508 XYV SiMpPOSI0O BRASILEIRO DE REDES DE COMPUTADORES

Mobile Agent-Based Systems: an Alternative Paradigm for Distributed Systems

Development
Paulo César de Oliveira Eleri Cardozo
. e-mail: paulo@cnptia,embrapa.br eleri@dca. fee.unicamp.br

Departamento de Engenharia de Computagiio e Automago Industrial
Faculdade de Engenharia Elétrica e de Computagiio
Universidade Estadual de Campinas — UNICAMP

C.P. 6101 — CEP 13081-970 — Campinas — SP

Resumo

Sistemas baseados em agentes (SBA) se caracterizam como uma abordagem altemativa para o desenvolvimento de sistemas
distribuidos. Embora 0s termos agente e sistema baseado em agentes sejam amplamente utilizados, ndo hd uma defini¢do de
consenso para eles. Este artigo apresenta conceitos e um conjunto de caracteristicas relacionadas a agentes. A caracteristica de
mobilidade, aliada ds caracteristicas fundamentais de agentes, toma sistemas baseados em agentes mdveis (SBAM) uma
abordagem singular para o desenvolvimento de sistemas distribuidos. Aspectos relativos a infraestruturas de suporte a
sistemas baseados em agentes méveis sdo também tratados neste artigo. Finalmente, um conjunto de infraestruturas
existentes ¢ examinado tendo como base alguns dos aspectos tratados.

Abstract

Agent-based systems (ABS) constitute an altemnative to distributed systems development. The terms agent and agent-based
system, although widely used, do not have yet a consensus definition. This paper presents concepts and a set of
characteristics conceming agenthood. Mobility, in addition to the fundamental characteristics of agenthood, makes mobile
agent-based systems (MABS) a unique approach to distributed systems development. Issues regarding frameworks that
support mobile agent-based systems are also addressed in this paper. Finally, a set of existing frameworks is assessed based
on some of the addressed issues.

1. Introduction

The development of computer networking has provided an underlying basis for the increasing deployment of
networked — or distributed — systems. In the early 1990s, corporations relied on networks, distributed
information systems and workgroup computing to support the automation of their business processes.
Meanwhile, outside the corporate walls, a smashing phenomenon - the Internet — has emerged, providing
home users and corporations with a global infrastructure for information sharing and retrieval, and also a
common electronic market.

The wide utilization of distributed systems has led to a strong demand for development paradigms which can
meet requirements such as:

* rapid development and maintenance: the constant evolution in the computer science field and
the frequent changes of user's requirements demand timely development and maintenance of
computer systems;

» platform independence: distributed systems must run on different hardware and operating systems
platforms; they must be developed once and deploved in the desired platforms transparently;

* ease of integration. systems must adopt open standards in order to be able to easily interact with
existing peers;

® ease of use: an increasing number of users, with different degrees of expertise, are using networked
systems and demand user friendly and personalizable interfaces;

o flexibility: systems must rely on flexible architectures with well defined interactions between their
components; systems components must not assume only fixed roles, such as clients and servers,
producers and consumers;

e efficiency: systems must use efficiently the available and probably scarce computer and network
resources;

XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 509

» support to mobile computing: as a consequence of technological advances that have made mobile
computing available to an increasing number of users.

Since the early 1990s, the Client/Server model has been widely adopted for distributed systems development.
In that model, systems are partitioned into components — clients and servers — that assume fixed roles. In
most cases, client components must run on different platforms and they are implemented separately for each
operating environment, increasing the development and maintenance effort and costs. Furthermore, Remote
Procedure Call (RPC) is the most used mechanism for communication in Client/Server systems. Like the
local procedure call, it is based on synchronous connections between a client and a server, where the client
maintains the entire process state until it receives the return RPC from the server. This leads to an
inefficient utilization of computer and network resources and increases networking costs.

= P =
Client j (Network) _[Server
=5 pec N
_W data maves
on statc
Chant host coAructicha Server host

Figure 1: Client/Server components communication via RPC

The agent-based approach constitute an alternative to distributed systems development. Although the terms
agent and agent-based system (ABS) are widely used by researchers in different areas such as distributed
systems, software engineering and artificial intelligence, there is no consensus about their definition.

In this paper, agents are considered as autonomous programs that act on behalf of their owners — users or
other programs. In order to accomplish tasks assigned by their owners, agents may communicate with other
agents, with their environment and with their owners. This definition focuses on the following fundamental
characteristics of agenthood:

¢ delegation: users or other programs can delegate tasks to an agent and vest it with authority to act
on their behalf;

e autonomy: an agent can make its own decisions, based on its owner's statement of goals,
preferences and policies;

» communication: the ability agents have to interact with their peers, with the environment that
hosts them, and with their owner;

o flexibility: agents do not assume fixed roles; they may act like clients, servers, observers, etc.,
depending on their current needs;

* equity: agents act like peers, there is no hierarchical relationship among them.

The characteristics pointed out as fundamental reflect the vision that an agent-based system is composed of
autonomous entities — agents — that perform tasks assigned — delegated — to them by their owners. Each
entity plays flexible roles according to their current needs and is seen as a peer by the other entities that
compose the system. Partitioning a system into agents enforces modularity and encapsulation. Parallelism
can be also explored.

Although not considered as fundamental, the characteristics described below are strongly related to agents:
* cooperation: agents can act in a collaborative manner in order to accomplish common goals;

 intelligence: the ability agents have to reason and learn from the interactions with other agents,
users and the environment that hosts them;

* mobility: agents can move across heterogencous computer networks, aiming to progressively
accomplish tasks that were assigned to them.

Mobility, in addition to the fundamental characteristics of agenthood, makes mobile agent-based systems

(MABS) a unique approach to distributed systems development. Unlike RPC, data and programs move over
the network.

510 XV SinmpOSIO BRASILEIRO DE REDES DE COMPUTADORES

@

Host 1 marv/e Heost 2

Figure 2: Mobile agent migration for remote resources utilization

Since mobile agents move across heterogeneous networks, their code must run in an identical fashion on
every host they can move to [Ling95]. Thus, mobile agents code must be platform independent.

MABS provide the following advantages:

* imtuitive structuring for distributed systems: systems components are autonomous entities, with
their own “lives”™ [ANSA95];

o flexible distributed computing architecture: systems components do not assume fixed roles
[Nwan96].

e asynchronous computing: mobile agents may be launched while their owners do something else
[Nwan96].

* reduced communication costs: agents move to the host where the desired resources are placed in
order to complete tasks, thus it is not necessary to keep static connections between service
requesters and providers [ANSA95][Nwan96];

s support for mobile computers and lightweight devices (such as Personal Digital Assistants —
PDAs) [Ches95];

» support for disconnected operation: mobile computers and lightweight devices are intermittently
connected to a network. Client applications running on those devices can formulate an agent
containing a request for a service, possibly while disconnected, launch the agent during a brief
connection session, and immediately disconnect. The response may come in a later connection
[ANSA95] [Harr95] [Nwan96];

e support for applications running on computers with limited local resources [ANSA95]
[Harr95][Nwan96].

The mobile agent-based approach meets the requirements for distributed systems development paradigms
mentioned earlier in a more comprehensive manner than the Client/Server model. Platform independence is
a basic attribute of mobile agents, since they may be executed on any host on heterogeneous networks. The
flexibility requirement, on the contrary to the Client/Server model, is met since agents do not assume fixed
roles. Asynchronous computing is supported by agents, leading to an efficient utilization of computer and
network resources and reducing communication costs. Support for mobile computing is provided in a broader
and more efficient manner through mobile agents.

The requirements of rapid development and maintenance, and ease of integration can be met if agent-based
systems development frameworks adopt, respectively, the Rapid Application Development (RAD) strategy
and open standards. Since modularity and encapsulation are enforced through ABS, maintenance may be
easier. Agents, mostly static ones, can be used to help human users to perform tasks, and they can also be
used to personalize interfaces based on the user's preferences [Maes94]. In that case, they are also called
personal software assistants and they introduce ease of use to computer systems.

The paper “Mobile Agents: Are they a good idea?” [Harr95) emphasizes the argument that MABS constitute
a unique approach for distributed systems development. Its authors state that currently there is no other
approach with the same functionality and aggregate set of advantages.

Agent-based systems is a research and development field that has gained focus recently. A large and
increasing number of universities, research centers and companies are investing on it. Lots of researchers,
including Guilfoyle [Guil95] and Janca [Janc96] state that, in the next few years, the agent-based approach
will cause a tremendous impact over computer systems, through its partial or complete adoption as a generic
systems development paradigm.

XV SiMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 511

This section presented the motivation for mobile agent-based systems as an alternative for distributed
svstems development. The next section contains a brief overview on agent-based systems with focus on
MABS. Section 3 addresses issues concerning frameworks that support mobile agent-based systems. Section 4
presents an assessment concerning existing frameworks that support MABS, based on some issues discussed
on section 3. The final considerations are described in section 3.

2. Agent-Based Systems Overview

This section presents a brief overview regarding agent-based svstems. Firstly, it addresses the origin and
research strands of ABS. Secondly, some considerations on intelligent agents are presented. The final part of
this section concerns mobile ABS.

2.1, Origin and Research Strands

According to Nwana [Nwan96], the concept of an agent originated from the Concurrent Actor Model
proposed by Hewitt [Hewi77] in the early days of research in Distributed Artificial Intelligence (DAI). That
model has provided a basis for one of the broad areas of DAI called Multi-Agent Systems [O'Har96]. Multi-
Agent Systems (MAS) are computer systems in which several autonomous entities — agents — interact or
work together to perform some set of tasks-to satisfy some set of goals. Relevant aspects of MAS include
behavior coordination and management. Agent-based systems have evolved from MAS, which can currently
be seen as a subset of ABS with focus on DAI issues.

Two research strands in the field of ABS are proposed by Nwana [Nwan96): the first one which spans from
1977 to the current day, and the second from 1990 to the current day too. The first strand has a strong
focus on DAL Iniually, its work concentrated on macro issues such as interaction and communication among
agents, the decomposition and distribution of tasks, and coordination and cooperation. One of its main goals
was to specify, analyze, design and integrate systems comprising of multiple collaborative agents. Those
macro issues emphasize the society of agents over individual agents. In addition to the macro issues, the first
strand work has also been characterized by research and development into theoretical, architectural and
language issues [Wool95]. The second strand reflects the wide utilization of the term agent in different fields
of computer science besides DAI, like distributed systems and software engineering. The investigated types
of agents is broader.

Although the terms agent and agent-based systems are widely used, there is no consensus definition for them.
On the contrary, there is a diversity of understanding about what an agent is and what are the fundamental
characteristics of an agent. The following definitions express this diversity. They were taken from the
literature concerning the two research strands proposed by Nwana [Nwan96]:

“an agent is a program that helps a user perform some task (or a set of tasks), possibly by
maintaining persistent state and communicating with its owner, other agents or its environment in
general” [Ling95]

“an agent is a software which assisis people and acts on their behalf. It is delegated to perform some
task(s), and given constraints under which it can operate” [Janc96]

“software agents are software components that communicate with their peers by exchanging
messages in an expressive agent conmunication language"” [Gene94]

“An autonomous agent is a system situated within and a part of an environment that senses that
environment and acts on it, over time, in pursuit of its own agenda and so as to effect what it senses
in the future” [Fran96]

“Intelligent agents are software entities that carry out some set of operations on behalf of a user or
another program with some degree of independence or autonomy, and in so doing, employ some
knowledge or representation of the user’s goals or desires” [IBM96b]

The term agent appears in the literature lots of times together with qualifiers such as: autonomous, personal
and intelligent. Furthermore, some synonyms to agents are used, including software robots, personal software
assistants, taskbots and userbots. Those qualifiers and synonyms reflect characteristics considered as
fundamental by the researchers that proposed the definitions.

In this paper, agents are considered as auronomous programs that act on behalf of their owners — users or
other programs. In order to accomplish tasks assigned by their owners, agents may communicate with other
agents, with their environment and with their owners, The definition adopted focuses on the following
fundamental characteristics of agenthood:

512 XV SiMPOSIO BRASILEIRO DE REDES DE COMPUTADORES

» delegation: users or other programs can delegate tasks to an agent and vest it with authority to act
on their behalf;

* aqutonomy. an agent can make its own decisions, based on its owner's statement of goals,
preferences and policies;

» communication: the ability agents have to interact with their peers, with the environment that
hosts them, and with their owner;

o flexibility: agents do not assume fixed roles; they may act like clients, servers, observers, etc.,
depending on their current needs;

* equity: agents act like peers, there is no hierarchical relationship among them.

The characteristics pointed out as fundamental reflect the vision that an agent-based system is composed of
autonomous entities — agents — that perform tasks assigned — delegated — to them by their owners. Each
entity plays flexible roles according to their current needs and is seen as a peer by the other entities that
compose the system. Partitioning a system into components enforces modularity and encapsulation.
Parallelism can be also explored. The agent-based approach is a generic systems development paradigm that
can be potentially applied to any domain.

Although not considered as fundamental, the characteristics described below are strongly related to agents:

» intelligence: the ability agents have to reason and learn from the interactions with other agents,
users and the environment that hosts them:

* mobility. agents can move across heterogeneous computer networks, aiming to progressively
accomplish tasks that were assigned to them.

Agents can be classified taking into account several dimensions, such as: their characteristics — fundamental
or not, the roles they perform, etc. The most accurate way to provide a classification scheme for agents is
through a multi-dimensional matrix. Since there is a large number of possible dimensions, such representation
would not be easy to read and understand. Thus, classification schemes have been proposed with limited
scope. Some of them encompass the work of Nwana [Nwan96], Franklin [Fran96], Stone [Ston96] and the
Foundation for Intelligent Physical Agents [FIPA96].

The next subsection presents some considerations regarding intelligent agents. The last subsection addresses
mobile agents, the type of agents on which this paper is focused.

2.2. Intelligent Agents

Intelligence is another term with no consensus definition, even among Artificial Intelligence (AI)
researchers. This paper does not attempt to define that term either, however, it presents some
considerations found in the literature. Intelligence is strongly related to agents. The concept of agents have
originated from the DAI field.

Nwana [Nwan96] states that a key attribute of any intelligent being is its ability to /earn. The learning may
also take the form of increased performance over time. Weiss and Sandip [Weis96] enforce that agent-based
systems must have the ability to adapt and learn, that is to self-improve their future performance. The IBM
Intelligent Agent Center of Competency [IBM96b] defines intelligence as the degree of reasoning and
learned behaviour: the agent’s ability to accept the user’s statement of goals and carry out the tasks
delegated to it.

Wooldridge and Jennings [Wool95] present a weak notion of agenthood through the following properties:
autonomy, social ability, reactivity and pro-activeness. Social ability regards the interaction of agents with
other agents (and possibly humans) via some kind of agent-communication language. Reactivity means that
agents perceive their environment (which may be the physical world, a user via a graphical user interface, a
collection of agents, the Internet, or perhaps all of these combined), and respond in a timely fashion to
changes that occur in it. Pro-activeness means that agents do not simply act in response to their
environment; they are able to exhibit goal-directed behavior by taking the initiative. A stronger notion of
agenthood is defined as follows: “an agent is a computer system that, in addition to having the properties
identified earlier, is either conceptualized or implemented using concepts that are more usually applied to
humans ", This definition also emphasizes the Al understanding of agents, were intelligence is a fundamental
characteristic of agenthood.

In this paper, intelligence is considered — even though it is a narrow understanding — as the ability agents
have to reason and learn from the interactions with other agents, users and environments that host them.

In order to be intelligent, agents must carry with them some kind of knowledge concerning goals,
preferences, vocabularies appropriated to various domains, etc. Knowledge representation languages provide

XV SiMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 513

the means to express knowledge through different approaches such as facts, rules, neural networks, etc.
[Ches95].

The research efforts in the field of DAI are mainly related to fixed agents that assist human users in
performing tasks. Cheong [Cheo96] presents examples of ABS that can teach people, learn about the habits
of human users, and derive knowledge from sensing their external environment,

2.3. Mobile Agent-Based Systems

Regarding to the location where they execute, agents can be stationary — also called fixed or static; or mobile
~ also called itinerant [Ches95] or transportable [Gray95][Kota94].

Stationary agents stay on the same host — network node — during all of their existence. They may be used to
provide services related to resources available on the hosts where they reside. According to Maes [Maes94],
they may be also used in a cooperative process with the user, providing personal assistance for a variety of
tasks (those agents are also called interface agents [Nwan96]).

Mobile agents are capable of moving over a heterogencous computer network, aiming to progressively
accomplish tasks that were assigned to them by their owners.

The idea of dispatching a program for execution on a remote computer is quite old [Ches95]. Dispatching
schemes can be exemplified through batch jobs sent to mainframes in the 1960s, and through executable
scripts dispatched among networks of mini-computers to permit distributed, real-time processing in the
1970s. Recently, the concept of active mail is another example in which widely available electronic mail
services are enabled to deliver executable scripts. The Tabriz product line from general Magic [Gene96),
based on the Telescript language, was the first commercial implementation of a mobile agent-based
framework released in 1994,

Similarly to the term agent, there is no consensus definition about what a mobile agent is. Although it is
agreed that a mobile agent moves across networks carrying its code and data, there is no agreement regarding
bearing its execution state. The following definitions were taken from the literature and they show the lack
of consensus concerning that aspect:

“mobile agents are programs, typically written in a script language, which may be dispatched from
a client computer and transported to a remote server computer for execution” [Harr95)

“itinerant agents are programs which are dispatched from a source computer and which roam
among a set of networked servers until they are able to accomplish their task; they are moving
processes which progressively accomplish tasks by moving from place to place” [Ches95]

“transporiable agents are capable of suspending their execution, transporting themselves to another
host on a network, and resuming execution from the point at which they were suspended” [Kota94]

“a transportable agent is a named program that can migrate from machine to machine in a
heterogeneous network. The program chooses when and where to migrate. It can suspend its
execution at an arbitrary point, transport to another machine and resume execution on the new
machine"” [Gray95]

MABS can be applied to several distributed systems domains. Some examples encompass information
retrieval, network management, electronic commerce and mobile computing [Ling95]. Information retrieval
can be supported more efficiently if an agent representing an user’s query can move to hosts where the query
is most likely to be answered. This can help users a lot since he or she can delegate the query to an agent
which is responsible for finding the information in a huge and increasing amount of sources. Network
management, mainly in large networks, can be made easier through agents that monitor operations and
detect faults. As electronic commerce in the Internet is becoming a reality, mobile agents can be used to
locate the cheapest offerings, negotiate deals or even conclude business transactions on behalf of their
owners. Finally, mobile computing can be supported broadly through mobile agents. Usually mobile devices
and computers are intermittently linked to a network and they have less powerful computing resources, Since
mobile agents support asynchronous computing and disconnected operations they may be of great value in
the domain of mobile computing.

3. Mobile Agent-Based Frameworks

Frameworks that support mobile agent-based systems — mobile agent-based frameworks — must provide
mobile agents with the infrastructure they need to move over the network and offer means for them to
accomplish their tasks, This section discusses some relevant issues regarding mobile agent-based frameworks,
These issues include delegation, communication, mobility, host resources management, agents management,
execution environments, security, fault tolerance and interoperability. A graphical scheme representing some

514 XV SiMPOS10 BRASILEIRO DE REDES DE COMPUTADORES

main functional blocks of mobile agent-based frameworks, based on the discussed issues, is presented at the
end of this section.

3.1. Delegation

Agents were primarily thought as entities performing tasks on behalf of their owners — users or other
programs. Although agents can be used to perform any kind of tasks, assisting users with routine and time-
consuming activities is a wide field of application for agents.

Maes [Maes94] has pointed out an important question concerning trust related to delegation: “How do you
ensure that users feel comfortable delegating tasks to agents?” Most of the agent-based frameworks and ABS
are not concerned with this question; they assume users trust in their agents. Maes believes that a machine
learning approach can answer this question. She has developed a work relying on this approach, where the
user is capable to incrementally build up a model of the agent’s competencies and limitations, based on the
learning and reasoning capabilities the agent presented to accomplish previous tasks. Thus, according to her,
associated intelligence can help users trust in their agents.

Since agents act on behalf of their owners, they must carry with them an identification of who they
represent. In the Itinerant Agent Framework proposed by Chess [Ches95], an agent has a passport which
contains an authentication of the originator — the name or the authority of the owner, and the name or
names of other authority sanctioning entities.

3.2, Communication

Agents must communicate in order to perform tasks. Communication encompasses three aspects: interaction
with other agents, hosting environments, and users.

Inter-agent communication can be local or remote, synchronous or asynchronous. Agents communicate with
their peers, for instance, when an agent representing a user request interacts with a service provider —
probably static — agent. The communication can have cooperation purposes, i.e., agents can communicate
in order to accomplish common goals; for example, agents representing some people cooperate in order to
schedule a meeting.

Genesareth and Ketchpel [Gene94] focus their research on interoperability issues involving agent
communication. They introduce the concept of agent-based software engineering, where applications are
written as software agents, i.e., software components that communicate with their peers by exchanging
messages in an expressive agent communication language (ACL). According to them, in this approach,
agents use a common language for communication, with an agent-independent semantics, facilitating the
creation of interoperable software. The following question then emerges: “What is an appropriate agent
communication language?” Researchers in the ARPA Knowledge Sharing Effort have defined three
components for an ACL: its vocabulary; an inner language called Knowledge Interchange Format (KIF)
encoding simple data, expressions, rules, constraints [Gene92]; and an outer language called Knowledge Query
and Manipulation Language (KQML) which is a linguistic layer above KIF that provides context
information for efficient communication [Fini93].

Agents communicate with their hosting environment in order to make use of the services and resources it
provides. Access to corporate databases and to Object Request Brokers (ORB) based on the CORBA standard
[OMG96] are important examples of this kind of interaction.

Agents may need to communicate with their owners and vice-versa. Mechanisms such as electronic mail, for
asynchronous interactions, and graphical user interfaces, for example to ask for user confirmation through a
pop up window, can be used.

3.3. Mobility

Mobile agents can move across heterogeneous networks, migrating from one host to another, in order to
progressively accomplish tasks that were assigned to them. Migration encompasses destination selection,
dispatching, transport and receiving of agents.

An agent migrates in order to accomplish tasks. Thus, selecting the host that provides the needed service is a
primary issue, Although agents can carry a fixed itinerary with them, in most cases they have to decide
where to go. Mechanisms such as keyword search and semantic routing — which tries to find an agent’s
destination based on what it wants to accomplish — can be used to assist agents in selecting a service provider.
These mechanisms may make use of yellow pages or directory services.

Dispatching an agent comprises the following steps: having an agent suspended and encoded for transmission,
and releasing the resources used by the agent. Receiving an agent encompasses the following steps: having an

XV SiMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 5158

agent decoded and checking if the needed resources for the agent execution are available. If so, than the
agent is delivered to its execution environment.

Transport mechanisms transmit an agent from one host to another. Standard protocols such as TCP/IP,
HTTP, X.25, and e-mail can be used for transmission purposes.

Intelligence is gaining focus in the mobile agents area [Ches95] [IBM96b]. Mobile agents are usually fine-
grained, so they can easily migrate over the network. A key challenge is to meet mobility and intelligence
requirements. A mobile agent must carrv the minimal, sufficient and necessary information to accomplish
the task [Ches95]. If this information is a large knowledge base associated to an execution environment that
requires powerful processor resources, the mobility requirements possibly will not be met.

3.4. Host Resources Management

Mobile agent-based frameworks must provide mechanisms for controlling resources available at hosts. This
kind of control would allow an efficient utilization of resources, and would avoid them to be inadequately
deployed by agents. Agents could contain information regarding their resource needs and their current
resource utilization capacity — for example, when they need to pay for using the resources. Such information
must be checked by the mobile agent-based framework for resources allocation, before allowing the execution
of agents. On the other hand, after the dispatching of an agent the allocated resources must be released.

3.5. Agents Management

Mobile agent-based frameworks must control the life cycle of an agent residing on a host. Each host must
have control over the instantiation and the removal of agents. Agents are instantiated before they can be
executed on a host. Agents are removed after their dispatching.

3.6. Execution Environments

Execution environments permit the execution of agents written in agent-based programming languages
(ABPLs). Compilers and interpreters compose the core of execution environments,

Frameworks that support agent-based systems must not enforce the use of a particular agent-based
programming language. They must support various ABPLs and provide interoperability among agents written
in different ABPLs, A standard ACL [Gene94] can be used with this purpose. Agent-based programming
languages can be examined regarding their structure and execution model.

ABPLs can be, concerning their structure: imperative, functional or declarative. Imperative ABPLs can be
divided into two main categories: procedural and object-oriented. They are widely used by mobile agent-based
frameworks. Functional and declarative languages are mainly used by agent-based frameworks that have a
strong focus on intelligence for agents.

Concerning the execution model, ABPLs can be compiled, interpreted or compiled to an intermediate
portable interpreter-based language. The first execution model applies mainly for stationary agents, since
compiled binary code is platform specific. The other models are widely used by mobile agent-based
frameworks, whose code is unique and deployed on different platforms. Platform independence is achieved
by the last two execution models, although they introduce performance penalties.

3.7. Security

Security is a relevant issue regarding agent-based frameworks that support mobile agents. In mobile agent-
based systems, an agent may freely migrate to any host on the network. Thus, security mechanisms must
exist in order to prevent malicious actions from incoming agents. Also, agents must not be tampered with by
their hosts [Ches95]. Although security is a relevant issue, some goals related to it cannot be achieved by
using the currently available computing technologies. For instance, the verification by a host, with complete
certainty, that an arbitrary agent is not a computer virus. However, some security functions can be addressed
and provided such as: authentication of an agent's sender, checking sender’s authorization for execution
purposes, resources access control, actions logging, and integrity checking.

Authentication means the unambiguous establishment of the sender’s identity. This can be accomplished by
including a public key certificate — through encryption techniques — of the sender as part of the agent
[Ches95). Access control regards the management of resources residing at a host, avoiding them to be
inappropriately used by agents. Agents and information they carry must be protected from tampering
through integrity checking mechanisms. Encryption techniques can also be used for such purposes.

516 XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES

3.8. Fault Tolerance

Maobile agent-based frameworks must provide mechanisms for the recovering of agents and the information
they carry in case of computer or network failures, so mobile agent-based systems can resume their normal
execution as soon as possible. Persistence is a strategy to meet fault tolerance requirements, where agents are
stored in non-volatile memory.

3.9. Interoperability

Interoperability regards the ability an MABS has to interact with other systems. In order to interoperate, an
MABS must rely on open, non-proprietary standards. Examples of such standards are the Common Object
Request Broker Architecture (CORBA) [OMG96], and the TCP/IP family of protocols.

Agent-based systems is an emerging and rapidly growing research and development field , thus the
standardization efforts have begun to appear. Some of them include the Foundation for Intelligent Physical
Agents[FIPA96], the Agent Society[Agen96], and the OMG's Mobile Agent Facility [OMG96].

The FIPA is an international non-profit association of companies and organizations. It aims to promote the
development and specification of agent technologies that are usable across a large number of applications
providing a high level of interoperability across applications. Standardization categories currently addressed
include: communication, information representation, agent societies, execution environments for mobile
agents, and agent management.

The Agent Society is a international industry and professional organization established to assist in the
development and emergence of mobile intelligent agent technologies and markets, It supports initiatives for
the development and implementation of open intercommunication protocols and interfaces for open
intercommunication and interoperability among diverse agents. One of the activities currently in progress
encompasses the proposal of a standard agent transfer protocol.

The OMG's Mobile Agent Facility supports the mobility of agents (CORBA objects) and the invocation of
their execution environments in the scope of the OMG's Object Management Architecture (OMA).
3.10. Functional Decomposition Scheme for Mobile Agent-Based Frameworks

Figure 3 depicts a graphical scheme representing some main functional blocks of mobile agent-based
frameworks, based on the issues addressed in this section. Steps | through 5 are taken when agents arrive at a
host. Steps 6 through 10 are taken when agents migrate to another host on a network.

Chess [Ches95] presents a model for a mobile agent-based framework where agents can accumulate
knowledge and make decisions.

XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 517

Cxinmal pardices
TR DT {ea il

ond offering)

Host seldction kr
magrsbon (7]

[N Mobilla agent recsiving Mobie agant dispa ching
Teanapod mechnnism = 3 >

W on (3] g (®) :]
L=
ngpi Resources mansgemens Lhe
o s R D
Communicatian
macharnism
Ageril e caumm !
izpalzhing 16)
nm-Tmfﬂ"m
BpRR! exeCUION Intar-agart communication
ES}
fon
Execution Environment 1 s ws | Essoution Ervironment N
Beces control’ actions sar muum
v & ggng e
Securtty
Local servces
managemanl
Authen- | Authed | Acces | Actions H';”
lcation | zstion | contral | logping
magrty checking ! sulhentication
inlormation (9)

Figure 3: Functional decomposition of mobile agent-based frameworks

4. Existing Mobile Agent-Based Frameworks Assessment

This section presents an assessment on how a set of existing development frameworks that support MABS
addresses some of the issues discussed in the previous section. The set of examined frameworks is composed
of:

* Tabriz 1.0 from General Magic, based on the Telescript [Gene96) programming language. Tabriz is
available for the following Unix platforms: HP UX, Solaris and SGI Irix. It requires powerful
hardware, operating system, and processor resources;

* Agent Tcl alpha release 1.1 and Agent Tk [Gray95] from Dartmouth College. These are extended
versions of Tcl and Tk supporting mobile agents, which are available for the following Unix
platforms: Linux, Free BSD, IBM AIX, SGI Irix, DEC OSF/1, SunOs and Solaris;

* Aglets Workbench [IBM96a] alpha 4 from IBM’s Tokyo Research Laboratory. It is a visual
environment for building mobile agent-based applications in Java. Aglets Workbench can be
executed on Windows NT/95 and Solaris platforms;

* TACOMA 1.2 [Joha95] from University of Tromse and Cornell University, focuses on operating
systems issues in connection to the agent paradigm for distributed computing. TACOMA is based
on a language orthogonal model which currently supports C, Tecl, Perl, Phyton and Scheme,
Version 1.2 is available for the following Unix platforms: HP UX, Solaris, BSD Unix and Linux;

Other two frameworks were considered, but not selected for the purposes of this paper: Mole [Mole96] alpha
1.0 from the University of Stuttgart, and ARA (Agents for Remote Actions) [ARA96] from the University
of Kaiserslautern. Both had their development effort started recently. The Mole sysiem is based on Java;
mechanisms for migration and communication of agents were added to that language. It is available for the
Solaris and Windows NT/95 platforms. As stated by its developers, the Mole system is still incomplete and
buggy. ARA has its application focus on services for mobile computer systems with a wireless network
connection. It supports agents written in C++ and in an extended version of Tcl. ARA is available for the
SunOs 4.1 and Linux 1.2 platforms. Although some important results have been achieved by its development
team, functional evolution and comprehensive tests still need to be performed on the ARA system.

518 XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES

The mobile agent-based frameworks were examined concerning the aspects of delegation, inter-agent
communication. communication with hosting environments, communication with owners, mobility,
programming language, security, interoperability and persistence.

4.1. Delegation

The examined frameworks assume users trust in their agents. Regarding the identification of an agent’s
owner, the frameworks Agent Tcl, Aglets Workbench and TACOMA rely only on the user’s id related to a
process running on multi-user systems. Telescript associates agents to authorities, which represent real world
individuals or organizations. Telescript agents can discern authorities but neither withhold or falsify their
authorities; also anonymity is precluded.

4.2. Inter-agent communication

The Telescript language, which is the basis for Tabriz, has two agent communication mechanisms: meeting
for interactions in the same place, and connections for interactions in different places. Places are units inside
a computer network where services are offered.

Agent Tel provides communication through messages for asynchronous communication, events which have
similar functionality to messages, and meetings for direct connections between two agents enabling efficient
data transfer.

TACOMA contains a meet mechanism for communication and synchronization of agents. Agents meet at
the same location and exchange data.

Aglets Workbench provides an agent message-passing scheme that support remote and local
communications. Loosely coupled asynchronous as well as synchronous peer-to-peer communication
between agents are also supported.

Infer-agert communicalion
Agents location Synchronsm
Local Remote Synchionous Asynchronous
Tabaz
Tobriz Tabriz Agent Td
Agen Tel At it Agent Td Agiets Workbench
TACOMA TACOMA

Figure 4: Inter-agent communication
4.3. Communication with hosting environments

Most of the examined frameworks that support MABS — Tabriz, Agent Tcl and Aglets Workbench — were
built based on, or have escape mechanisms to, languages like C/C++, Tcl and Java, which provide general
purpose means to access services and resources available on hosts. TACOMA is based on a language
orthogonal model that supports agents written in various general purpose programming languages.

According to General Magic, Tabriz will provide agents, in a near future, with access to corporate databases
through ODBC [Gryp95]. The Aglets Workbench has a data access component called JoDax, which provides
a high level data access class library in Java.

Regarding the interaction with Object Request Brokers, programs written in Telescript allow C calls, thus a
ORB interface may be implemented. Tcl-Dii [CERC95] is a Tcl interface for accessing lona’s ORB
implementation called Orbix [Iona%6], through the Dynamic Invocation Interface (DII). Tecl-Dii can be
attached to Agent Tcl programs. Finally, some ORB implementations provide integration with Java, which is
the basis for Aglets Workbench. OrbixWeb from Iona provides Java clients with capabilities to interoperate
with back-end Orbix CORBA based services. Visigenic's [Visi96] VisiBroker for Java, allows developers 10

XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 519

deploy application objects in a Java program as client and server-side Java code. Java applets can send and
receive messages from distributed objects on the servers via VisiBroker for Java,

LT e i haee g

//__

s e Ampe Agerr T
e ETTyea—y

Figure 5: Communication with hosting environments

4.4, Communication with owners

Tabnz allows adding C code for interaction with users into the body of agent-based applications. Thus,
graphical user interfaces can be added to Telescript programs. Tabriz also supports electronic mail and
paging.

Agent Tcl has a counterpart called Agent Tk, which enables programmers to add graphical user interface
capabilities to agent programs.

The Aglets Workbench is based on Java. Thus, the capabilities of the Java's Abstract Windowing Toolkit
(AWT) can be used for graphical user interfaces.

TACOMA supports agents written in Tcl/Tk and C, languages that provide programming capabilities for
graphical user interfaces.

Communication with
DWTHEIE

/\

e-tmail (=W]] Paging

Tabrix Tabriz Tabriz

Agant Tk
Aglers \Werkbench

Figure 6: Communication with owners

4.5. Mobility

The Tabriz architecture is composed of the following components: Telescript Language, Telescript Engine
and Telescript Protocol Suite. The Telescript language implements concepts such as agents, places and
travel, supporting agent mobility. A network of computers is modeled as a collection of places, where a place
offers a service. An agent occupies a particular place and travels from one place to another through the go
<ticker> instruction. The ticket constitutes data that specifies the agent’s destination. The Telescript engine
is a program that implements the Telescript language, by maintaining and executing places within its
purview, as well as the agents that occupy those places. Finally, the Telescript protocol suite enables engines
to communicate in order to transport agents between them. The protocol suite can operate over TCP/IP,
X.25 or even electronic mail. Tabriz supports migration of the program execution state.

The Agent Tel architecture has two components; server and interpreter. The server runs at each network
site, accepting incoming agents, messages and meeting requests; and keeping track of the agents running on
its hosting machine. The interpreter is a modified Tcl core for agents execution. The agent jump
<machine> command migrates an agent to a particular machine transparently. This command captures the
internal state — including the program counter — of the agent and sends the state image to the server on the
destination machine. Agent Tcl uses the TCP/IP protocol.

Aglets Workbench has, among others, the following components: Aglets Framework, Agent Transfer
Protocol (ATP) Framework, and Aglet Server, The Aglets Framework introduces the notion of an agler, a
mobile —~ agile — agent written in Java. The Java Aglet API is a standard for interfacing aglets and their
environments, containing methods for aglet creation, disposing, dispatching — through the dispatch <URL or
itinerary > command, etc. The ATP Framework is the standard protocol used to transfer mobile agents,

520 XV SiMPOSIO BRASILEIRO DE REDES DE COMPUTADORES

based on Uniform Resource Locators (URLs). The Aglet Server receives incoming aglets over the network
for execution. Aglets Workbench do not support migration of the program execution state.

TACOMA considers agents as mobile computational units. State is organized into folders which are units of
data accessible by agents, and each folder has a name. A collection of folders associated with an agent 15
called a briefcase. The only abstraction supported by TACOMA to implement the agent model is: meef
<another agent> <briefcase>. Agents meet at some location and exchange a briefcase. Agents move when
they want to meet another agent at a different host — the host name is stored in the HOST folder of the
moving agent’s briefcase. Since TACOMA is based on a language orthogonal model, it does not support, by
default, automatic state capture. TACOMA relies on the TCP protocol suite as its transport mechanism.

None of the selected frameworks has a destination selection mechanism. Itineraries or destinations are
defined as part of an agent’s code.

Mobiity rature
Smf Mobile
Mobila wihout execulion Mol with execution state
Sarvice providers irterfaca ek
Agiets Woritench Tabris
TAGOMA Agent Tel

Figure 7: Mobility nature

ooty
/w
Hiuﬂ'ﬁﬁt‘t:::’un(m Heyword search Semantic routing
Tabei
Agent Tdl
Workbanch
TACOMA
Figure 8: Destination selection mechanisms
Maobiiity
Transport machanism
TCPAP HTTP a-mal x5
Tabnir Aglets Workbench Tabriz Tabriz
Agent Tel
TACOMA

Figure 9: Transport mechanisms

4.6. Programming Languages

Telescript and Java — which is the basis for Aglets Workbench — are object-oriented languages, where
programs are compiled to an intermediate portable interpreter-based language. Agent Tcl is a procedural and
interpreted language. TACOMA is based on a language orthogonal model supporting languages with different
structures and execution models.

XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 521

Programming Language
Structure
Imperative Functional Declaratve
Frocedural Object-Oriantad
Agent Tc! Tabriz
Agiets Worktench

Figure 10: Programming language structure

Programming languaga
Exscution modal

//’/’\

Compiled to an
Compiled Interpretad intarmediate portable
Intarprater-based languags

Agant Te!
Aglats Workbeych

Figure 11: Execution models

4.7. Security

Telescript verifies the authority of an agent when needed. It also lets authorities — check for details in the
delegation issue — limit what agents and places can do through assigning permits to them. A permit is data
that grants capabilities of two kinds: the right to execute a certain instruction; and the right to use a certain
resource in a certain amount. Also, a Telescript program is executed through a Telescript Engine, where an
agent cannot access directly the computer processor, memory, file system or peripheral devices.

Agent Tcl provides rudimentary security. Any agent, message or connection request that does not come
from an approved machine is ignored. The system administrator specifies the set of approved machines.

Aglets Workbench supports an extensible layered security model. The first layer comes from the Java
language — for example, consistency checks performed by the Java bytecode identifier. The next layer has a
security manager which allows developers to implement their own protection mechanisms. The final layer is
the Java security API, which provides capabilities to include security functionality in agent programs, such
as: authentication, digital signatures and cryptography. The Java Security API is not yet available for the
Aglets Workbench Alpha 4 release.

The TACOMA system provides security mechanisms through a firewall agent called rac_firewall. The
execution of a meet instruction results first in the interaction of a mobile agent with the firewall agent, that
currently only logs the incoming briefcase to disk. According to the development team, new prototype
versions of TACOMA will contain a more comprehensive set of security mechanisms including
authentication and access control.

Security
Auhentication Authorization Access control Logoing Integrity checling
Tabriz Tabdr. Tabriz

Agent T

Figure 12: Security

522 XV SimMr0Ss10 BRASILEIRO DE REDES DE COMPUTADORES

4.8. Interoperability

Since the standardization efforts are emerging, all of the examined frameworks — Tabriz, Agent Tcl, Aglets
Workbench and TACOMA - cannot provide interoperability capabilities among MABS. Regarding the Aglets
Workbench, recently a language independent version of the Java Aglet API and the Java Agent Transfer and
Communication Interface were submitted to the OMG as part of the IBM’s proposal for the Mobile Agent
Facility.

4.9. Persistence

Tabriz supports persistence at the Telescript Engine level, automatically saving an agent and its state in non-
volatile memory. TACOMA maintains a mobile agent’s state through briefcases, which are logged to disk by
the tac_firewall agent as soon as the mobile agent arrives at its destination, as a consequence of a meet
instruction. Agent Tcl and Aglets Workbench do not support persistence.

5. Conclusions

The agent-based approach for software development constitute a recent and rapidly growing research field.
Although researches of different computer science areas such as distributed systems, artificial intelligence and
software engineering are working with agent related issues and developing agent-based systems and
frameworks, they have a different understanding of what an agent is, and what are the fundamental
characteristics of agenthood. This paper addresses agent-based systems with focus on distributed computing,
where mobility is a very significant issue. The existing frameworks that support MABS still need to evolve in
order to meet the requirements for distributed systems pointed out here. In the next few years, hopefully,
frameworks will provide developers with comprehensive means for developing distributed agent-based
systems which can be deployed in a broad spectrum of application domains, As a consequence, computer
users will have their life made easier, since many of their tasks would be automated through agents — also
called personal software assistants.

Acknowledgments

This work has been supported by Centro Nacional de Pesquisa Tecnologica em Informatica para a
Agricultura (CNPTIA), which is a research center of Empresa Brasileira de Pesquisa Agropecudria
(EMBRAPA).

References

[Agen96] The Agent Society
The Agent Society Home Page
http://www.agent.org

[ANSA95] Advanced Networked Systems Architecture (ANSA)
Scripts and Mobile Agents
ftp://ftp.ansa.co.uk/phase3-doc-root/bn/APM.1593 01.ps.gz
1995

[ARA96] Distributed Systems Group (DSG) — Computer Science Department
University of Kaiserslautern
The Ara Project
http://www.uni-kl.de/AG-Nehmer/Ara/ara.html|
1996

[CERC95] Concurrent Engineering Research Center (CERC)
West Virginia University
TelDii: A Tel Interface to the Orbix Dynamic Invocation Interface
http://webstar.cerc.wvu.edu/dice/iss/TclDii/TclDii.html
December, 1995

[Cheo%6] Cheong, F.;
Internet Agents: Spiders, Wanderers, Brokers and Bots
New Riders Publishing, Indianapolis, 1996

[Ches95] Chess, D.; Grosof, B.; Harrison, C.; Levine, D.; Paris, C.; Tsudik, G.
Itinerant Agents for Mobile Computing — IBM Research Report RC 20010

XV SiMPOS10 BRASILEIRO DE REDES DE COMPUTADORES 523

IBM Research Division, 1995

[Fini93] Finin, T. and others
Specification of the KOML Agent-Communication Language plus example agent policies
and architectures
External Interfaces Working Group of the DARPA Knowledge Sharing Effort
Technical Report, Working Paper, June 1993

[FIPA96] The Foundation for Intelligent Physical Agents (FIPA)
FIPA Home Page
http://wwiw.cselt.stet.it/fipa/index.htm
November, 1996

[Fran96] Franklin, S.; Graesser, A.
Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents
Proceedings of the 3rd International Workshop on Agent Theories, Architectures, and
Languages
Springer-Verlag, 1996

[Gene92] Genesareth, M. R.; Fikes, R, E.
Knowledge Interchange Format Version 3.0 Reference Manual
Technical Report Logic-92-1, Stanford University, January 1992

[Gene94] Genesareth, M. R.; Ketchpel, S. P.
Software Agents
Communications of the ACM, 37, July, 1994

[Gene96] General Magic, Inc.
Telescript Technology: Mobile Agents
http://www.genmagic.com/Telescript/W hitepapers/wp4/whitepaper-4, htm|
1996

[Gray95] Gray, R. S.
Agent Tel: A transportable agent system
Proceedings of the CIKM Workshop on Intelligent Information Agents
CIKM 95, Baltimore, Maryland, 1995

[Gryp95] Gryphon, R.; Charpentier L.; Oelschlaeger, J.; Shoemaker, A.: Cross, J.
Using ODBC 2
Special Edition, QUE, 1995

[Guil95] Guilfoyle, C.
Vendors of Agent Technology
UNICOM Seminar on Intelligent Agents and their Business Applications
London, November, 1993

[Harr95] Harrison, C. G.; Chess, D. M.; Kershenbaum, A.
Mobile Agents: Are they a good idea?
IBM Research Report, IBM Research Division, 1995

[Hewi77] Hewitt, C.
Viewing Control Structures as Patterns of Passing Messages
Artificial Intelligence 8(3), 323-364, 1977

[IBM96a] IBM Corporation — Tokyo Research Laboratory
Programming Mobile Agents in Java — A White Paper
http://www.trl.ibm.co.jp/aglets/whitepaper. htm
September, 1996

[IBM96b] IBM Corporation — IBM Intelligent Agent Center of Competency
The Role of Intelligent Agents in The Information Infrastructure
http://www.raleigh.ibm.com/iag/iagptc2.html

[Tona96] Iona Technologies Ltd.
fona’s Orbix WWW Page
http://www.iona.com/Orbix/index. html

[Janc96] Janca, P. C.
Practical Design of Intelligent Agent Systems
IBM Corporation, Research Triangle Park, June, 1996

524

XV SiMPOSIO BRASILEIRO DE REDES DE COMPUTADORES

[Joha95]

[Kota94]

[Ling95]

[Maes94]

[Mole96]

[Nwan96]

[O’Hare96]

[OMG96]

[Ston96]

[Visio6]

[Weis96]

[Wool95]

Johansen, D., Renesse, R., Schneider, F.B.

An Introduction to the TACOMA Distributed System — Version 1.0
Computer Science Technical Report: 93-23

Department of Computer Science, University of Tromse, June, 1995

Kotay, K.; Kotz, D.
Transportable Agents
Department of Computer Science — Dartmouth College — 1994

Lingnau, Anselm; Drobnik, Oswald

An Infrastructure for Mobile Agents: Requirements and Architecture
Fachbereich Informatik (Telematik), Johann Wolfgang Goethe-Universitét
1995

Maes, P.
Agenits that reduce work and information overload
Communications of the ACM, 37, July, 1994

Distributed Systems Group (DSG) — Institute of Parallel and High-Performance Systems
(IPVR) - University of Stuttgart

Mole Alpha 1.0 Documentation
ftp://suntrec.informatik. uni-stuttgart. de/pub/MOLE/documentation. html

November, 1996

Nwana, H. S.
Software Agents: An Overview
Knowledge Engineering Review, Vol. 11, No 3, pp. 1-40, September, 1996

O’Hare, G. M. P.; Jennings, N. R.
Foundations of Distributed Artificial Intelligence
John Wiley & Sons, 1996

Object Management Group (OMG)
What is CORBA?
http://www.omg.org/corba. htm

Stone, P.; Veloso, M.

Multiagent Systems: A Survey from a Machine Learning Perspective
Submitted to IEEE Transactions on Knowledge and Data Engineering
June, 1996

Visigenic Software, Inc.
Visigenic Software - Product Overview
http://www.visigenic.com/info/prod.html

Weiss, G., Sandip, S.
Adaptation and Learning in Multi-Agent Systems
Springer-Verlag, 1996

Wooldridge, M., Jennings, N.
Intelligent Agents: Theory and Practice
Knowledge Engineering Review, Volume 10, No 2, June 1995.

