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Resumo

BCG (Base Confiivel de Comunicagio em Grupo) é uma plataforma de
comunicagao em grupo confidvel que difunde as mensagens de forma segura para
0s processos em grupos simples ou sobrepostos ¢ garante a entrega ordenada das
mesmas. Um servigo de Group Membership controla a visibilidade dos processos no
grupo. Ele assegura que mudancas na configuragio, devido & falhas, entradas ou
safdas cspontineas, sejam entregues para todos os processes do grupo na mesma
ordem l6gica. Implementamos e avaliamos o servigo de membership para a BCG e
neste trabalho apresentamos aspectos importantes dessa implementagio, bem como
fornecemos alguns resultados de andlise de desempenho obtidos a partir de uma
série de experimentos realizados com a introdugdo de falhas de maneira controlada.
Além disso, generalizamos analiticamente os resultados obtidos para expressar o
comportamento do protocolo diante de cendrios de falha mais complexos.

Abstract

BCG (Base Confidvel de Comunicagdo em Grupo) is a reliable group
communication platform that safely multicasts messages to processes in single or
overlapping groups and assures orderly message delivery. A Group Membership
service controls the visibility of processes in the group, by ensuring that group
configuration changes are delivered to all group members in the same order despite
process failures, joining or departures. We have implemented and evaluated BCG's
membership service. In this paper we show important aspects of this
implementation and present performance data collected from a series of
experiments where faults have been introduced in a controlled manner.
Furthermore, we analytically generalize our results to express more complex failure
scenarios.

1.0 Introduction

The group communication paradigm has been used successfully for structuring many
distributed applications, such as cooperative work applications, distributed data base systems,
replication mechanisms, among others. This paradigm can be applied in all phases of distributed
system architecture to model systems, resources and users [VRV93].

Basically, in a group communication, a message sent by a process has to be addressed to
all members of a group. Message delivery must be atomic: either all processes receive the
message or no one receives it. The group is an abstraction to which an application process refers
without knowing the number and location of the members which form part of it.
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Applications modeled as a group of processes frequently require an ordering mechanism
on message delivery. Total ordering means that messages must arrive in the same global order to
all processes in the group. In a replicating system, for example, messages for manipulating data
must arrive in the same order to all replicas so as to avoid inconsistency.

Other applications require not only that processes belong to many groups but also that
groups are overlapped, which means that two or more groups could have several processes in
common. This is the case of newsgroups and teleconferencing systems.

In case of failures, application processes must agree on which ones have failed and in
which order these events have happened. The part of a fault-tolerant communication protocol that
controls the visibility of processes in the group is the Group Membership Service. Group view
changes because members may want to join or leave the group, or processes crash. The group
membership service must observe the order in which such events occur in a consistent way, so
that distributed processes reach some kind of agreement on their local views of all reachable
operational machines.

Several membership protocols have been proposed in the literature for asynchronous
systems, i.e., systems where no assumption is made about message transmission and processing
times. [ACMT95] distinguishes two types of protocols: primary-partition membership protocols
[RB91] [KT91] [MPS91] [MSMA94] [HS95] and partitionable ones [ADKM92a] [ADKM92B]
[JFR93] [RBC+93] [BDGB94] [EMS95].

Primary-partition membership services are designed for systems with no network
partitions, or for systems that support only one partition in the group, the primary partition. In
this case, processes at primary partition can continue, while processes in the other components of
the network are blocked. The primary partition approach is not appropriate for modeling large
and critical systems, where processes must continue in operation, despite partitions. For example,
an airline reservation ticket system must continue to sell tickets despite remote failures.

Partitionable membership services allow multiple network partitions. Consequently, the
group is split into multiple disjointed concurrent subgroups. Processes in one subgroup cannot
communicate with processes in other subgroups, and they proceed as if they were the only ones in
the group. Subsequently, when communication is restored, the service must provide some
mechanism to reemerge subgroups.

Newtop is a partitionable fault-tolerant group communication protocol for asynchronous
systems proposed in [Mac94] [EMS95]. It provides total ordering of messages for overlapping
groups. We have implemented Newtop as part of the group communication platform called BCG
(Reliable Base for Group Communication) under development at LaSiD/UFBA. In this paper we
show the main aspects of BCG’s membership service implementation and present performance
analysis results collected from a series of experiments where faults have been introduced in
controlled ways. Moreover, the results to express more complex failure scenarios have been
analytically generalized.

Past published works have reported on evaluations in which message delivery times have
been measured in the presence of failures [CBM94] [FR95] [MADK94]. As these measurements
reflected somehow the efficiency of the associated ordering protocol (because time was taken only
after message delivery), we defined new performance indicators in order to evaluate our
membership protocol during its execution (and before message delivery) and run experiments to
take these measures under different operational circumstances.
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The rest of this paper is organized as follows. In section 2 the system model and fault-
tolerant properties of Newtop are described. In section 3 generic aspects of BCG’s architecture
are presented. In section 4 the membership protocol developed for single groups is explained. In
section 5 some performance measurement results are presented. Finally, conclusions are drawn in
section 6.

2.0 The System Model and Main Properties of Newtop (an Overview)

We consider a set of processes P1, P2, ..., Pn, distributed in possibly distinct machines,
communicating with each other only by exchanging messages through a network, which
guarantees that messages are not corrupted nor lost and delivered in the sequential order they
were sent (FIFO order). Processes form groups and groups can overlap,

We assume an asynchronous system, where message transmission and processing times
cannot be accurately estimated. Processes fail only by crashing, ie., stop functioning. The
network can be partitioned in many non-intersecting concurrent subgroups. Processes in one
subgroup multicast messages only to those processes in the same subgroup.

Each functioning process Pi has a Group Membership Service (GMi). When group G is
initially formed, GMi installs an initial view V;' = {P1, P2, ..., Pn}. As failures occur, GMi will
install subsequent views V,', V.., V; ", until Pi crashes or leaves the group. Process Pi
multicasts messages only to those processes in its current view Vi,

When failures occurs, GMi must promptly observe such an event and initiate an
agreement protocol with functioning members to remove crashed processes from its view Vi. It is
well known, however, that it is impossible to achieve consensus in finite time in an asynchronous
system even if processes fail only by crashing [FLP85]. This is because (due to the uncertainties
on message transmission time) a functioning process cannot distinguish between a faulty process
or a slow one. To circumvent this impossibility result, asynchronous protocols can make use of a
non-reliable Failure Suspector service to suspect processes crashes [CT91). The failure
suspector makes use of an inaccurate mechanism of suspicion based on arbitrary time-outs. In
case of faults, a process Pi must reach agreement between those processes in its view Vi which it
does not suspect have crashed and update its membership view, removing members which were
confirmed to be faulty.

Sometimes, the Failure Suspector (FSi) of Pi can make a mistake and suspect
erroneously that a process has crashed. If the suspicion is confirmed by all functioning members
in Vi, a virtual partitioning will occur, where an initial group is split into functioning sub-groups.
Processes in each sub-group think that they are the only members in the group. In the case of
virtual or real partitioning, our membership protocol (which is based on Newtop) leaves the
decision upon to continue or not of several functioning sub-groups to the application [Mac94)
[EMS95].

Newtop supports symmetric and asymmetric protocols. The asymmetric version uses one
of the members in the group (the sequencer) to control ordering of messages. A symmetric
protocol does not make use of a sequencer and all members in the group are responsible for
ordering. In this paper we describe the symmetric version. For details on the full version of the
protocol see [Mac94] [EMS95].

A fault-tolerant protocol must monitor the liveness of each member in the group to
promptly observe failure events. Thus, if an application process does not produce regular
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messages during a period of time, the underlying communication protocol must send control
messages periodically to notify the group that it is still alive. This procedure is essential for
detecting failures in a symmetric algorithm. In Newtop, each Pi has a Time-Silence mechanism
that periodically sends a null message if, during a fixed interval of time () process Pi has not sent
any message (regular or otherwise).

During membership agreement, an erroneous suspicion or a partial failure in the network
can make a member recover missing messages of suspected processes from other functioning
members in its view. In this case, the communication protocol must store messages until it is sure
that all processes in the group have received them. Newtop has a safely mechanism to discard
received messages called message stability. In this mechanism, a message m will only be
discarded in Pi if Pi knows that all processes in its current view Vi have received m. In this case,
we say that m is stable.

Newtop does not have an explicit mechanism for a member to join a group. If a process
wants to join a group it will do so by forming a new group including itself and all the other
members of the old set. Processes can maintain the old membership view while taking part in the
formation of a new group. An algorithm for group formation is presented in [EMS95]. The
implementation described in this paper does not support this facility.

2.1 Fault-Tolerant Properties of Newtop

We consider the events of sending, receiving and delivering a message m: send(m),
receive(m) and deliver(m), respectively. Just before m is sent to a group (send event) m is
timestamped with a logical clock value called the block number (bn). When m is received from
the transport layer of BCG (receive event), it is first stored into local buffers and it is only after
the delivery conditions for m have been satisfied, that m is passed on to the application (deliver
event).

We shall now describe fault-tolerant properties of Newtop to show how the protocol
provides group processes with a mutual consistent view on the order events take place (message
delivery and view updates).

In Newtop, view updates which are performed by processes of a group G satisfy the
following view consistency properties:

VC1 (VALIDITY): The sequences of views installed by any two member processes of
group G that never crash nor suspect each other are identical.

In other words, the order of membership changes (between processes that never suspect
each other) must be the same.

VC2 (LIVENESS): If Py in V '; leaves G or cm.ghes or becomes disconnected from P,
and if P; does not crash, then P; will eventually install V" ; such that r’ > r and Py is notin V" ;

This property assures that if a member leaves the group, the membership will observe
that event and remove the absent member in a future view.

VC3 (ATOMICITY): Any two member processes of G that never crash nor suspect
each other deliver the same set of messages between two identical consecutive views.
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This property states that the delivery of a message to the members of a group must be
atomic with respect to a view update by the members.

Property VC3 is called virtual synchrony in other fault-tolerant protocols. It ensures that
processes perceive process failures and other configuration changes occurring in the same order.
The notion of virtual synchrony was first defined by Birmann at ISIS system [Bir91] [Bir93].
Later, Transis [ADKM92a] [ADKM92b] and Totem [ADM+93] formulated the concept of
extended virtual synchrony and most recently, Horus [FR95] has formalized the concept of
strong and weak virtual synchrony.

Newtop has similarities with weak virtual synchrony as it does not guarantee in which
view the message will be delivered. In contrast, strong and extended virtual synchrony assures
that the message is always delivered in the same view as that in which it was sent. In order to
preserve this requisite these protocols cause the system to stop sending messages during view
installations. This degrades system performance. Horus [FR95] has shown that in every
implementation of strong virtual synchrony, there will be an elapsed time in which the system
cannot send messages before a view installation. Newtop can be modified to provide this strong
property but at the same expense of blocking messages. For details see [Mac94].

In the presence of failures or crashes, Newtop obeys the following message delivery
properties for all messages m multicast in group G:

MD1 (VALIDITY): A process Pi will deliver a message m in view V', only if the
senderof misinV',

MD2 (LIVENESS): If a process Pi sends m in view V', then provided it continues to
function as a member of G it will eventually deliver m in some view V', r’ 2 r.

Some systems provide uniformity (safe delivery) in message delivery. This means that if a
member sent a message and other member, faulty or non—faulty, received that message, then
every non—faulty process must also receive it. Systems that implement such facility show a
significant reduction in performance. Newtop does not provide such safe delivery. Examples in
section 4.2 illustrate this.

MD3 (ATOMICITY): (same as VC3) Any two member processes of G that never crash
nor suspect each other, deliver the same set of messages between two consecutive views that are
identical.

Below, we will define total ordering delivery, considering dynamic membership changes.
The happened before relation [Lam78] (denoted as —) is used on the send and delivery events.

MD4 (TOTAL ORDER DELIVERY): V Pi, Pjs.t. V= V' AV =v™ .
(1) delivery; (ml, r) = delivery; (m2, r) ¢ delivery; (ml, r) — delivery; (m2, r)
(ii) if delivery, (m1, r) and delivery; (m2, r’) occur for a given Pi, then:
ml — m2 <> delivery; (ml, r) = delivery, (m2, r’).

Two processes that never suspect each other will deliver messages respecting total
ordering, even in the presence of membership changes.

In the following sections we describe the symmetric membership protocol we have
implemented for the platform BCG. The current prototype runs only for single groups.



A VI Sivprosio BrRASILEIRO DE REDES DE COMPUTADORES 687

3.0 The BCG Architecture

BCG is a group communication platform that provides programmers of distributed
systems with the necessary mechanisms to develop reliable applications, ensuring ordered
message delivery and dynamic group reconfiguration in presence of failures.

Each application process in the group has a BCG kernel' composed of three layers:
Application, Newtop, and Transport Multicast layers (see figure 1). Newtop layer offers total
ordering message service and membership service, which is responsible for maintaining visibility
of processes in the group. All messages sent by the application process are dealt with Newtop
protocol and then passed to the Transport layer that multicasts them reliably to all other members
of the group. At the extreme end, Transport layer will transfer messages to Newtop where they
will be stored in a pool waiting for the ordering condition to be satisfied before delivering. In the
prototype currently running at LaSiD/UFBA the multicast is done through multiple point-to-point
TCP/IP connections.

Newtop Layer is made up of six main processes which run concurrently and
communicate to each other through a message-queue mechanism. The processes are: 1.
Membership; 2. Failure Suspector; 3. Deliver; 4. Transmitter; 5. Local Time-Silence and 6.
Clock-Ticks.

1. Membership process receives messages from Transport Multicast layer and distributes
them to the other processes of Newtop. Membership controls the visibility of the group, based on
failure events sent by Failure Suspector.

2. Failure Suspector controls liveness of remote processes based on time-out duration.
Time-out is measured by a clock receiving ticks from the Clock-Ticks process.

3. Deliver process stores messages in a pool called Block Matrix (BM) and delivers
messages to an application appropriately according to total ordering. It also guarantees that
messages that are not stable will not be discarded from the BM pool.

4. Transmitter process is responsible for time-stamping messages with block-number
(bn). It multicasts all user and control messages from Newtop to all other processes in the group
(via Transport layer).

5. Local Time-Silence periodically requests the multicast of null-messages to ensure
liveness of application process. Requests are based on time-outs which Local Time-Silence
implements with the aid of the Clock-Ticks process.

6. Clock-Ticks process is responsible for generating clock ticks for the processes that
maintain the clock (Failure Suspector and Local Time-Silence).

In figure 2 we show the interactions between these processes’. In the design of BCG
system, special attention has been given to eliminate cycles in the graph (to avoid situations of

" In this paper we only consider the total order protocol Newtop. However, BCG architecture includes
also the causal order protocol BCGcausal [Mac95] [LM97].

* In other publications, about BCG, we have denoted Failure Suspector process as Remote-Time Silence
and we have also presented the Receiver process, which does not appear here because its functionalities
are encompassed by the Membership process.
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deadlock during execution). In spite of this, two remain. Fortunately, in both cases it was possible
to communicate through a non-wait mechanism.

| APPLICATION |

| MULTICAST |

Figure 1: Layers of BCG

APPLICATION

3
mecast send meast receive
. TRANSPORT MULTICAST 1‘
B
— message_queue o= TCP/IP sockets + non-wait message-queue

Figure 2: Newtop Processes

In the next section we describe the membership protocol and its relationship to other
processes in Newtop.
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4.0 Membership Protocol

In this section, we describe the behavior of the Membership protocol. Most of this section
(except pseudocode and data structures) has been extracted from [Mac94] [EMS95].

To provide a mutually consistent view of membership changes due to processes crashes
or departures, each Group Membership service (GMi) of each member in the group must execute

the following main functions:

1. The Failure Suspector process (FSi) of Pi reports a failure of some remote process Pk,
based on a time-out mechanism.

2. In such case, Pi will initiate a membership agreement on Pk’s failure.

2.1. If every functioning process at view Vi agrees to eliminate Pk then:
- Pi will start a view installation protocol to exclude Pk of its view,

2.2. Otherwise
- Pi will start a recovery messages protocol for retrieving missing messages
from Pk.

FSi sets a time-out for each new message block number An it receives from a process Pj.
During an estimated period of time, say, @, it expects the receipt of messages from all remote
processes Pk, k # j, with block number bn’ > bn. If some remote process Pk does not send any
message during ®, FSi will notify its suspicion of Pk failure to the group membership process
(GMi) with message (suspect, Pk, last-bn), informing the last message block number (last-bn)
sent by Pk. In current implementation, ® was set to: @ = ¢ + 2A, where A is an estimated channel
communication delay for transmitting messages and 7 is the time-out set by Local Time-Silence
process [MS95].

The pseudocode of the main procedures of membership is given in figures 3-8. We shall
describe these procedures through the trajectory of a message msg that arrives at group
membership process of Pi (GMi). The msg will contain application information and will
piggyback control information from the protocol, such as its type, its block number. etc. GMi
uses a communication primitive mcast (msg) to multicast msg to all processes of view V % The
multicast is done by the Transmitter process, which will time-stamp every message with a block-
number. Each GMi process begins the protocol with a set functioning containing all processes in
its current view V. GMi also maintains a set, called LRV (Last Received Vector), with the last
message block-number received by every process in its current view Vi.

When GMi receives a suspect msg from its own FSi, it will store (Pk, last-bn) in set my-
suspect and it will multicast its suspicion with message mcast(Pi, suspect, Pk, last-bn), which
means that Pi suspects Pk with last message block-number last-bn. This message is also going to
be received by GMi itself.

If GMi receives a suspect msg (Pj, suspect, Pk, last-bn) from a remote GM;j, It will
verify if it has a message block number from Pj greater than last-bn. If this is the case. it will
refute the suspicion message. Otherwise, it will save suspicion of (Pk, last-bn) from Pj in set
other-suspect. GMi will wait until it receives a suspect message from its own ESi, or until a new
message from Pk arrives, with block-number greater than last-bn. In the first case, GMi will
verify if the group has already reached agreement. In the second case, GMi will refute Pj

689
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suspicion of Pk and it will remove member (Pk, last-bn) from other-suspect. If a member
suspects Pi, which means that k = i, GMi will take no action and it will expect another member to
refute the suspicion or the partition of the group. This means that there was a network partition
between Pi and some subset of group view Vi.

If GMi receives a refute message of a process Pk that it actually suspects in my-suspect,
it will start the recovery of the missing messages from Pk. Messages that arrive at GM1 from
suspected faulty processes in my-suspect are stored in a pool called pending-message. If Pk’s
failure is later refuted, GMi catches all messages from Pk in this pool. If PK’s failure is
confirmed, all messages are discarded. The message stability mechanism guarantees that if Pi
does not have the latest messages from Pk, it can retrieve such messages from any functioning
member in the group. In this case, Pi will mcast (Pi, recovery, Pk, upbn), where upbn is the last
message block-number received by Pk. Upon the receipt of a recovery message, all active remote
processes in group view Vi will multicast all messages from Pk with masg.bn > upbn.

Process Pi reaches agreement if it confirms every set of Pk processes under its suspicion
in my-suspect set. To confirm a suspicion from some Pk, Pi must have suspect messages saved
in other-suspect, from every set of active (functioning - my-suspect) members in its current view
Vi. If consensus is achieved, GMi will multicast a confirmation message, informing the set of
confirmed faulty processes (detection). After that, it will start the view installation protocol.

Functioning members that hold identical views and do not suspect each other will confirm
identical detection sets in an identical order. However, it may happen that some remote GMj
achieves consensus before GMi. In such case, GMi will receive a msg from GMj confirming a
detection set of faulty processes. If GMi has not achieved consensus yet for the same set of faulty
processes, the detection set from GM] will be a proper subset of my-suspect set of GMi. In this
case., GMi is also able to achieve consensus. As a result, GMi will update my-suspect set for (my-
suspect - detection); it will meast(Pi, confirmed, detection) with the same detection set, and it
will start a view installation protocol.

During a membership view change, the Deliver process blocks the delivery of messages
until GMi notifies which processes are really faulty. This is because the Deliver process waits for
the arrival of messages from suspect processes to presarve total order delivery. After achieving
consensus, Newtop will treat messages from faulty processes in the following way. Among all
messages from faulty processes, it will find those with minimum and maximum block numbers
(min-bn, max-bn, respectively). Messages with min-bn are unblocked and delivered. Messages
from faulty processes with block number between min-bn + 1 and min-bn are discarded by the
protocol. This is a safety measure to preserve causality. Illustrating examples in section 4.2
clarify this.

If 2 member Pi wants to leave the group, GMi will instruct the Local Time Silence
process to stop sending null messages. After a period of time, remote GMj services will reach
agreement on the removal of Pi between processes in their current view.
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Data Structures

1. bn: block number of message (time-stamp).

2. functioning: set of all processes in current view V.

3. my-suspect: set of last bn of each process under my suspicion.

4. other-suspect: set of last bn of processes that were declared faulty by others.
5. pending-messages: last messages received from processes under my suspicion.

6. detection:  set of processes confirmed to be faulty.

7. last-bn: last block number of suspected faulty process.

8. LRV: Last message block-number Received by every process in view V.

Figure 3: Data Structures of the Protocol

Membership-Algorithm ()
endless loop {
receive (msg);
upon_Failure Suspector msg (suspect, Pk, last-bn)

my-suspect [Pk] = last-bn;
mcast (P1, suspect, Pk, last-bn);

upon Transport Multicast mse (Py, bn)
if (Pj is not in functioning)
discard msg from Pj
else if (Pj is in my-suspecr)
save msg in pending-message;,
else {
if (msg is a membership message)
Membership_Agreement (msg);
LRV [Pj] = msg.bn;
Distribute msg to internal processes of Newtop.
if (Pj is in other-suspect with last-bn < msg.bn )
mecast (Pi, refute, Pj, msg.bn);

Figure 4: Main loop of Membership Algorithm
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Membership_Agreement (msg)

case (Pj. suspect, Pk, last-bn) : (note that Pi can receive this msg by its own GMi)
if (Pk=Pi)
do nothing, expect somebody refute or your departure
if (Pk=Pi) {
bn = LRV [Pk];
if (bn > last-bn) (Pi has msg.bn from Pk greater than last-bn )
mcast (Pi, refute, Pk, bn);
else
other-suspect [PK] [P)] = last-bn;
Get-Consensus ();
if (consensus = TRUE) {
detection = my-suspect,
mecast (Pi, confirmed, detection);
Install-New-View ();

case (Pj, refute. Pk, susp-bn):
if (my-suspect [Pk] is set with last-bn < susp-bn)
Recover_Messages (susp-bn),
reset my-suspect [PK];
reset other-suspect|PK][Pr], with last-bn < susp-bn,
for all Pr in functioning

case (Pj. confirmed, darection) :

if (Pii<in detection) (force my FSi to expurgate Pj from my view)
my-suspect [Pj] = msg.bn;
mcast (Pi, suspect, Pj, msg.bn);
if (Pi is not in detection) {
if (detection is a proper sub-set of my-suspect)
(I've not achieved consensus yet)
my-suspect = my-suspect - detection;
meast (Pi, confirmed, detection);
Install-New-View ( );
|
}

case (Pj, recovery, Pk, up-bn) :
Instruct Deliver process to recover all msg from Pk with msg.bn > up-bn
from block matrix BM and send them directly to Transport layer.

Figure 5: Membership Agreement Protocol
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Get-Consensus ()
(membership must agree on the failure of all set of processes in my-suspect)

for all (Pk, last-bn) in my-suspect
see if other_suspect [PK] [Pr] = last-bn,
for all Pr in functioning and not in my-suspect
consensus = TRUE;

Figure 6: Algorithm to Reach a Consensus

Recover-Messages (susp-bn)

Recover messages from Pk in pending-messages;
Set up-bn the last message block number recovered from Pk;
if (up-bn < susp-bn)

mcast (Pi, recovery, Pk, up-bn);

Figure 7: Recovery Messages Protocol

Install-New-View (derection)

Reset my-suspect, for all confirmed Pk in detection;
Reset other-suspect, for all confirmed Pk in detection;
Discard msg in pending-messages from all PK in detection;

Detect min-bn and max-bn from all set of failed processes in detection.

Instruct Deliver process to transform all messages between min-bn + | and
max-bn of failed processes in null messages to the application.

Expect until Deliver process delivers all messages with block number min-bn.

Sfunctioning = functioning - detection; (update view)

LRYV [Pk] ===, for all Pk in detection;

Instruct all concurrent processes of Newtop to update their local functioning set.

Figure 8: Algorithm for View Installation

5.0 Performance Analysis

Most membership protocols have been evaluated by running them in conjunction with
other services of the underlying communication protocol [CBM94] [FR95] [MADKO94]. Thus,
the measurements have been usually based on the average message delivery delay’ of the
communication protocol in absence of failures and sometimes in presence of simple ones, for
example, one missing message in each multicast [CBM94). Therefore, the figures shown also
reflect the efficiency of the underlying associated services such as total order and transport
protocols (because time was taken only after message delivery). Since our purpose was to give
application programmers an idea of the precise cost incurred to recover from faults, we defined
new performance indicators in order to evaluate our membership protocol during its execution
(and before message delivery) and run experiments under different operational circumstances. We

"The message delivery delay, also called delivery latency time, is the time elapsed between the receipt of
a message by communication protocol and the delivery of the same message to the application.
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will also explain how such indicators can be related to the message delivery delay time of our
total order delivery protocol.

In presence of failures, the group communication protocol blocks the delivery of
messages to the application until the new view is installed or the missing messages are retrieved.
Thus, the time taken to reach agreement upon failures will directly affect the average message
delivery delay time. Therefore, the following indicators have been defined in order to evaluate our
membership protocol.

I. Agreement Time: the delay between failure notification of a process by Failure
Suspector and its removal from the group view. This measure represents the delivery delay time
of failure events to the application and it will be used later in this work to define the message
delivery delay in the presence of failures.

2. Refute Time: the delay between failure notification of a process by Failure Suspector
and the arrival of a refute message.

3. Recovery Message Time: latency to receive the first missing message requested by a
group member after a failure suspicion has been refuted (i.e. a refute message has been received).
Note that the refute and recovery message times will directly contribute to the delivery delay
time of missing messages for the application.

Based on the above indicators, several experiments have been carried out over a set of
networked UNIX machines (six IBM RISC 6000 machines) connected by a lightly loaded 10
Mbps Ethernet.

5.1 Agreement Time Evaluation

The group membership protocol assures that processes perceive failure events at the
same logical time. However, the uncertainties of asynchronous systems caused by several factors
of the environment in which experiments were carried out (OS scheduling policy, communication
channel overhead. network flow control, etc.) contribute to variations in the exact time in which
processes detect the crash®, Frequently, as we have observed from our experiment, the machine
which starts the agreement protocol will reach agreement slower compared to those machines
that suspect later. Thus, we measured the Agreement Time as the average of agreement times
taken by all processes in the group.

Many failure scenarios may be used to measure agreement time. However, we chose a
simple one, in which only one process crashes in the group. This is the easiest scenario to
reconfigure the group. Nevertheless, based on the values of the simple failure mode, we can
generalize the protocol behavior for more complex failure scenarios, where it will certainly take a
longer time to install the new view. This is explored below.

The Experiment: In order to measure the scalability of our protocol, we ran experiments for
different group sizes, from two to six processes. For each run, we forced the crash of only one
process in the group. Figure 9 shows the results with the average agreement time of 60
executions for each group size. As we expected, as group size increases, agreement fime
increases. The values vary from 10 to 90 milliseconds.

4 We should add that the uncertainties of the environment raised difficulties to the carrying out of the
experiments. For example, in the experiment active processes were frequently considered crashed by
others when they started execution with an already significant delay.
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Figure 9: Average Delay for Consensus

We extended the results above to evaluate our membership performance in more complex
situations, where more than one process crashes. Let &, be the agreement time, measured by our
experiment, to get agreement upon the crash of one process in a group of size n. Let ® be the
remote time-out for Failure Suspector. We assume ® > §,. Let T; be the agreement time to
achieve agreement upon the failure of fprocesses in a group of size n. We have 7, = §,.

Consider now that we want to evaluate agreement time for a group of n processes (o
agree on the failure of two processes, Pl and P2. In the worst case scenario, the following will
occur: process P1 crashes. As a result, all processes in the group multicast suspect messages of
P1's crash, except P2, which has also crashed immediately before it multicasts the suspicion of
P1. In this case, Failure Suspectors of active processes will only observe P2’s crash after a
period of time ®. After this, an elapsed time &, ; will be necessary, for n - / processes in the
group (note P1 is crashed) to agree on P2’s crash. Thus, we can deduce that, in the worst-case.
agreement time T5 to achieve agreement upon the failure of two processes is: T> =® + &, ,.

Applying the above reasoning to obtain the time upon the failure of 3 processes, we have:
T; =2® + §,,. Thus, we can generalize this result in the following way. For a group of size n to
agree on the failure of fprocesses, in the worst-case, an agreement time T, will be necessary.

T = (fF-1)D+8,..1 for ®> 6, and n>f

The average agreement time will increase according to the increase of ®. On the one
hand, @ must be sufficiently long to avoid unfounded suspicions, on the other hand, ® must be
sufficiently short to allow quick reconfigurations of the group.

We can also extend the above results to evaluate the message delivery delay in presence
of failures (for total order). Let D, denote the message delivery delay in the presence of f process
crashes in a group of size n. Consider that we want to evaluate this measure when one process,
say P1, crashes (f = 1). We know that, in case of failures, the delivery of messages is blocked
until the new view is installed. Let m be the first message that is blocked in the communication
layer. According to the protocol, the Failure Suspector will expect an elapsed time ®, after the
arrival of m, to report P1’s crash. After sending the suspicion, the protocol will wait an elapsed
time 7} to reach agreement and install the new view. Note that T is the agreement time measured
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above, T, = & ,. Thus, we can say that in the worst-case in presence of one crash, a message m
will be delivered to the application in a delivery delay time Dy, D; = ® + T,

Therefore. in the worst-case, the message delivery delay time in presence of f crashes,
for a group of size n, will be:

Di=®+ Ty or D‘f-:fq)"‘an.ff-”
5.2 Refute and Recovery Message Time Evaluation

The Experiment: All processes multicast messages to the group. Messages are sent at
intervals of 5 seconds. Through the Transport Layer of BCG, we force a communication failure
between two processes of a group. Therefore, a process P1 sends messages to all processes in the
group, excent to P2. Process P2, in turn, will suspect the crash of P1, but all the other processes
in the group will refute such suspicion. In this case, process P2 will ask for missing messages
from P1, and all the other processes in the group will multicast such messages. We have
evaluated the performance of the protocol for groups from size three to six. We have also varied
the local time-silence time-out value (LTS). The Time-Silence mechanism assures that processes
send messages (regular or not) every LTS period of time. For all experiments, we measured the
Refute and Recovery Message Time, for LTS equal to 50, 250 and 500 milliseconds. Figure 10
shows the average values of 700 tests carried out for each group size.

As expected, as group size increases, the number of refute messages increases and the
average delay time to obtain the first refute message decreases. The variation of LTS did not
cause any great impact on the overhead. The only exception was for LTS = 50. In this case,
refute time becomes greater because many more messages are being transmitted in the channel.
Surprisingly, however, the average recovery message time did not decrease with the increase in
group size, it stabilized instead. This is due to the increase in the number of duplicate messages
caused by the multiple replies of missing messages. The protocol states that for a group of size n,
O(n) copics" of each message recovered will be transmitted. Thus, as group size increases, the
communication channel overhead becomes worse. This has lead us to adopt another policy to
proceed message recovery (to be implemented in the next version). In this new policy, we will use
a combination of (1-to-1) and (1-to-N) communication in order to optimize message recovery
time.

We can also make use of the same reasoning developed in the previous section to deduce
missing messages delivery delay in a group of size n. Consider @, the time-out period of Failure
Suspector. Consider also that Rf is the time to receive the first refute message, and Rm, is the
elapsed time to recover the missing message in our experiment. The missing message delivery
delay time Dm is:

Dm =® + Rf + Rm

Correctness proofs for all the formulas presented in this section can be found in the
complete version of this paper [GMI8].

S The “Big Oh” notation denotes an upper limit on the number of messages.
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Figure 10; Refute and Recovery Messages Measurements
6.0 Conclusions

We have presented the main aspects of the Group Membership Service implementation of
BCG, a reliable group communication platform being developed at LaSiD-UFBA on a network of
UNIX workstations. We have shown BCG’s architecture and the main interactions among its
processes. The Group Membership protocol implemented provides programmers with the
necessary mechanisms to develop fault-tolerant applications.

In order to evaluate the BCG's membership protocol, we have introduced some new
performance indicators (agreement, refute and message recovery times) to measure the
overheads incurred by the membership algorithm during the recovery phase. We have carried out
experiments simulating simple failures (introduced in a controlled manner during execution time)
and extended our results to express more complex failure scenarios. We have also extended our
measurements to express the message delivery delay in presence of failures. The experiments
were run for different group sizes and local time-silence time-outs. The collected data show that
the variation of the local-time silence does not cause a great impact on the overall performance,
and, as expected, agreement time increases as the group size increases. However, we have also
noticed that refute time decreases as group size increases. Surprisingly, the average recovery
message time did not decrease with the increase in group size, it stabilized instead. This is due to
the increase in the number of duplicate messages caused by the multiple replies of missing
messages. This has lead us to adopt another policy to proceed message recovery (to be
implemented in the next version). In this new policy, we will use a combination of (1-to-1) and
(1-to-N) communication in order to optimize message recovery time.

Finally, we have concluded from our experiments that the value chosen for remote time-
silence time-out plays an important role in the performance of the delivery protocol as far as
failures are considered. On the one ha !, remote time-out must be sufficiently long to avoid
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unfounded suspicions, while on the other hand, the remote time-out must be sufficiently short to
allow rapid reconfigurations of the group.

In a future work we intend to extend our membership implementation to support

overlapping groups and integrate it into the other delivery protocols of BCG (the causal and A-
causal protocols).
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