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Abstract

This paper demonstrates the need for garbage collection in multiple tuple space dis-
tributed open systems, which has LINDA as @ major icon, and identifies problems involved
in incorporating garbage collection into such systems. We concern ourselves with open im-
plementations as the existence of a garbage collector is essential in this environment.

The eztension of LINDA to include multiple tuple spaces has introduced this new problem
as processes are now able to create tuple spaces, spawn other processes into these tuple
spaces, and store tuples (data) into these tuple spaces, but are unable to delete any of the
objects (tuples, tuple spaces and processes) or even decide about their usefulness.

In this paper we begin by showing that the main problem in introducing garbage collection
into LINDA is the lack of sufficient information about the effectiveness of LINDA objects.
We then describe techniques for maintaining a structure to be used by a garbage collection
algorithm of tuple spaces.

Sumirio

Este artigo demonstra tanto a necessidade de um algoritmo de “coleta de lizo”™ em sis-
temas abertos distribuidos baseados na eztensio do modelo LINDA para mudltiplos espacos
de tuplas quanto os problemas existentes em soluciond-lo. Nossa atengdo € voltada princi-
palmente para sistemas abertos, jd que nesses sistemas a existéncia de um algoritmo para
coleta de livo € mandatdria.

A extensdo do modelo LINDA com a inclusio de miiltiplos espagos de tuplas introduziu
este novo problema. Este modelo extendido possibilita que processos criem espagos de tuplas,
disparem outros processos ¢ armazenem tuplas dentro desses espagos de tuplas, mas no
entanto ndo prové meios de se deletar objetos (tuplas, espagos de tuplas e processos) ou de
ajudar na decisdo de sua utilidade dentro sistema.

Neste artigo nds demonstramos que o principal problema em se incluir um algoritmo
de coleta de liro em implementacées do modelo LINDA € a inexisténcia de informagdo so-
bre a utilidede de scus objetos. Sendo assim, descrevemos téenicas para a manutengio da
informagao requerida por qualquer algoritmo de coleta de espagos de tuplas em LINDA.

“Research supported by Fundagio Coodenagio de Aperfeicoamento de Pessoal de Nivel Superior (CAPES),
under grant 1383/95-8.
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1 Introduction

Open systems are defined as those in which processes (or active objects) can join and leave
the system at any time. More accurately, in open systems the active objects do not need to
be defined before run-time. Implementations of open distributed systems need to address the
problems of resource management, in particular garbage collection, in order to be of practi-
cal use. The creation of garbage, is correlated with the amount of time that a system runs.
Failures due to memory exhaustion are more frequent in long-running systems. Applications
for open systems are, in general, intended to have a longer running time than those for closed
systems which may not need garbage collection since optimisations can often be done in order
to guarantee an execution without memory exhaustion.

Recent research has shown that the overall performance of LINDA open systems can compete
and in some cases beat the overall performance of LINDA closed systems [Row96]. In other terms,
this shows that open systems have the potential to replace closed systems assuming the main
role in the LINDA world. However, they must provide some level of memory recycling, to avoid
exhaustion, so as to take this role.

Several open implementations of the LINDA coordination model have been proposed [Jen89,
NS93, CSS94, ADFS94, DWR95, RW96a, Row96], but most of them have overlooked the prob-
lems related to garbage collection which may occur when open models are assumed. Those
which have not, [Jen89, NS93|, restrict themselves in talking about the need for a garbage
collector.! Although these implementations suffer from this problem they have not yet shown
the symptoms because they have not been used in large scale applications.

This paper focuses on the garbage collection of tuple spaces, but as processes are spawned
within tuple spaces, we show that processes can sometimes be garbage collected as well. In
multiple tuple space LINDA implementations, once a tuple space is created it is potentially
available to all processes. Furthermore, since these implementations do not provide information
about which process requires which tuple space, the proper implementation cannot use simple
rules like scopes to delete them. A garbage collector is therefere made necessary in order to
decide on an object’s status (garbage or not) by looking at its situation in the entire system.

In this paper we show that the main problem of doing garbage collection in open LINDA
implementations is that the available information about their objects is insufficient. We show
how to maintain a structure with all necessary information for a garbage collection algorithm
and the problems involved in such maintenance. We also propose a simple possible solution
based on this structure.

We do not intend to show a novel method of doing garbage collection. Our main goal is
to clarify the need for a garbage collector, and show how to solve the problems involved in
maintaining a structure with the information required by any garbage collector. The structure
we maintain uses a new idea of bridges (directed arcs) to avoid some of the race-condition
situations.

We begin this paper by describing the multiple tuple space LINDA coordination model and
the idea of garbage collection, respectively in sections 2 and 3. In Section 4 we show how the
information necessary for the garbage collection is maintained. In Section 5 we define the out-

'Kaashoek et Al. [KBT89], in their case study, have also pointed out the need for a garbage collector in
“ garbag
INDA.
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termination problem and show why it must be solved. Then, in Section 6 we sketch a simple
solution for garbage collection based on the proposed structure. In Section 7 we make some
final remarks and give our conclusions.

2 The LINDA Coordination Model

A coordination language is an embedding of a coordination model which provides operations
to create processes and to support communication among them [GC92].

A LINDA-based coordination language is an embedding of the LINDA coordination model
into some computational language, enabling the embeddings to coordinate tasks. The LINDA
coordination model [Gel85]. which is based on the concept of tuple space communication, unifies
the concept of process creation, communication and synchronisation, since all these concepts
are implemented using tuple space operations.

The tuple space communication model consists of associative shared memories (tuple spaces)
which are able to store fuples. Processes can store and retrieve tuples from tuple spaces.
but are unable to communicate with each other directly. The retrieving of tuples uses an
associative matching mechanism based on templates (anti-tuples) which, like tuples. are ordered
sequences of typed objects. The templates differ from the tuples because fields can be non-
valued (holes) represented by ?type or ?typed-variable. For instance the template [?int,
"Hello"] matches the tuple [1, "Hello"].

A tuple space is an abstraction of a shared memory. We must see tuple spaces as bags or
multi-sets of tuples, where each tuple does not know anything about the existence of the others.

The multiple tuple space LINDA model [Gel89] is an evolution of the single tuple space
model in which processes have access to a unique tuple space representing the whole associative
memory [Gel85]. In the multiple tuple space model, the associative memory is composed of a
set of tuple spaces which can be created by processes in order to store data.

The model provides primitives to store. read and withdraw tuples from tuple spaces, to
create tuple spaces and to spawn processes:

out (TSm, tuple): Stores the tuple within the tuple space TSm.

in(TSm, template): Withdraws a tuple from the tuple space TSm which matches the template.
If there is more than one tuple which matches the template one is chosen non-deterministi-
cally, but if there is no such a tuple the process is blocked waiting for one.

rd(TSm, template): Same as in but non-destructive, that is, the tuple is copied as opposed to
withdrawn.

inp (TSm, template): Non-blocking version of the in. If there is not a tuple to match the
template the primitive returns false and the process carries on.

rdp (TSm, template): Same as inp but non-destructive.

n = collect(TSm,TSq, template): Bulk primitive which moves all tuples matching the template

from the tuple space T'Sm to the tuple space TSq and assigns to n the number of tuples
moved [BWA94].
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n = copy-collect (TSm,TSq, template): Bulk primitive which copies all tuples matching the
template from the tuple space TSm to the tuple space TSq and assigns to n the number
of tuples copied [RW96b].

eval (TSm, tuple): The LINDA way of spawning processes. Processes are created to evaluate
the elements of the tuple in parallel.

handle = tsc(): Creates a new local tuple space and assigns a unique handle.

Although we are considering some primitives not present in all LINDA implementations, the
work described in this paper applies to the LINDA coordination model in general and does not
consider any particular implementation.

In Figure 1 we define a boundary between LINDA and the system. This boundary is intended
to separate, from the users’ point of view, what is LINDA and what is not. The view is that
LINDA processes (represented by squares) can only operate with tuple spaces (represented by
ovals). We define a special tuple space called I/0 which is the tuple space destination of every
I/O operation so as to make this separation complete. After the data is stored within the I/0
tuple space, some system process (represented by circles), which would be part of the LINDA
kernel, have to retrieve the data and output to the correct device. Another special tuple space
in our model is the Universal Tuple Space (UTS) which is the tuple space within which the main
processes are spawned. Besides UTS and the I/0 tuple spaces, no other LINDA cbject can be
linked to the boundary.

LT TTTT ot

BOUNDARY

USERS
ENVIRONMENT

Figure 1: Boundary of the LINDA model.

Every LINDA implementation assumes different characteristics, in this paper we assume
implementations having the following main characteristics:
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There is a UTS.2
¢ 1/0 operations are done solely in terms of tuple space operations.
e Tuple spaces are not first-class objects, although handles (references to tuple spaces) are.

e Every tuple space is created at the same level, that is. tuple spaces cannot be created
inside others.

o Every process may operate with the tuple space which contains it, that is, the tuple space
specified in the eval operation which was used to spawn the process.

e The main processes, those spawned by an external entity, are assumed to be spawned
within UTS.

e We consider two different concepts in this paper in terms of accessibility of the UTS and
I/0 tuple spaces by processes:

1st case: Every process has access to both of them.

2nd case: In principle only the main processes have access to them, although their handle
can be passed to other processes.

From the characteristics itemised above, the only one that is not present in any LINDA
implementation yet is the one saying that I/O is done solely in terms of tuple space operations.
However, most of the LINDA implementations are more restrictive than this forbidding all the
processes, except the main ones, to do I/O. Still we believe that I/O must be incorporated into
LINDA implementations [MW97].

3 Garbage Collection

In distributed systems, storage management should not be left to be dealt with by users. In
distributed environments (including LINDA), users are unable to know whether a memory cell
is being used by others in the system. As a matter of fact, if the task of reclaiming cell was left
to users, the creation of dangling references [JL96] would be common.

Garbage collection is the process of searching and reclaiming unused memory objects au-
tomatically. These two operations (search and reclaim) are often executed in separate phases.
The search phase can be considered the core of garbage collection since there is nothing special
in making unused space available again.

Garbage collection algorithms are based on a fracing graph representing the memory. By
performing a traversal of the graph or analysing its cells (memory locations) it is possible to
decide on their usefulness.

Generally speaking, there are three basic ideas for searching for garbage:

Mark-and-Sweep: A search is performed in the graph starting from special nodes (roots). A
node is still useful if it is reachable from the roots but garbage otherwise [McC60].

*Some implementations call it Global Tuple Space (GTS).
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Reference Counting: Each cell has a count of the number of nodes pointing to it, conse-
quently every cell with counter 0 (zero) is garbage [Col60].

Reference Listing: Each cell has a list of cells pointing to it. If a cell’s list is empty, it is
garbage [SDP92].

As we said before, all garbage collection ideas are based on either a data structure, or on
counting/listing the references for a cell. However, LINDA provides neither a data structure of
its tuple spaces nor references to them.

We shall not go into the details of these searching algorithms for it should be clear that our
problem is to maintain the necessary information to be used by a searching algorithm and not
to choose a suitable searching algorithm for LINDA. For good surveys on garbage collection see
[Coh81, PS94, Wil94, JLI6).

4 Supporting Garbage Collection Within Linda

The goal of this section is to describe how we intend to maintain in LINDA the information
required by any garbage collector. Existing LINDA implementations do not provide any infor-
mation that can be directly used by a garbage collector. Thus, we propose a way to maintain
a data structure (a graph) with all information necessary to a garbage collector.

In Section 2 we described how every LINDA process is (implicitly) linked to a tuple space
since LINDA’s way of spawning processes requires such a link. Additionally, we know that every
tuple space, except UTS and I/0 which represent the boundary of the model (Figure 1), has to
be created by a process.

These two characteristics will be used to construct one graph representing processes and
tuple spaces where, in principle, processes are linked only to tuple spaces and vice-versa (al-
though this will be modified by the introduction of bridges in Section 4.1). The idea behind
the graph is that the tuple spaces linked to a process Pn represent those to which Pn has access;
and the processes linked to a tuple space TSm represent those with knowledge of TSm. This
graph structure follows the common tracing graph concept as used in most garbage collection
methods: every object unable to reach the boundary by following its links is garbage. Since the
only objects linked to the boundary are UTS and I/0 we can say that every object unreachable
from both UTS and I/0 is garbage.

The structure maintains the invariant that once an object is unreachable it cannot become
reachable again, in other words, once an object becomes garbage it cannot became useful again.
This invariant guarantees that no erroneous collection occurs.

Although in this paper performance issues are not being considered, one can argue about
where such graph is supposed to be stored. For now we can assume that such structure can
be maintained in the LINDA kernel, but it should be clear that this assumption should be
revisited when implementing a solution since there are other possibilities including even having
this structure stored inside a tuple space.
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4,1 The Basic Structure

As we said in Section 2, we consider in this paper two different cases of LINDA models with
different concepts. Despite the differences, we can describe rules for constructing the graph
structure that apply for both cases:

There are two nodes representing the UTS and the I/0 tuple spaces.
All main processes are linked to both UTS and I/0 nodes.

There is a unique node representing each tuple space.

e O - U

. There is a unique node representing each process.

!'..ﬂ

A process has to be linked to every tuple space of its knowledge. A process can acquire
knowledge of a tuple space in different ways:

e When it is spawned into one. Every process knows about the tuple space it is
spawned into.

e When it creates a tuple space.
e When it receives a handle as a parameter when it is spawned.
e When it retrieves a handle (as an element of a tuple) from a tuple space.

6. A tuple space has to be linked to another directly using a direct arc (bridge) if the handle
of one is stored in the other.

The direction of the bridges will depend on the strength of the class of the tuple spaces
involved in the storing. For our purposes there are two classes of tuple spaces:

Strong class: Composed of UTS and I/0 only.

Weak class: Composed of all the other tuple spaces.

In the following sections we explain in detail each of the points of graph construction, and
how the classification above may be used to define the direction of the bridges.

4.2 Main Processes

In both models considered in this paper, the main processes have to be linked to both UTS
and I/0 nodes. The link to the UTS node represents the assumption that every main process
is spawned into UTS; and the link to the I/0 node represents the assumption that at least the
main processes are able to do I/O.

Figure 2 shows the graph situation when two main processes are running in a LINDA envi-
ronment. The part just added in the graph is showed in dashed lines.

The processes’ unique names assigned to the nodes are given by the kernel when the processes
register themselves. The LINDA kernel must have knowledge of all processes in the system and
this is achieved by having a process registration scheme that occurs just before a process starts
to run.
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Figure 2: Two main processes, P1 and P2, running in a LINDA environment.

4.3 Creation of Tuple Spaces

As described in Section 4.1, every creator process has knowledge of its created tuple spaces; or
in other words, every tuple space is liked to its creator. Figure 3 shows the graph situation just
after the creation of two tuple spaces by process P1 and one tuple space by process P2 (starting
from Figure 2).

— - -

el . - ¢ ~
(TSI ) TS2) 1830
s = - = i

e = -

Figure 3: Creation of tuple spaces. A tuple space has to be linked to its creator.

Similarly to the processes case, the tuple spaces’ unique names are given by the kernel upon
the creation of them. However in this case, the users are aware of these names for they are
tuple space handles.

4.4 Spawning of Processes

The LINDA model provides a primitive (eval) to spawn processes. In the graph, spawned
processes must be represented individually since the garbage collection has to decide on the
usefulness of a process individually.

In the multiple tuple space model, the spawning of processes requires a containing tuple
space to be defined in the primitive. Again, as explained in Section 4.1, every process knows
about its containing tuple space and therefore they are linked in the graph.

Suppose that starting from the situation in Figure 3, process P1 spawns processes P3 and P4
into TS1 and UTS respectively, and process P2 spawns process P5 into TS3. Figure 4(a) shows
the situation considering the 1st case in terms of accessibility to UTS and I/0 and Figure 4(5)
considering the 2nd (as defined in Section 4.1).

From now on the differences of the two cases start to appear in the graph since processes
other than main processes are being represented.
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(a) 1st case (b) 2nd case

Figure 4: Spawning of processes with different assumptions in terms of accessibility to UTS and
I/0 tuple spaces.

4.5 Further Ways of Processes to Acquire Information

In addition to the creation of tuple spaces and the spawning operations. there are two other
ways a process can acquire information about a tuple space as enumerated in Section 4.1. The
next two sections give more details about these operations.

4.5.1 Passing Handles as Parameters

Tuple space handles are first-class objects and can therefore be passed as parameters. For
instance, suppose the description of a process F below:

void F (tsh my_ts)

{
int number;
in(my_ts, [?number]) ;
do_something();
number++;
out (my_ts, (number]);
}

The process above receives the handle my_ts as a parameter. Then when it is spawned it
starts knowing about the tuple space referred to by my-ts.

Depicting a similar situation, Figure 5 shows the graph. in both cases, when process P1
Spawns a process P3 into TSI passing the handle of TS2 and UTS (starting from the situation in
Figure 3). :

It should be noticed here that with the 2nd case, all spawned processes already know about
UTS and I/0, consequently passing the UTS handle does not alter the graph.
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(a) 1st case (b) 2nd case

Figure 5: Spawning of P3 into TS1 passing the handle of TS2 and UTS.

4.5.2 Passing Handles Through Tuple Spaces

Handles, like any other first-class object, may be stored within tuple spaces. Once a handle of
TSm is stored into a tuple space, it may be retrieved by another process which then becomes
able to access TSm. This makes it possible to pass information about local tuple spaces.

Starting again from the situation described in Figure 3 where process P1 has created two
local tuple spaces, it is perfectly possible to reach a situation where process P1 writes the handle
of TS2into UTS (executing for instance, out (UTS, [TS2])) and P2retrieves the information from
UTS (executing for instance, in(UTS, [?handle]), where handle is a variable of the type tsh)
becoming able to access TS2.

Assuming exactly the operations above, the situation just after P2 withdraws the handle of

TS2 from UTS is depicted in Figure 6.

Figure 6: Process P2 withdraws a handle and acquires knowledge of TS2.
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4.6 Constructing Bridges

Assuming the same operations described in section 4.5.2, if process P1 terminates before process
P2 gets the handle of TS2, any garbage collector could collect TS2 before the actual retrieving
of T52 by P2 as the graph would not represent the real situation.

Since LINDA implementations are asynchronous environments and the passing of handles
between processes through tuple spaces is not an indivisible operation. we cannot guarantee
race-condition free operations.

Therefore, in spite of what was described in the previous sections, it is still necessary to
make a further modification in the graph to avoid a race-condition between the garbage collector
and the algorithm that maintains the graph.

In the context of garbage collection if a handle of TSm is stored into a tuple space TSg we
have a dependency between these tuple spaces in the sense that TSm is only garbage if 7Sq is
garbage. To represent such a property in the graph we create a bridge linking these two tuple
spaces. This bridge is a direct arc and is called bridge because it shortcuts the original path(s)
between these tuple spaces.

A bridge has to be created following certain rules. Assuming that the handle of T'Smis being
stored into TSg, we have:

e If 7Sm and TSq are from different classes (as defined in Section 4.1) then the bridge is
always from the tuple space belonging to the stronger class to the one belonging to the
weaker. This means that every time that either UTS or I/0 is involved in the operation
of storing handles, the bridge is always outgoing from them.

e If 7Sm and TSq are from the same class, then the bridge goes from the containing tuple
space to the contained. This conveys the correct idea that every process with access to
tuple space TSgq has potential access to TSm, and therefore TSm cannot be collected unless
TSq becomes garbage.

Every bridge has an attribute that we will call width meaning the number of corresponding
handles stored in the containing tuple space. Every bridge is created having width 1 but may
become wider or narrower depending on the operation executed (storing or withdrawing). The
width of a bridge from TSmto TSgq is the number of handles of TSq stored into TSm.

Figure 7 shows the graph situation, starting from Figure 3, after all the following operations
with handles:

* A handle of TS2 is stored by process P1 into TS1. The bridge goes from TS1 to TS2since
they are from the same group.

e A handle of TS1 is stored by process P1 into UTS. The bridge goes from UTS to TS1 since
UTS is the stronger tuple space.

* A handle of UTS is stored by process P2 into TS3. The bridge goes from UTS to TS3 since
UTS is the stronger tuple space.

» Another handle of UTS is stored by process P2 into TS3. The bridge becomes wider; its
width goes to 2.
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Figure 7: Creating of bridges according to the strength of the tuple spaces.

4.7 Breaking Links

To complete our description we must show how arcs are deleted from the graph. First of all
let us consider the simplest case: deletion of undirected arcs. When a process terminates, its
representation in the graph is deleted together with all arcs with an end linked to it. Figure 8
shows in dotted lines everything deleted when process P1 terminates (starting from the situation
in Figure 6).

Figure 8: Process P1 terminates; its representation and the arcs linked to it are deleted.

As every tuple space has the potential of being a global object, tuple space TS1 in Figure 8
cannot be deleted by the process PI when it terminates because no process is able to decide on
the usefulness of a tuple space — this would have to be done by a garbage collector.

Having described the case above, the only point remaining now is the deletion of bridges. In
principle a bridge linking two tuple spaces has to remain while the dependency between these
two tuple spaces remains. Two cases have to be considered:

e A handle is withdrawn using the primitive in. If a process ins a handle, the bridge has
to become narrower. If its width becomes zero then the bridge disappears (it is deleted).

e More care is necessary when a collect isused as collect is a bulk primitive. Consider the
tuples which match the template when a collect is executed. It is clear that each one of
these tuples would match the same template if it were used with an in primitive. Hence,
for the purpose of updating the bridge’s width, we could view collect as a sequence
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of ins in the source tuple space followed by a sequence of outs to the destination tuple
space.® One important characteristic is that we assume that the primitive collect is
indivisible and therefore it is not possible for a tuple space to be garbage collected in the
middle of a collect execution.

Observe that in both cases above if an in is executed in a tuple space TSm we have only to
look at the outgoing bridges of T'Sm and only one incoming bridge (if there is such a bridge)
which represents the storing of UTS handles into TSm.

Starting from the situation shown in Figure 7, Figure 9(a) shows a very simple case where
process P2 ins the handle of 7S1 from UTS and Figure 9(5) shows the result of an execution of a
collect by the process P1 from TSI to TS2. Observe that the collect execution generated in
Figure 9(b) a self-bridge in the tuple space TS2. This self-bridge can be deleted by the garbage
collector or even not created since it is clear that every tuple space has an implicit bridge to
itself.

(a) Process P2 executed in(UTS, [?tsh]) and (b) Process P2 executed
got 751 collect(TS1,T52, [?tsh])

Figure 9: Modification in the bridges.

5 The out-termination Problem

In the context of garbage collection, the termination® of processes plays the principal role since
this is the only way of generating garbage. One of the main requirements of our proposed
garbage collection method is what we call out-termination ordering. The problem here is to
guarantee the two basic properties below:

e The LINDA kernel is aware of processes’ termination. We are not considering how this
can be done but it must be clear that it is possible. For instance, a new primitive could

“We can make a corresponding assumption with copy-collect.
*Because the term termination can mean different things we should make clear that the termination occurs
after the last instruction of a process — we are not considering external intervention.
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be introduced or the language where the LINDA is embodied could inform the kernel. In
either case, we assume that a termination message is sent to the kernel.

e The termination message and the instructions out, collect, copy-collect and eval
have to be delivered to the kernel in the order in which they occured. This may be
guaranteed in a similar way as done by Douglas et Al. [DWR95] when describing the
out-ordering problem.

Despite being named out-termination, the out primitive is not the only one affected by this
problem, any primitive with the capacity to store information in a tuple space must be included
in the ordering. We show now why these primitives have to be delivered in temporal order with
‘the termination.

Consider the process described below. The last instruction is one of the primitives after the
brace depending on the case we describe. Notice that the temporal order is: primitive, then
termination.

P1:

out (UTS, [TS52]);
eval (UTS, [TS2]);
collect(TS1,UTS, [7tsh]);

copy-collect(TS1,UTS, [7tsh]);
end;

Assuming the primitive is either out or eval, Figure 10(a) shows the situation in the graph
when this temporal order is not maintained and Figure 10(}) shows the correct situation.

It must be noticed that in the case shown in Figure 10(a) the garbage collector may erro-
neously collect TS2 even though it is still required. Hence, the out-termination problem applies
to the out and eval primitives.

Considering now the primitive collect, Figure 11 (a) shows the situation in the graph when
this temporal order is not guaranteed and Figure 11(5) shows the correct situation. Since a
similar situation to the out case is shown in Figure 11(a) the out-termination problem applies
for the collect primitive.

Finally, we consider the primitive copy-collect. As shown in Figure 12 the situation is
quite similar to the collect case. The only difference in this case is that the bridge from T'S1
to TS2 remains. Although the bridge remains, if the temporal order is not guaranteed both TS1
and TS2 will be garbage collected. Another point not related to the out-termination problem
but shown in Figure 12(b) is that after P1 terminates, the tuple space TSI is garbage for it is
not reachable from the roots. The direction in the bridges guarantees this.

It is easy to see that the order of the primitives in, rd and tsc are not significant. Since

these primitives are blocking primitives, the next instruction is only executed after a response
from the kernel.
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termination out/eval
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(a) Situation when the temporal order is changed.

out/eval termination

(b) Situation when the temporal order remains.

Figure 10: Situation showing that the ouf-termination problem applies for the primitives out
and eval.

6 A Solution for Garbage Collection

The concept of reachability from the roots (I/0 and UTS) in the proposed graph. makes it
possible to find garbage in LINDA-like systems. The rule is very simple: every tuple space or
process unreachable from the roots is garbage. From time to time a traversal in the graph is
made and all reachable nodes are marked; the garbage cells are those not marked at the end of
the traversal.

Observe that if this traversal in the graph has to be executed concurrently with the LINDA
processes, we should use a variation of the marking algorithm as proposed by Dijkstra et Al
[DLM*78].

The reason for proposing the use of an algorithm based on mark-and-sweep is due to the
possibility of cycles in the graph, and mark-and-sweep works well with cycles.

7 Conclusion

Implementation is always a concern. At first glance, the proposal of a non-distributed solution
for garbage collection may appear strange as distributed systems usually require distributed
solutions. The LINDA case is different. though. The central elements of our proposed garbage
collection scheme are tuple spaces and in LINDA a single tuple space might not be stored in
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Figure 11: Situation showing that the out-termination problem applies for the primitive
collect.

a single location. Tuple space implementations are generally done by having their contents
distributed and therefore a single tuple space might be partitioned. Since this is the case,
it is not absolutely clear that the application of an existing distributed garbage collection
method (assuming non-partitioned objects) would produce better performance. If we distribute
our graph in order to use some distributed garbage collection algorithm, we will be forced to
arbitrarily choose a location for the nodes representing tuple spaces, but the question then is
“how can we make a realistic choice since tuple spaces are partitioned?”. In addition to this, the
LINDA processes (the mutators in the garbage collection algorithm) may move from one location
to another and we might also be unable to choose proper locations to the nodes representing
them.

For instance, a process P1 located in 4 is mutating the graph located in B and a process P2
located in B is mutating the graph located in 4 and therefore every communication is remote.
Ih our proposed implementation if P1 and P2 are in different locations, we assume that the
single graph is stored in either of the two locations and therefore one process will have local
communication. However, we are currently working on a distributed implementation, and
our intention is, making use of LINDA characteristics, to propose a novel form of distributed
structure. Such a proposal will have to take into account all LINDA’s properties in order to
active good performance.

Regarding the restrictions we have imposed in Section 2, two in particular will need further
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Figure 12: Situation showing that the out-termination problem applies for the primitive
copy-collect.

exploration. The assumption that all I/O operations are done via tuple spaces is not well
understood. We believe that this is a feasible assumption and we are currently working on a
proposal for it — some early results are presented in [MW97]. The other interesting point is
having tuple spaces themselves as first class objects. We are still to address the effects of this on
our proposal for garbage collection but we expect that the concept of bridges may be extended
to deal with this situation in addition to have only tuple space handles as first class objects.

The last point we intend to address is the problem of deadlock of processes in LINDA. Even
though our method often garbage collects deadlocked processes, in some cases the problem
remains. We intend to use the structure described in this paper to find out about process
deadlock in a LINDA environment.

This paper has shown how a structure containing the information required by a garbage
collector may be maintained asynchronously in LINDA systems. Two different LINDA models
were used to show examples in this paper.
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