing the consensus protocol. During this phase each process
p; broadcasts relevant local information and then waits until it either receives information
on any process py or it suspects pg. At the end of this phase, each process has its own
global view of the current global state and can compute the initial value it proposes to
consensus. For example, consider the Non Blocking Atomic Commitment problem which
assures that all correct participants in a transaction adopt the same decision, namely

2The coordinator is assured to receive at least a majority of estimates, because a majority of processes
is correct by assumption.

3Initially every estimate is timestamped with 0.

4Informally, Reliable Broadcast guarantees that (1) all correct processes deliver the same set of mes-
sages, (2) all messages broadcast by correct processes are delivered, and (3) no spurious messages are
ever delivered.

COMMIT or ABORT the transaction. During the exchange phase, each process broadcasts
its local decision (a YES vote or a NO vote) to the other processes. Then, if it has received
a YES vote from each process, it proposes COMMIT to the consensus. If it has received a
NO vote or if it has not received a vote from some process that it suspects to have crashed,
it proposes ABORT to the consensus.

As investigated in [14], the exchanged phase can be suppressed (and consequently
the total number of exchanged messages can be reduced) by adopting another practical
building block which extend the original consensus problem defined in Section 2.1. The
difference between the extended consensus problem and the original one lies in the validity
property. The decision is no longer a value proposed by a process but a collection of values
proposed by different processes.

In this paper, we adopt the following validity property:

e Validity: if a process decides a set of values V', then the set V' contains only initial
values proposed by processes and its cardinality is at least equal to a (1 < a < n).

The a parameter is set by the upper layer application program when it requires that
a minimal number of processes participate in the underlying agreement protocol. Of
course, any protocol used to solve this extended problem do not necessarily terminate if
more than n — a processes have crashed definitively.

As shown in [14], slight modifications of the Chandra-Toueg’s protocol allow this new
problem to be solved. The extended protocol does not require a preliminary exchange
phase: the global view is computed by the coordinator while it gathers information from
each processes during the second phase of a round. Unfortunately, solving the same
problem in an mobile environment is more challenging. Before explaining the inadequacies
of the above solution, we briefly describe the particularities of a mobile system.

3 The Mobile System Model

A mobile system is a distributed system consisting of two distinct sets of entities : a set of
mobile hosts (MHs) and a set of fixed hosts referred to as Mobile Support Stations (MSSs).
The MSSs and the communication paths connecting them form a static distributed system
which is similar to the system described in Section 2.1.

A cell is defined as the geographical area covered by a MSS. A MSS serves as a base
station if it is able to communicate with the MHs located within its cell via a wireless
medium®. A MH can directly communicate with a MSS (and vice versa) if and only if
this MH is located within the cell serviced by the MSS. In order to send messages to
another MH that is not in the same cell, the source MH has to contact its local MSS
which forwards the messages over the static network to the local MSS of the target MH.
The receiving MSS, in its turn, forwards the messages over the wireless network to the
target MH. When a MH moves from one cell to another, an Handoff procedure is executed
by the MSSs of the two cells.

If its current base station fails by crashing, the connection between a MH and the
rest of the system is broken. Yet the MH can reconnect to the network by moving into
another cell covered by a correct base station. A MH may fail or voluntarily disconnect
from the system. When a MH fails, its volatile state is lost. However, disconnections can
be treated as planned failures which can be anticipated and prepared for [2].

5A fixed host which is not a base station compares with a base station whose cell is never visited by
mobile hosts.

. Mobile
| Host

Figure 1: Mobile System Model

3.1 Characteristics of Mobile Hosts

The bandwidth of the wireless link connecting a MH to a MSS is significantly lower than
bandwidth of the links between static hosts [2]. In addition, MHs have tight constraints
on power consumption relative to desktop machines, since they usually operate on stand-
alone energy sources such as battery cells. Consequently, they often operate in a doze
mode or voluntarily disconnect from the network. Transmission and reception of messages
over wireless links also consume power at a MH. So, distributed protocols for mobile
systems need to minimize communication over wireless links. Furthermore, MHs are less
powerful than fixed hosts and have less memory and disk storage. Hence, while designing
distributed protocols for mobile systems, the following factors should be taken into account
1, 4]:

e the amount of computation performed by a MH should be kept low,

e the communication overhead in the wireless medium should be minimal,

protocols should be scalable with respect to the number of MHs,

protocols should easily handle the effects of MHs’s disconnections and connections.

4 Consensus in a Mobile System

4.1 The Extended Consensus Problem

In the following, we consider a broadcast group G = (G_MSS,G_M H) of communicating
mobile hosts, where G_M H is a set of m mobile hosts roaming in a geographical area (like
a campus area) covered by a fixed set G_MSS of n base stations. The m mobile hosts are
denoted hqy,hs, - -,h,, whereas the n base stations are denoted M SS,, MSS,,--- MSS,.
In so far, local mobile hosts of base station M S'S; will refer to mobile hosts that belong to
G_MH and are currently locating in the MSS; cell. In this environment, the consensus
problem is defined over the set G_M H of mobile hosts. Each mobile host h; proposes
a value v and the mobile hosts have to decide on a common value V' which is a set of
values proposed by at least « different mobile hosts. More formally, the new validity
property is defined as follows: (1 < a < m). We assume that at least o mobile hosts
will communicate their initial value. In other words, less than m — a mobile hosts have
crashed definitively.

4.2 Assignment of Tasks to Mobile and Fixed Hosts

Due to the resources constraints of mobile hosts and the limited bandwidth of the wireless
links, the proposed protocol has to be executed by the set of MSSs on behalf of the set
G_M H of mobile hosts. We assume that the consensus is initiated by one or several mobile
hosts which can be located in different MSSs. Without previously consulting the other
mobile hosts, a mobile host requests that its current base station launches the consensus.
The contacted base station reliably forwards the request to the other base stations. At the
end of this initialization phase, either all (or none of) the correct base stations execute
the rest of consensus protocol. Then the activity of a MSS is divided into three main
subtasks: (1) a MSS interacts with mobile hosts located in its cell to collect their initial
values. (2) a MSS interacts with other MSSs to agree on a subset of proposed values and
(3) a MSS interacts with the mobile hosts located in its cell to communicate the final
outcome. In our approach, a base station which participates in the consensus protocol,
always acts on behalf of a subset of mobile hosts. More precisely, the value V; proposed
by a base station MSS; is a collection of values proposed by mobile hosts. Initially, V;
contains only values from mobile hosts connected to M SS;. After exchanging messages
with other base stations, V; will also include values from mobile hosts that have never
moved into the cell of MSS;. While the consensus is not completed, a base station builds
up its collection untill it contains values from at least « distinct mobile hosts. When a
mobile host enters a new cell, the corresponding base station requests its initial value if
the base station is not yet aware of it. The mobile host communicates this value even if
it has already given this information to several other base stations®.

4.3 Inadequacies of the Chandra-Toueg’s Solution

As seen in Section 2.4, the locking mechanism used in Chandra-Toueg’s protocol relies
on the assumption that a majority of processes is correct and participates in each round.
From this point of view, mobility appears to be a major difficulty. Let us consider the
following scenario: all the mobile hosts are located in the same cell. If the corresponding
base station has not crashed, it collects « initial values and proposes this set of values
to the coordinator during phase one of a round. The other base stations have to act
on the behalf of no mobile hosts: they must participate in the consensus by proposing
an estimate equal to the empty set (otherwise the protocol may block). More generally,
a base station cannot postpone the sending of its estimate to the coordinator until this
estimate contains (possibly) « initial values. Yet, the protocol must allow a base station
to communicate a more accurate estimate later.

Now assume that all the mobile hosts are in the cell of a crashed base station. They
progressively move to cells managed by correct based stations. Unfortunately, these base
stations can already have participated in a round r by sending an estimate equal to the
empty set (See above). In that case, the coordinator of round r has possibly received a
majority of estimates (all equal to the empty set) and already proposed the empty set
as the new estimate. More generally, as the coordinator can be erroneously suspected
by some base stations”, it is not certain it will eventually obtained a new estimate (by
piecing together the received proposals) containing at least « initial values. Yet, even
if coordinators propose new estimates that are not acceptable, the protocol must ensure

6This new exchange is not useless because the base stations previously informed may have crashed.
"In that case, these base stations have proceed to the round r + 1 and will never communicate to the
coordinator of round r more accurate estimates.

that the decision value contains at least « values.
This simple example gives an idea of how the original protocol is inadequate to cope
with mobility. The next Section outlines the proposed solution.

4.4 The Proposed Protocol

The proposed solution is based on the consensus protocol described by Chandra and Toueg
in [6]. As in the Chandra-Toueg’s protocol, the consensus is obtained after a sequence
of asynchronous rounds. A round r is managed by the base station MSS. such that
c= (rmodn)+1.

Whereas the Chandra-Toueg’s protocol assumes that a process always sends its esti-
mate once per round (phase 1) and changes its estimate only when it adopts the value
proposed by the coordinator (phase 3), our protocol partially removes these limitations.
A base station is allowed to change its proposed value while this value does not reflect the
decision of at least o mobile hosts. In other words, a base station can change its mind
when it adds new values to its uncompleted collection of values. So, during phase 1 of a
round, a base station may send up to « + 1 messages to the coordinator. Furthermore,
after receiving a new estimate from the coordinator, a base station can still send a nega-
tive acknowledgment, meaning that it does not agree with the proposed outcome result.
More precisely, the value proposed by the coordinator is refused if it contains less than «
mobile hosts values.

As soon as a base station has gathered « values and sent a positive acknowledgment
to a coordinator, its behavior is similar to that of a process as defined in the original
protocol of Chandra and Toueg. However, when a base station decides, it is nevertheless
in charge of communicating the decision to the mobile hosts located in its cell.

The protocol is structured into three parts. Part A (see figure 2) describes the role
of an arbitrary mobile host h;. Part B presents the protocol executed by a base station
MSS;. Tt is subdivided in two sub-parts: sub-part B1 (see figure 3) and sub-part B2 (see
figure 4). Sub-part Bl is related to the interactions between a base station and its local
mobile hosts (on one hand) and the rest of base stations (on the other hand). Sub-part B2
depicts the adapted Chandra-Toueg’s protocol. Finally, the third part C of the protocol
is the handoff protocol used to handle the change of location of the mobile hosts.

% Mobile host hy, is located in the cell of M SS;.

(1) Upon the program application requires to start a consensus
send INIT_1 to M S'S;

(2) Upon receipt of INIT_3 from M SS;
% The value of variable Initial-Value is provided by the application program.
send PROPOSE(hyg, Initial_Value) to MSS;;

(3) Upon receipt of DECIDE(Decided_-Value) from M SS;
% The result of the consensus protocol is delivered to the application program

Figure 2: Protocol Executed by a Mobile Host hy (Part A)

* Local Context of a Mobile Host

e Initial_Value : Value provided by the application program running on a mobile
host.

* Local Context of a Base Station MSS;

e Local_MH; : Set containing the identities of the mobile hosts located in the cell of
MSS;.

e Suspected; : Set containing the identities of the base stations suspected to be
crashed. This list is managed by the local failure detector module of M SS;.

e 7; : Sequence number which identifies the current round of the Chandra-Toueg’s
protocol executed by MSS;.

e Phase; : Phase number in a round. Before the consensus protocol starts and after
it terminates, Phase; : is equal to 0. Otherwise this variable is either equal to 1, 2,
3 or 4.

e State; : State of MSS;. State; is set to decided if the consensus has terminated.
Otherwise it is set to undecided.

e ts; : Sequence number of the last round during which a new estimate sent by a
coordinator has been accepted as the new value of V.

e P, : Set containing the identities of the mobile hosts whose initial values are already
known by MSS;. MSS; collects values of the mobile hosts located in its cell until
|P;| > « holds (End_collect; = true).

e New_V; : Set containing the initial values collected by M S'S;.
e V; : Last set of values proposed by MSS;.

e Log;|r] : Set containing the estimates received by M SS; during the 7 round (this
set is empty if MSS; is not the coordinator of round r).

e NB_PA;[r] : Number of positive acknowledgments received by MSS; during the r
round (equal to 0 if MSS; is not the coordinator of round r).

e NB_NA,;[r] : Number of negative acknowledgments received by MSS; during the
r" round (equal to 0 if MSS; is not the coordinator of round r).

* Messages

e INIT_1: Such a message is sent by a mobile host to its current base station to initiate
a consensus. See actions 1 and 4.

e INIT_2: When a base station is asked by a mobile host to initiate a consensus, it
broadcasts this message to inform the other base stations that a consensus is started.
To ensure a reliable broadcast of message INIT_2, each destination base station has
to forward it to the other base stations. So, despite failures of base stations, all (or
none) correct base stations will be aware that a consensus has been initiated. See
action 4.

e INIT_3: This message is sent to a mobile host either when its base station is informed
(on receipt of INIT_2 message) that a consensus has started or when the mobile host
enters a new cell managed by a base station M SS; which is not aware of its initial
value and has not yet completed its collection of values (|P;| < a). See the handoff
procedure and actions 4 and 2.

8Log[r] := Log[r]& (MSSj,r,V;,ts;) is equivalent to two successive operations: (1) Log[r] := Log[r]U
{(MSSj,r,Vj,ts;)} then (2) if there exists (MSS;,r, V], ts;) € Log[r] A I(MSS;,r, V], ts;) € Loglr]
such that card(V}) < card(V]") then remove (M SS;,r, V], ts;) from Log[r]. This operation is used to

keep in Log[r] only the most recent estimate sent by M SS; during round r.

Phase; := 0; End_collect; := false; New_V; := ¢;V; := ¢; P; := ¢;
State; := undecided; r; := 0;ts; := 0; Majority := |G_-M SS|/2;
for all r : Log;[r] := ¢; NB_PA;[r] := 0; NB_N A;[r] := 0; endfor;

cobegin
(4) || Upon receipt of INIT_1 V INIT_2
if (Phase; = 0)
then send INIT_2 to all M SSs except MSS;; Phase; := 1;
if (((Local_MH; N G_M H) # ¢) A (mEnd_collect;))
then W_Broadcast INIT_3
endif
endif

(5) || Upon receipt of PROPOSE(hy, vk)
if (mEnd_collect;)
then P; := P; U {hy}; New.V; := New_V; U {v} };
if (|P;| >) then End_collect; := true endif;
if (Phase; > 1) then send ESTIMATE(M SS;,r;, New_Vi, P;,ts;) to M SS. endif
endif

(6) || Upon receipt of DECIDE(V})
if (State; = undecided)
then State; := decided; V; := Vj;
send DECIDE(V}) to all M SSs except MSSj;
W _broadcast DECIDE(V});
Phase; :=0
endif

(7) || Upon receipt of ESTIMATE(M SS;,r,V;, P;,ts;)
Log;[r] := Log;[r] ® 8{(MSS;,r,Vj,ts;)};
if (mEnd_collect;)
then P; := P; U Pj; New_V; := New_V; U Vj;
if (|P;| > a) then End_collect; := true endif
endif

(8) || Upon receipt of PA(MSS;, ;)
NB_PA;[r;] .= NB_PA;[rj]+1

(9) || Upon receipt of NA(MSS;, ;)
NB_NAi[T‘j} = NB_NAi[T‘j] +1

Figure 3: Protocol Executed by a Base Station (Sub-part Bl)

e PROPOSE(-): Such a message carries the value proposed by a mobile host to its local
base station”. A base station MSS; takes it into account if |P;| < «. See actions 2
and 5.

e ESTIMATE(-): This message carries the estimate proposed by a base station M SS;
to the current coordinator M SS.. Each estimate is tagged with a timestamp ts;
identifying the round during which M SS; has updated its estimate for the last time
(see action 12). During round r, MSS; sends a first ESTIMATE message during
action 10. Other ESTIMATE messages can be sent during action 5 when AMSS;
updates its collection of values. The estimates sent during round r to M SS, (MSS.
is necessarily the coordinator of round r), are gathered and logged in a local buffer
Log.[r]. A base station M SS; can propose multiple estimates during a round r but
the coordinator M SS. keeps only the most recent estimate (See the definition of the
operator @ in footnote 8). While the collect is still possible (End_collect. = false),
the coordinator updates the sets New_V, and P, each time it receives the local view
of another base station. See actions 10, 5 and 7.

e NEW_EST(-): This message carries the estimate proposed by the coordinator to the
base stations. When the coordinator of round r has gathered a majority of esti-

9The reader can notice that the value proposed by a mobile host is not required to be always the
same. This possibility is not discussed in this paper.

(10) || Upon Phase; =1
ri :=71; +1; MSSc := (r; mod n) + 1;
if ts; = 0 then V; := New_V; endif;
Send ESTIMATE(MSS;,r;, Vi, Pi,ts;) to MSS.;
if (i = ¢) then Phase; := 2 else Phase; := 3 endif

(11) || Upon (Phase; = 2) A (|Log;[r;]| > Majority)
Let tmaz be the largest timestamp such that there exists
at least one element (MSS;,r;,Vj, Pj,tSmaz) € Log;i[ri]
if (tmaz > 0)
then Select one of those particular elements
denoted (MSS;,r;,Vj, Pj,tsmaz);
Vii=V;
else V; := New.V;
endif;
Send NEW_EST(M SS;,ri, Vi, P;, End_collect;) to all;
Phase; := 3

(12) || Upon receipt of NEW_EST(M SS., ri, Ve, Pe, End_collect.)
if (Phase; = 3)
then if (End_collect.)
then V; := V_;ts; := ri; End_collect; := true;
send PA(MSS;,r;) to MSS.
else send NA(MSS;,r;) to MSS;
P; .= P,UP;; New_V; := New_V; U Vj;
if (|P;| > o) then End_collect; := true endif
endif;
if (i = ¢) then Phase; := 4 else Phase; := 1 endif
endif

(13) || Upon (Phase; = 3) A (MSS. € Suspected;)
Send NA(MSS;,r;) to MSSc; Phase; :==1

(14) || Upon (Phase; = 4) A (NB_PA;[r;] + NB_N A;[r;]) > Majority
if (NB_PA;[r;] > Majority)
then send DECIDE(V;) to all MSSs except MSS;;
State; := decided; Phase; := 0
else Phase; :=1
endif
coend

Figure 4: Protocol Executed by a Base Station (Sub-part B2)

mates, it selects one estimate from its local buffer Log;[r] and sends it as a new
estimate to all base stations. The selected estimate is either the new estimate sent
by a previous coordinator which failed to gather a majority of positive acknowledg-
ments or the set of values New_V, of the current coordinator. While a base station
MSS; is waiting for a new estimate V,, it asks its failure detector module whether
the current coordinator has crashed or not. If the NEW_EST message is received
before the coordinator is suspected and if it carries at least « participant mobile
hosts, the base station updates its set of values V; to V, and replies with a positive
acknowledgment. Otherwise it replies with a negative acknowledgment and next
updates its sets New_V; and P;. See actions 11 and 12.

PA(-): Positive acknowledgment sent to the coordinator. If the coordinator gathers
a majority of positive acknowledgments, the set V. is locked and broadcasted as the
decided set of values to all base stations. Otherwise the coordinator moves to phase
1 and initiates the next round. See actions 12, 8 and 14.

NA(-): Negative acknowledgment sent to the coordinator. See actions 12, 13, 9 and
14.

DECIDE(-): This message carries the decided value. A base station MS.S; receives
a message DECIDE(V;) when a coordinator is aware that a majority of base stations
agree upon the set of values V; . MSS; adopts this value, changes its state to

decided, forwards the decided set of values to local mobile hosts and terminates. To
ensure that all correct processes decide, the message is also forwarded to the other
base stations (reliable broadcast). See the handoff procedure and actions 14, 6 and
3.

e GUEST(-): Such a message is sent by a mobile host to inform the current base
station when it enters a new cell. See the handoff procedure.

e BEGIN_HANDOFF(-): A BEGIN_HANDOFF message is sent by a base station M SS; to
another base station M SS; when MSS; learns that a mobile host has moved from
MSS; cell to its own cell. See the handoff procedure.

e Role of hy
Upon entry in M SS; cell
send GUEST(hy, M SS;) to MSS;

e Role of MSS;

Upon receipt of GUEST(h, M SS;)
Local_M H; := Local_M H; U {h},}; send BEGIN_HANDOFF(hj, M SS;) to M SSj;
if ((Phase; #0) A (hi, ¢ P;) A ~(End_collect;)) then send INIT_3 to hj, endif;
if ((Phase; = 0) A (State; = decided)) then send DECIDE(V;) to hy endif

e Role of MSS;
Upon receipt of BEGIN.HANDOFF(hy, M S S;)
Local_M Hj := Local .M H; — {h}

Figure 5: Handoff Procedure (Part C)

The correctness proof of the proposed algorithm is given in appendix A.

5 Conclusion

We have recall the interest of an extended consensus problem and shown how to overcome
the difficulties induced by mobility when solving this problem. In an environment with
m mobile hosts and n base stations, the proposed protocol tolerates up to f' = m — «
mobile hosts failures and f < [n + 1|/2 base stations failures. The communications
over wireless links are limited to a few messages (in the best case, two messages: one to
propose the initial value and other to get the decided value). The mobile host’s CPU time
is low since the actual consensus is run by the base stations. The protocol is scalable: it
is independent of the overall number of mobile hosts and all needed data structures are
managed by the base stations. The threshold parameter o can be interpreted as a measure
of the quality of the decided value delivered by the protocol. The value of parameter « is
defined depending on the expected amount of mobile hosts failures that can be tolerated
by a given application.

References

[1] Alagar S. and Venkatesan S. Causally ordered message delivery in mobile systems. In Proc.

of the Workshop on Mobile Computing Systems and Applications, pp. 169-174, Santa Cruz,
CA, Dec. 1994.

[2] Badache N. Mobility in distributed systems. Technical Report #962 (in French), IRISA,
Oct. 1995.

[3] Badache, N, Hurfin, M, and Macedo, R. Solving the Consensus Problem in a Mobile En-
vironment. In Proc. of the 18th IEEE Int. Performance, Computing, and Communications

Conference, IPCCC’99, Feb 10-12, 1999, Phoeniz, Arizona, USA.

[4] Badrinath B.R., Acharya A. and Imielinski T. Impact of mobility on distributed computa-
tions, Operating Systems Review, 27(2), pp. 15-20, April 1993.

[5] Basu A., Charron-Bost B. and Toueg S. Simulating reliable links with unreliable links in the
presence of process crashes. In Proc. of the 10th Int. Workshop on Distributed Algorithms,
Springer-Verlag, LNCS 1151 (. Babaoglu and K. Marzullo Eds), pp. 105-122, Italy, October
1996.

[6] Chandra T.D. and Toueg S. Unreliable failure detectors for reliable distributed systems. Jour-
nal of the ACM, 43(2), pp. 225-267, March 1996.

[7] Chandra T.D., Hadzilacos V. and Toueg S. The Weakest failure detector for solving consen-
sus. Journal of the ACM, 43(4), pp. 685-722, July 1996.

[8] Dolev D., Dwork C. and Stockmeyer L. On the minimal synchronism needed for distributed
consensus. Journal of the ACM, 34(1), pp. 77-97, January 1987.

[9] Dolev D., Friedman R., Keidar I. and Malkhi D. Failure detectors in omission failure en-
vironments. In Proc. of the 16th ACM Symp. on Principles of Distributed Computing, pp.
286 (brief announcement), Santa Barbara, CA, August 1997.

[10] Fischer M.J., Lynch N. and Paterson M.S. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2), pp. 37/-382, April 1985.

[11] Guerraoui R. Revisiting the relationship between non-blocking atomic commitment and con-
sensus. In Proc. of the 9th Int. Workshop on Distributed Algorithms, Springer- Verlag, LNCS
972 (J.-M. Hlary and M. Raynal Eds), pp. 87-100, France, September 1995.

[12] Guerraoui R. and Schiper A. Consensus service: a modular approach for building faull-
tolerant agreement protocols in distributed systems. In Proc. of the 26th IEEE Int. Symp.
on Fault-Tolerant Computing Systems, pp. 168-177, Sendai, Japan, June 1996.

[18] Hurfin M. and Raynal M. Fast asynchronous consensus with a weak failure detector. Tech-
nical Report #1118, IRISA, Rennes, July 1997 (submitted to publication).

[14] Hurfin M., Raynal M. and Tronel F. A practical building block for solving agreement prob-

lems. In Proc. of the IEEE Int. Performance, Computing, and Communications Conference,
pp. 25-81, Phoeniz, AZ, February 1998.

[15] Pradhan D.K., Krishna P. and Vaidya N.H. Recoverable mobile environments: Design
and trade-off analysis. In Proc. of the 26th IEEE Int. Symp. on Fault-Tolerant Computing
Systems, Sendai, Japan, June 1996.

[16] Schiper A. Early consensus in an asynchronous system with a weak failure detector. Dis-
tributed Computing, 10(3), pp. 149-157, 1997.

Appendix A: Correctness Proof

As our protocol is based on the protocol proposed by Chandra and Toueg, some statements
of lemmas and theorems that follow are similar to the ones encountered in [6].

Theorem 1 If a mobile host decides a value V', then V' contains only initial values proposed
by mobile hosts of G_MH .

Proof A coordinator collects only values proposed by base stations (action 7) which have
previously collected only values (action 5) proposed by mobile hosts (action 2). Hence, the
decided value V' contains only initial values of mobile hosts belonging to G_M H. Oppeorem 1

Theorem 2 No two mobile hosts decide differently.

Proof A mobile host decides (action 3) only if its base station has decided (action 6): in
that case the mobile host adopts the value broadcast by this base station. Consequently,
theorem 2 is valid if two base stations never decide differently. Assume that at least one
base station has decided (action 6). In that case, a coordinator has previously broadcast
a message DECIDE (action 14). This coordinator must have received a majority of positive
acknowledgment in phase 4. So, at least a majority of base stations has adopted the estimate
sent by the coordinator in phase 2.

Let r be the smallest round number during which a majority of positive acknowledgments is
sent to a coordinator. By assumption no base station has decided during a previous round.
Consider a base station M SS; that has sent a positive acknowledgment to the coordinator
MSS, of round r. During execution of action 12, this base station has also adopted the
estimate V, and updated the value of ts; to the current round number r. Afterwards, at any
round 7’ such that v’ > r, the value of ts; will remain greater than zero. Therefore, M SS;
will no more execute the statement V; := New_V; neither during action 10 nor during action
11.

We prove that at any round r’ such that r’ > r, the coordinator sends a message NEW_EST
that contains necessarily V.. The proof is done by induction on the round number. Obviously,
the claim holds for v’ = r. Assume that the claim holds for all rounds ' such that r <’ < k.
If M'SS}, the coordinator of round k, executes action 11, it must have received a majority of
messages ESTIMATE labeled with the current round number k. Among the base stations which
have communicated their estimate to M S Sy, there exists at least one base station M SS; that
has received V, in its phase 2 of round r and has sent a message ESTIMATE(M SS;, k, V;, ts;)
to M'SSi during round k. Obviously, the value of ts; is greater or equal to r. Assume that the
new estimate V; selected by M.SS), was contained in a message ESTIMATE(M SS;, k, Vj, ts;).
As the coordinator has selected the largest timestamp, ts; is greater or equal to r (because
ts; > ts;). Furthermore, ts; is at most equal to k — 1. Due to the induction hypothesis and
because r < ts; < k, the value V; which has been previously broadcast by the coordinator
of the round ¢s; is necessarily equal to V.. O heorem 2

Lemma 1 No base station can block forever in phase 1, 2, 8 or 4 of a round.

Proof Assume that r is the smallest round number during which a base station remains
blocked forever.

No base station remains blocked forever at phase 1 of round r: Every base station executes
action 10 and moves either to phase 2 or 3.

Let M SS. be the coordinator of round r. M S'S, is the only base station that enters in phase
2 during round r. When a base station proceeds from phase 1 to phase 2 or 3, it sends an
ESTIMATE message. As a majority of base stations is correct and as communication channels
are reliable, M S'S, receives at least a majority of ESTIMATE message sent during phase 1 of
round r. Consequently, if M SS, does not crash, it eventually executes action 11, broadcasts
a NEW_EST message and proceeds to the next phase (i.e., phase 3).

No base station M SS; remains blocked forever in phase 3. If the coordinator M SS, crashes,
MS'S; eventually suspects it and executes action 13. This is ensured by the completeness
property associated to the class &S of failure detectors. If the coordinator is correct, M S'S;
eventually receives its new estimate and executes action 12 (communication channels are

reliable).

The coordinator is the only base station that enters in phase 4 during round r. At least
a majority of base stations executes either action 12 or action 13. Each of them sends a
(positive or negative) acknowledgment to the coordinator. As communication channels are
reliable, the coordinator will crash or receive a majority of acknowledgments. In the last
case, the coordinator either decide or proceed to the next round. OLemma 1

Lemma 2 FEventually, there is a round during which all correct base stations will send
positive acknowledgment to the coordinator.

Proof Due to lemma 1, if no base station decides during a round r’ such that ' < r
then all correct base station will execute round r. During this round, a base station sends
a negative acknowledgment if either it suspects the coordinator M SS, or if the NEW_EST
message broadcast by the coordinator M SS, contains a boolean value End_collect. equal to
false. The accuracy property associated to the class O of failure detectors ensures that there
is a time after which some correct base station M .SSy is never suspected by any correct base
station. After this particular instant, M SS; when it acts as a coordinator during a round
is assured to receive a majority of positive acknowledgments if and only if its local variable
End_collecty, is equal to true.

For any base station, End_collect; is a variable initially equal to false. This variable may
change from false to true only once during the protocol. This may happen either during
execution of action 5, or action 7 or action 12.

We prove that End_collect, cannot remain equal to false forever. The proof is by contra-
diction. Since all faulty base stations will crash after some finite time, there is a time after
which M 5SS is not suspected by any correct base station. Due to the fact that channels
are reliable, M SSy will eventually receive the ESTIMATE messages sent by all correct base
station. Those messages may have been sent during the current round or during previous
rounds. In any case, the base station M 5SSy will take all of them into account to update its
set of mobile hosts identities P, and its set of values V. End_collect; remains false if the
cardinality of the set Py is always less than «. It means that globally the base stations have
not gathered values from « distinct mobile hosts. While a base station M .SS; has collected
less than « values, it continues to gather information from the mobile hosts. The amount of
answers will remain insufficient if and only if there exists at least m — « mobile hosts which
either (1) remain disconnected or crashed , or (2) remain forever out of the geographical
area or (3) remain in a cell managed by a crashed based station. By assumption, all those
situations are transient for at least o mobile hosts. Any mobile host that enters a new cell
managed by a correct base station will be asked to communicate its value to a correct base
station and the identity of the mobile host will eventually be added to the set Py. Ofcmma 2

Theorem 3 FEvery correct mobile host eventually decides some value.

Proof There are two possible cases:

If at least one base station decides and does not crash then all correct base stations eventually
deliver a DECIDE message. This is due to the fact that a base station forwards the decision
value when it delivers such a message (action 6). Consequently, any mobile host will receive
the decided value either when its base station decides (action 6) or when it enters in the cell
of a base station that has previously decided.

No correct base station decides. Due to Lemma 2, this case is impossible.
U7 heorem 3

