XVI Simposio BRASILEIRO DE REDES DE COMPUTADORES

Alarm Management System applied to SCADA
environments in Power Utilities

Carneiro, V.M.]. Coego, J. & Guerrero, c.!
Departament of Electronics and Systems
University of La Corufia, SPAIN
E-mail:{ victor,javier,clopez } @des.fi.udc.es

Abstract

Nowadays several management protocols coexist, offering heterogeneous information
about events which occur in managed objects. Some information is superfluous and in
some cases unnecessary. Operators can be satured with irrelevant fault information.
Alarm correlation and filtering processes are necessary to simplify the events analysis
and identification of their main cause. Fault management increases its significance in
complex environments like power utilities. This paper analyzes the standardization
necessary to maintain an alarm distributed management environment, applied to a
specific field, alarms in SCADA (Supervisory Control And Data Acquisition)
environments. We have designed an alarm MIB. This MIB refers to both operating
system and SCADA alarms. Through this MIB we can manage the most important faults
arisen in the operating system. We also propose an architecture for a management
system, consisting of both agent and manager. The agent can use either the SNMP,
CMIP, or proprietary protocols. Manager supports alarm composition, polling, alarm
correlation, protocol and information mapping, historics management and filtering in a
metamanagement distributed environment. The management of each SCADA
environment is made by a MIS (Management Information System) and there is a
continuous flow of information among all the MIS at the Power Utility, distributing
alarm management. An experimental prototype, which implements the proposed
architecture, is presented.

Hoje em dia diversos protocolos da geréncia coexistem, oferecendo a informagdo
heterogénea sobre os eventos que ocorrem em objetos gerenciados. Alguma informagio
é suplerfua e em alguns casos desnecessirios. Os operadores podem recebar moita
informagdo sem importancia da falha. A correlagdo do alarme e os processos filtrando
sdio necessdrios para simplificar a andlise dos eventos e identificagio de sua causa
principal. A geréncia de falha aumenta seu significado em ambientes complexos como
companhias elétricas. Este papel analisa a estandardizagio necessdria para manter um
ambiente distribuido da geréncia de alarmes, aplicado a um campo especifico, alarmes
em ambientes de SCADA (controle e a aquisicio de dados de supervigdo). Nos
projetamos um MIB do alarme. Este MIB consulta o sistema operando-se e os alarmes
de SCADA. Através deste MIB nés podemos controlar as falhas mais importantes
levantadas no sistema operando-se. N6s propomos também uma arquitetura para um
sistema de geréncia, dado forma por um agente e um gerente. O agente pode usar o
SNMP, CMIP, ou protocolos proprietirios. O gerente suporta a composigio do alarme, a
consulta, a correlagdo do alarme, tragar do protocolo e da informagdo, a geréncia do
histéricos e filtrar em um ambiente distribuido de metageréncia. A geréncia de cada
ambiente de SCADA ¢ feita por um MIS (sistema de informagdo da geréncia) € hd um
fluxo continuo da informagdo entre todo o MIS na companhia elétrica, distribuindo a
geréncia do alarme. Um prot6tipo experimental, que execute a arquitetura proposta, €
apresentado.

1. Adjunct Teacher at Facultad de Informdtica, Campus de Elvifia, S/N. 15071 - A Corufia. SPAIN.

92 XVI Sivprosio BrastLeiro pE Repes pE COMPUTADORES

1 Introduction

Fault detection is vital in current systems, which guarantee by contract a predefined QoS. The
main problem in traditional fault management systems is that, in spite of displaying fault
ocurrency, do not provide information that assists to identify fault source. Many proprietary
protocols (and even standard protocols like SNMP) have not been designed for carrying this
information in their PDU formats. In this case, it is necessary to make use of translation functions
that give us a more complete format.

Normally, alarm information generated in heterogeneous networks does not support an integrated
model (SNMP traps, CMIP events, proprietary alarms). An operator will require an uniform set
of notification types, with normalized parameters and technology independent definition. This
normalization of the information mapped in the PDUs will need predefined and implicit data that
complete the normalized alarm format. Management performance is improved with robust and
object-oriented databases that simplify and improve access to events management information
and allow the storage of specific data about the managed equipments and the identification of the
main cause of the fault.

Other problems inherent to fault management are communications between network function
managers, alarm redirection, polling and efficient storage of management information generated
by the managed service.

All these problems are increased when we are working with SCADA fault management. SCADA
systems perform real-time remote monitoring and remote control on transformer substations and
stations (high, medium and low voltage). Many of these faults taking place on SCADA
environments are detected by abnormal conditions on several parameters of the operating
systems.

This paper addresses problems about fault management. First of all, we show the general
architecture of the manager making the suitable conversions that allow the integration of
multiprotocol alarms. This architecture is showed in section 2 and a prototype description is
explained in section 3. Section 4 presents the Power Utility environment and in section 5, we
explain the modelling of the Alarm MIB used by management (SNMP and CMIP) agents to
register all arised errors. In section 6 the integration of AMS and SCADA services will be
showed. Finally, conclusions, lessons learned and future work are discussed.

2 AMS (Alarm Management System) Architecture

Nowadays, networks are characterized by multiprotocol management: proprietary, SNMP [8] and

OSI based management equipments and services. Both SNMP and CMIP [3] protocols give very
little information about the fault (only that the alarm raised and its type). In case of SNMP, also
generic type (coldStart, warmStart, linkDown, linkUp, authentification Failure and
egpNeighborLoss) and equipment specific (enterpriseSpecific) are indicated.

In OSI management, more exactly in X.721 information recommendation [4], five types of
notifications with a more complete information are defined: Communications, QoS, Processing,
Equipment and Environmental. The parameters of OSI event service primitive, defined in the

X.710 recommendation [2] give information about the request type, class and object that
generates the notification, type, timestamp and additional information defined in X.733
recommendation in which new parameters are incorporated as probable causes, severity, backup
situation and so on.

In the proposed architecture there is an ICF (/nformation Conversion Function), concept taken
from TMN standard [1] and applied to the prototype. The goal of this function is the mapping of
a great variety of fault information formats to the standard designed in X.733 recommendation.
This translation is developed at semantic and syntactic level with the appropriate filtering, alarm

X VI Sivrosio BRASILEIRO DE REDES pE COMPUTADORES 93

correlation [7] and historic management processes.

Figure 1 displays the architecture of the AMS, see [9]. It is a function-centralized model. The
information received by the management system can be in legacy format, SNMP trap or CMIP
event. The Event Handling module manages an event queue that is accessible by other
management systems. This issue facilitates a management distributed environment, because
AMS supports communications with other AMSs through Manager-to-Manager Communication
module. Every event has an associated callback that performs the functions associated to the
event services, that is to say, it is an event-oriented application. The use of timing routines to
service events can generate the interruption of some action by another one of higher priority. In
order to avoid undesirable situations, the implementation of critical region control mechanism is
necessary.

The Translator module is responsible for the completion and reelaboration of the information
received within the event. In order to achieve this purpose, it uses the information of the
resources data base (network configuration, equipment identifications, ...) and correlation
algorithms to identify the notifications (log files) that are related to the one generated at this
instant. Another fields need to be completed by the interpolation of values received within the
implicit information of this notification. For example, a severity field is mapped from the generic
or specific trap field of the SNMP format. Another information that the translator must fill in is
the probable cause of the fault (it is part of the information defined in managed object class),
specific problems, severity, support operation, an indication of the severity trend in force in the
managed object, threshold information, notification identification, correlated alarms, definition
of the state change or transition and the actions that can be developed in order to solve the
situation. All this information has been taken from ITU-T Recommendations so as to achieve a
fault information standard format.

Manager-Manager c Alalmj
Communication Filtering orrelation
Forwarding = v
Alarm Translator (ICF)
:)
Designer g
Event Handling
Polling
CMIP SNMP Other

Figure 1 Architecture of Alarm Management System

The management system stores this information in a common repository (log) where both the
Translator module and the alarm correlation process (dedicated to detect the main cause of a
series of sequenced events) can access. The management of this database has some additional
difficulties caused by the architecture of the fault management system. However, the use of an
object-oriented model, with properties such as abstraction and inheritance, in order to represent
managed objects, simplifies to a great extent the development of management applications.
Some equipments may not emit alarms spontaneously. In this situation, it is necessary to program
polling routines which periodically allow to request the equipments and identify their current
state. These polling routines are made of state diagrams that relate state changes and generate
notifications in certain situations. These alarms can be designed previously by an alarm design
module that indicates the value of the PDU fields.

Another important key of the AMS is the Event Forward Discriminator (EFD), described in

Figure 2. The EFD is used to determine the event reports that must be sent to a fixed destination

during specified time periods. For further description of EFDs, see [6]. Every event discriminator
contains a builder that indicates the characteristics that an event report must satisfy to be sent.
The management of event signalling provides to the management system with the necessary

94 X VI Simrosio BrasiLero pE REpiEs DE COMPUTADORES

mechanisms to communicate with other management systems and to carry out the initiation,
termination, suspension and resumption of event processes.

All the received events stored at the log database can be filtered. This filtering process expedites
the operator task. It can configure the system to receive only the critical alarms as well as
allowing an automatic preprocessing that improves the network performance of the data network
dedicated to send the required events to the user.

The proposed fault management architecture centralizes all management system functions. This
approach has the lacks and problems associated with centralized environments. However, the
simplicity of development and the low use of resources makes this approach an efficient front
distribution of the functionality in different operation systems, situation in which the
management system has only the information translation functions among the distributed
management modules.

3 Prototype Description

Based on the previous proposed architecture, our research laboratory has developed an Alarm
Management System (AMS). Its main goal is fault management in a heterogeneous open
framework where diverse platforms and management protocols coexist. AMS has a modular
architecture, where every module provides with easy access to the user thanks to a graphical
interface, hiding the details of the underlined platform. Alarms are presented in a X.733 standard
format according to the configuration designed by the network operator. Other functionalities
have been enabled: communications with other management systems, configuration of alarm
redirection, polling of equipments that do not have the capacity to generate spontaneous alarms,
efficient access to alarm registers in logs and specific equipment data in a relational database.
For AMS implementation, API of Solstice Enterprise Manager (SEM) platform (Sun
Microsystems Inc.) has been used.

Events

Reports

Figure 2 Event Report Management Model

The API provided by the SEM platform allows to use higher level functionalities that facilitate
the development of management applications.

Figure 3 describes the software architecture of the developed prototype. The development of
management applications over existing platforms expedites the implementation task. In our
particular case, the use of services provided by the Management Information Service (MIS) in
the SEM platform has provided to us with a communication infrastructure and fast prototyping of
an objett oriented high level application, completely integrated in the management system. This
platform has an Event Management Module (EMM) that facilitates a list of all the active EFDs of
the managed object represented in the Management Information Tree (MIT). The platform also
supports the storage in and access to a relational database by the Relational Database Logging
Daemon (RDL). Besides, the platform allows the interconnection of two or more MIS. This fact

XVI Smvirosio BRASILEIRO DE REDES DE COMPUTADORES 95

facilitates management and information distribution. These communications between managers
are transparent to management applications. The platform allows the integration of several types
of agents located at different hosts, building a multiprotocol management system, easy to
configure and able to incorporate pre-existing agents. In this case, the management system is
implemented as an application over the management platform.

Also a trap redirector module has been developed. This module can be executed over other
platforms with the objective of receiving and re-sending events to other managers. The received
events of a manager are forwarded, independently of the evidence of their arrival, to another
manager. This allows the management of other subdomains, depending on the different criteria
(timetable, geography, ...). This module is the first step to the metamanagement, the management
of managers.

The information shown to the user is based on the event information parameters compiled in the
X.733 recommendation. This information can be filtered according to different operator criteria.
In order to configure these filters, the updating of a database that provides feasible values in
every field is needed.

To other MIS

DB Mediation Device
Interface (adaptor)
+ + X.733 format
1
| -
1

]
DBMS | y MIS |
1
| CMIP shmp Ifg{:{
| [rep] |
| TCP |] RPC
LPP Lightweight g, Misaiad
Presentation Protocol ‘15 f
P
| |
| |
CMIP Notification SNMP trap

Figure3 Prototype software architecture.

Due to the great amount of fields in X.733 format and its little clear utility in some cases, the
alarm format is configured previously to the final presentation to the operator. The graphical
application displays a shining indication with variable colour per alarm, according to the severity.

96 X VI Stvrosio BrasiLeiro pe Repes pE COMPUTADORES

y de Trag

Intarmacién Adiclonal

ihL\N’!l A TRAP

Figure 4 Tool for designing alarms.

Passive equipments do not emit alarms and the definition of polling processes is necessary. The
design of a polling process consists of the definition of states in which the managed equipment
can be, the transition conditions between each state and the actions to be achieved when some
conditions are fulfilled. The management platform facilitates this design within an object-
oriented graphical tool that allows to define states and transitions. Besides, the AMS supports the

design of X.733 alarms generated in predetermined state changes. Figure 4 and Figure 5 describe
the graphical interface of these two tools. The polling tool is an application provided by the SEM
platform, while the alarm design tool has been developed from scratch, independently of the
SEM platform.

The mediation module is configured to avoid report events in X.733 format to local or remote
MIS. The management platform partially delegates the alarm handling to the management
system. This approach provides distributed fault management among the applications executed in
both platforms and the sharing of the management information located in both managers. The
management database access by a mediation device is made by an object-oriented DBMS
interface. This fact simplifies the storage and treatment of the management information. The use
of the information provided by this database allows an efficient network management by the
management system.

Although the database is centralized, the use of a distributed one in the future is foreseen.
However, the complexity associated to a distributed database framework can dissuade its use in
certain situations.

XVI Sivirosio BrasiLeiro pE REpes nE COMPUTADORES 97

Figure § Tool for designing polling process.

4 SCADA/Operation environment

In this environment there are three main functional areas : SCADA, Operation and BDI. The

standard architecture is showed in Figure 6. SCADA performs real-time remote monitoring and
remote control on transformer substations and stations (high, medium and low voltage), enabling
real-time control of the electricity network. The use of SCADA for operating elements of the
network (remote control) and taking readings at a distance (remote measuring) is very extended.
Most of the applications running on this environment are proprietary and running on SunOS
4.1.3, though at the moment systems are being migrated to Sun Solaris 2.5. This matter makes
development more complex, forcing us to implement a OS-independent management application.
SCADA environment consist of several machines. First of all, there is one administrator that
supports most of the system workload. Because of the significance of its operations, there is also
a second administrator, the spare one, which is in standby mode waiting for severe problems in
the main administrator. At this moment, the spare/backup machine replace the bad-functioned
one, maintaining the system with no problems in a transparent way to the users.

To obtain all kind of information from power stations, there are several types of machines :
communicators, gateways and CUs (Control Units). Communicators gather information from
high voltage stations whereas gateways and CUs gather information from medium and low
voltage stations. Gateways and CUs coexist in SCADA environments, but they does not work at
the same time. Environments with functional gateways don‘t have CUs, and environments with
functional CUs have gateways, but their functions are disabled. Nowadays, the power utility is
replacing CUs with gateways. Meanwhile, both classes of computers coexist, complicating
management issues. Both communicators and gateways are replicated because of matters of fault
tolerance. Usually, there is a machine in PC state, that is, running with no problems to appear in

98 X VI Sivirosio BrasiLeiro pE REDEs pE COMPUTADORES

the operating communicator or gateway. The other one is in SB (standby) state, waiting for
possible problems. If the operating machine has problems and reaches NC (inoperative) state, the
backup one starts running automatically. Sometimes, this switching has to be made by hand.
Another functional area is Operation, a distributed environment on UNIX platforms. In
Operation area we have a GIS (Geographic Information System) running. GIS support the
applications requiring integrated handling of graphic and alphanumeric data. The exchange
information between SCADA and Operation environments are made through the interface
machine placed on SCADA. Operation environment has a client-server architecture, through the
incorporation of RPC technology for all queries. Its architecture consists of one server and two
client machines. Operation area also has an active connection with a mainframe host through a
SNA network. This connection and its respective emulation causes frequent problems too.

All graphical applications from both environments are displayed on two MMIs (Man Machine
Interface). These applications also have several bugs, and because of this, faults in applications
running on a MMI can alter the good performance of the other MMI.

The third functional area, BDI, is a facilities data base, containing several levels of alphanumeric,
graphically integrated and organized information, which can be interrelated. BDI is out of the
scope of this project and it will be probably included in following phases.

All these areas (SCADA, Operation and BDI) are called Distribution Handling Center. This

structure, shown in Figure 6, is replicated in each of the company‘s seven distribution areas,
verying only in the number of operating machines.

DHC “" High Voltage "'" Medium-Low Voltage Station

Spare Administrator Comm. l Cnmm 2 ﬁwyl Giwy 2 CL

o —— —— C— S A Gemuy S ey

SNA Network

9 Management Station |
v l Current

i e e e e i < e Dl s A S g) e S | i 4 Management

Figure 6 Technical Architecture : SCADA-Operation generic environment

The current modus operandi is that MMI s operators phone to USS (User Support System) when
problems appear. The USS operator has a manual of procedures with sequences of actions to
solve different faults. This fact results in severe lacks of effciency and late recover from faults. It
is very usual that faults which occur in one MMI have efects on the other MMI, hence the
operator has to investigate the alarm cause, checking by hand both MMIs. So it can be said that
there is no real current management system for this environment.

5 Alarm MIB

So as to completely manage our SCADA-Operation environment, we have made good use of

XVI Stvposio BrRAaSILEIRO DE Repes pE COMPUTADORES 99

several ITU-T Recommendations about alarm reporting function. First of all, we are going to
explain the general structure of the MIB and then we will explain several tables from this MIB in
detail.

We have a table containing all machines running on our work environment. This system has
exactly the structure shown in Figure 6, except for old management schema, which has been
currently eliminated. Also we have defined several tables with all type of parameters to be
monitored. For example, there are tables related to OS parameters or processes running on
different machines. Finally, we have several tables with detailed information about all type of
alarms which have been generated in our system.

Our first table concerns to all machines running on the testbed. An entry from this table has the

following structure :
PuEntityEntry ::= SEQUENCE {

puEntitylndex INTEGER,
puEntityOS DisplayString,
puEntityMachineType MachineType,
puEntityDHC DisplayString,
puEntityStatus MachineStatus,
puEntityScadaStatus SCADA Status,
puEntityLastInitialisation TimeStamp,
puEntitylpAddress IpAddress,
puEntityAgentPort INTEGER

}

Besides, some information about operating system, we also contemplate attributes like machine
type (Operation Server, Operation Client, SCADA Administrator, SCADA MMI, ...), the DHC
the machine belongs to, status of this machine (managed or not managed, because some
machines are temporarily separated from production systems to a development system so as to be
checked when problems arised), SCADA status (running, standby, not running) and port where
the management agent is listening to.

Next, we will explain more tables related to general parameters being managed. First of all we
describe tables concerning to processes which must be running on the machine so as to ensure
that applications are OK. There are two main tables. The former includes all general processes
with high significance in our environment, indicating attributes like number of each process that
have to be running or type of machine where this process runs. The latter table refers to specific
processes running on each testbed machine. We identify attributes like number of current
processes, number of PID variation of these processes and current alarm status.

PuGeneralProcessEntry ::= SEQUENCE {

puGeneralProcessIndex INTEGER,
puGeneralProcessName DisplayString,
puGeneralProcessDescription DisplayString,
puGeneralProcessNumber INTEGER,
puGeneralProcessMachineType MachineType

}

PuSpecificProcessEntry ::= SEQUENCE {

puSpecificProcessEntityIndex INTEGER,
puSpecificProcessProcessIndex INTEGER,
puSpecificProcessNumber INTEGER,
puSpecificProcessPIDVariation INTEGER,
puSpecificProcessAlarmStatus AlarmStatus

}

We manage PID variation of processes, because a few of them have their own vigilant, which
reinitialises the process when it fails. If there is a severe problem, this process could be

100 X VI Snaposio BrasieirRo peE Repes pE COMPUTADORES

continuously up and down. So when a process reinitialises a few times, the system rises an alarm
to the AMS.
The next tables have information related to OS parameters. There is an important correlation
between bad-functioned applications and these parameters. For example, though an application is
running, its bad functioning can be detected due to the existence of several zombie processes.
Also, when SCADA resumpts, the affected machine has a great CPU load. OS parameters the
agents monitor are the following : number of free memory pages, page in, page out, CPU Load,
number of zombie processes and so on.
PuGeneralParameterEntry ::= SEQUENCE {
puGeneralParameterParamIndex INTEGER,
puGeneralParameterDescription DisplayString,
puGeneralParameterUpperBoundary INTEGER,
puGeneralParameterLowerBoundary INTEGER
)

PuSpecificParameterEntry ::= SEQUENCE {
puSpecificParameterEntityIndex INTEGER,
puSpecificParameterParamIndex INTEGER,
puSpecificParameterValue INTEGER,
puSpecificParameterStatus AlarmStatus
J
The former table have general parameters to be taken into account. This table defines both upper
and lower boundaries for alarm ranges. Specific parameters are defined in the latter table. For
each specific parameter we store current value and alarm status.
The most important table is the one concerning to alarm information. To develop this table, we
have compiled information from X.733 [5] and X.736 [10] ITU-T Recommendations. In this
table. information from SNMP traps and proprietary alarms are completed with additional value
stored in DBs. There are two attributes which identify the alarm in the table, peErrorEntitylndex
(concerning to the machine where the alarm arised) and peErrorindex (an unique identifier for
this alarm in the aforementioned machine). In addition to this, we have two attributes to identify
neither the process nor the OS parameter affected by the fault.
PuErrorsEntry ::= SEQUENCE |{

puErrorsEntitylndex INTEGER,
puErrorsindex INTEGER,
puErrorsProcess INTEGER,
puErrorsParameter INTEGER,
puErrorsEventType EventType,
puErrorsEventTime TimeTicks,
puErrorsProbableCause ProbableCause,
puErrorsSpecificProblems SpecificProblems,
puErrorsPerceivedSecurity PerceivedSecurity,
puErrorsBackUpStatus BOOLEAN,
puErrorsBackUpObject OBJECT IDENTIFIER,
puErrorsTrendIndication TrendIndication,
puErrorsActivatedThresHold INTEGER,
puErrorsThresHoldLevel Value INTEGER,
puErrorsThresHoldLevelHysteresis INTEGER,
puErrorsThresHoldMeasured Value INTEGER,
puErrorsThresHoldReactivating TimeStamp TimeTicks,
puErrorsNotificationldentifier DisplayString,
puErrorsStateChangeDefinition DisplayString,

puErrorsAdditional Text DisplayString,

X VI Sivrosio BRasteeiro peE Repes pE COMPUTADORES

101

puErrorsAdditionalInformation

DisplayString,

puErrorsCurrentTime TimeTicks,
puErrorsEventReply DisplayString,
puErrorsError DisplayString
}

From X.733 we got most of attributes of the table. We have completed several definitions like
probable cause or event type with data from security alarm reporting function, X.736 [10].
Among the stored information, this table provide to us with data like:

. Event Type : Categorizes the alarm.

. Probable Cause : Defines further qualification as to the probable cause of
the alarm.

. Specific Problems : Identifies further refinements to the Probable cause of
the alarm.

. Perceived Severity : Provides an indication of how it is perceived that the

capability of the managed object has been affected.

. Trend Indication : Specifies the current severity trend of the managed ob-
ject.

We can also obtain information about correlated notifications and repair actions from additional
tables as shown next. The former table is defined to be the set of all notifications to which one
notification is considered to be correlated. The latter is used if the cause is known and the system
being managed can suggest one or more solutions,

puErrorsNotificationsEntry ::= SEQUENCE {

puErrorsNotificationsEntityIndex INTEGER,
puErrorsNotificationsAlarmIndex INTEGER,
puErrorsNotificationsIndex INTEGER,

puErrorsNotificationsCorrelatedNotification DisplayString

puErrorsActionsEntry ::= SEQUENCE {

puErrorsActionsEntityIndex INTEGER,
puErrorsActionsAlarmIndex INTEGER,
puErrorsActionsIndex INTEGER,

puErrorsActionsProposedRepairAction OBJECT IDENTIFIER

}
With such a design, we are able to provide alarm reports with a standardized style, using a
common set of notification types, with standarized parameters and parameter definitions,
independent of particular managed objects.

6 Integration of AMS and SCADA-Operation Services

At this point we are going to explain our testbed and how it was integrated with several AMS.

The testbed, shown in Figure 7, consisted of a reduced environment, formed by SCADA
administrator, SCADA interface, Operation server and Operation client. The last one is acting as
a gateway with the host. There is also a MMI in SCADA environment. All the applications are
displayed onto the screen of this machine. In this testbed, the most significance elements of the
real environment are represented.

Each one of these machines have an agent running. There are CMIP and SNMP agents which
send CMIP events and SNMP traps respectively. All the alarms generated by these agents are

102 X VI Sivrosio Brasibeiro DE REDES DE COMPUTADORES

forwarded in X.733 format after their information contents have been completed and processed
making use of the data maintained in the repository of the AMS. This conversion is made by the

ICF (see section 2).

Administrator Interface

SNMP A;mlg

| ———» SNMP Traps |

e - [- — 9 CMIPEvents |
] :
W s PO

. SNMP Agent MIS o MIS
Operation I ! Laghcy Network communication
Server Client e ceme—e————eee AMS?2
SNA Network -

CMIP Agent CMIP Agent HOST * 4

Figure 7 Testbed for integrating AMS with SCADA-Operation Services

There are two MIS, one of them (AMS1) with a RDBMS, storing information about generated
alarms. The two MIS exchange information about received alarms. The first one, AMSI, stores
information related to alarms arisen in SCADA environment. Meanwhile, AMS2 stores
information related to alarms arisen in Operation environment. The actual configuration makes
one MIS to be in charge of SCADA and Operation alarms. The reason for this choice has been
the correlation between the alarms in both environments within this project. Currently we have
only taken into account correlation between OS parameters and SCADA or Operation status. An
alarm redirector module has been installed in another management platform that provides
metamanagement facilities. When the secondary platform receives an event, it is configured to
re-send the received event to the primary platform.

When the prototype is installed in a real environment, there will be three AMS. These AMSs will
manage two, two and three DHC respectively, taken into account the significance and size of the
DHC.

AMS in receives all SNMP traps from SCADA environment, which includes the MMI machine.
On the other side, AMS receives all CMIP events from Operation. We have configured AMS 1 to
redirect received traps to AMS with the trap redirector module.

In this integration, AMS supports alarms from SCADA machines which have been isolated from
production environment and incorporated to a development environment. This type of machines
usually has SCADA applications in inoperative state. That‘s the reason why these alarms are
disabled. Also alarms from SCADA gateways in SCADA environments where there are UCSs
active are disabled.

So as to complete our testbed, we have designed a graphical sender of SNMP traps which allows
us to test our management system in extreme situations, with AMS supporting lots of SNMP
traps proceeding from SCADA environments.

6.1 Example of SCADA alarm

Now we will see an example of how alarm information is completed with aditional data
mainteined by the AMS. The AMS has stored relatively static information like the backup status

XVI Simposio BrasiLeiRO bE REDES DE COMPUTADORES 103

of the managed objects and probable causes related with specific problems.
Let‘s assume that we have a DHC called “CMD-Castilla”, This DHC has an SCADA MM]I, and
its related entry at the puEntityTable has the following data :

puEntityIndex 190

puEntityOS “Sun Solaris 2.5"
puEntityMachineType operationServer
puEntityDHC “CMD-Castilla”
puEntityStatus MANAGED
puEntityScadaStatus NC
puEntityLastInitialisation 4326149
puEntitylpAddress “193.144.50.11"
puEntityAgentPort 2010

The operation server is continuously checking the state of the SCADA application. When the test
fails, the SNMP agent located at the server raises an alarm to the AMS. The only information the
server receives is the machine that has generated the notification (in case of Operation machines,

it will be a notification, see Figure 7),

puErrorsEntity [ndex 190
puErrorsIndex 1902
puErrorsEventTime 4782934

puErrorsSpecificProblems enterprisesSpecific

By the specific-trap field attached to the trap PDU, we can distinguish the kind of alarm it arised.
In that way, the AMS can query its database and fill the rest of empty fields in the alarm MIB.
When SCADA applications are not detected, this could be symptom of several faults. The most
frequent one is a fault in the own SCADA application. Also the windows system crashes from
time to time, but when this fact occurs, the machine blocks, so no trap would be provided by the
SNMP agent. When SCADA applications crash at the MMI, this could be cause the momentary
stop of SCADA applications at the rest of SCADA machines in the same DHC. This issue helps
us to detect a first-level alarm correlation.

The information that will be filled by the AMS through the database will be the following :

puErrorsEventType processingErrorAlarm
puErrorsProbableCause softwareError
puErrorsSpecificProblems enterprisesSpecific
puErrorsPerceivedSecurity CRITICAL
puErrorsBackUpStatus FALSE
puErrorsTrend[ndication MORESEVERE
puErrorsAdditional Text “Crash of SCADA system”

The MIBs relating to correlated notifications and repair actions will be filled in with several data
too. In the correlated notifications MIB will be included all the SCADA alarms raised at the same
time by machines joining the same DHC. In the proposed repair actions MIB, the first entry will
suggest the following processes : restart of SCADA applications, restart of windows system
(which also includes restart of SCADA applications) and warning to the system operators.

7 Conclussions and future work

SNMP products have a great market share. Despite this, CMIP technology is increasing its
significance in the world of management. Both protocols coexist, and its integration is a vital
point in the current developments. This situation gets more complex because of the existence of
proprietary protocols in great legacy networks like power utilities.

104 XVI Sivrosio BRasiLEIRO DE REDES DE COMPUTADORES

Our development proposes an integration of all these management protocols through a system
which allows the enrichment of the information by accesing to repositories of data, with
techniques of DBMS. With this scheme, we can manage events, traps and proprietary alarms
through a single management system. The system is flexible enough to allow distributed
management with filtering and redirection functions of all these multiprotocol alarms.

Applying this schema to alarm management in problematic environments like SCADA, which
have a great amount of faults, we have obtained a single way to handle all alarms and distribute
its treatment among several management systems, increasing the performance to take recovery
actions.

Our system can be integrated in TMN management, allowing to include SNMP in current
telecommunications management platforms which have neglected this protocol a lot.

New areas of research have been defined to improve the AMS. Nowadays, AMS only supports
one-level alarm correlation. Besides, all the achieved management is developed around network-
element level. Taking ideas and concepts from TMN standards, we are trying to design a more
object-oriented model, focussing our efforts in CMIP management, and extending the
management to network level studies.

Another research field is the distribution of functions of the AMS among several modules,
avoiding problems inherent to metamanagement, like the filtering of alarms at the manager. We
are working on intelligent agents which perform filtering and scoping, decreasing the tasks of the
manager and improving its performance.

8 References

[1] ITU-T M.3010, Principles for a Telecommunications Management Network,
1992.

[2] ITU-T X.710. ISO/IEC 9595, Information Technology - Open Systems Inter-
connection - Common Management Information Service - Part 1: Specifica-
tion, (CMIS), 1990.

[3] ITU-T X.711. ISO/EC 9596-1, Information Technology - Open Systems
Interconnection - Common Management Information Protocol - Part 1: Spec-
ification, (CMIP), 1990.

[4] ITU-T X.721. ISO/IEC 10165-2, information Technology - Open Systems
Interconnection - Structure of Management Information - Part 1: Manage-
ment Information Model, 1991.

[5] ITU-T X.733. ISO/IEC 10164-4, Information Technology - Open Systems
Interconnection - Systems Management - Part 4: Alarm Reporting Function,

1992.

[6] ITU-T X.734. ISO/IEC 10164-5, Information Technology - Open Systems
Interconnection - Systems Management - Part 5: Event Reporting Manage-
ment Function, 1992.

[7] Jakobson G. and Weissman M.D., Alarm Correlation, IEEE Network, pp. 52-
59, November 1993.

[81 RFEC 1157, Case, J et. al., A Simple Network Management Protocol, 1990

[9] Muiioz, ., Cameiro, V.M, Integrating SNMP and CMIP Alarm Processing in
a TMN Management Environment, IFIP97, Italy, 1997.

XVI Sivirosio BrasiLEIRO DE REDES DE COMPUTADORES 102

[10] ITU-T X.736. ISO/IEC 10164-7, Information Technology - Open Systems
Interconnection - Systems Management; Security Alarm Reporting Function,
1992.

