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Abstract :

The higher bit rate in the communication processing networks, the support of new technologies as cell switching, and
the need of a higher throughput in the packet processing domain is the major factor that explains the designers' trend to
develop VLSI implementation of communication protocols. It becomes a necessity in many 1SO, ITU and IEEE protocol
implemermations.

This paper discusses first the cross-impact of VLSI technology in future communication evolution, then it discusses
the functional partitioning and the key characteristics of communication circuits, and it will present a flexible approach to
designing the physical protocol parser, which is the central module of each reception machine of a communication circuit. It
will be emphasized the VHDL validation of the module's architecture. The generation of this module depends on the protocol
type and its skeleton, the grammar of the frame description and the expected real-time treatment of the packet processing.
The conception of communication protocols requires several phases: specification, validation, simulation, implementation.
Today, these steps are done with independent tools.

This paper presents an original methodology using only one language all along the specification and design process.
This approach is based on VHDL, a high level hardware description language normalized by IEEE. It is finally outlined in
this work an approach to systematically implement protocols, based on separation between the frame syntax analysis and the
field data processing. Two case studies are presented.

Resumo :

Os principais fatores que induzem a necessidade de implementagio de protocolos de comunicagdio com circuitos VLS
sdo o processamento de altissimas taxas de transmissdio nas redes de alta velocidade, o suporte de novas tecnologias como a
comutagdo de células, e a necessidade de maiores velocidade quando do processamento de pacotes. A implementagiio em
"hardware" tem se mostrado ser uma necessidade crescente na implementagao de muitos protocolos normalizados pela 1SO,
ITU&T ou pelo IEEE.

Inicialmente este artigo se propde a discutir o impacto da tecnologia VLSI na evolugdo dos circuitos de comunicagiio,
apresentando a seguir uma segmentagdo funcional de acordo com as caracteristicas chaves dos circuitos de comunicagiio,
Apresenta uma abordagem flexivel no projeto de um circuito Analisador de Protocolos, o qual é o médulo principal de cada
Maquina de Recepgdo nos circuitos de comunicagdo. E dado especial énfase & validagio dos médulos com VHDL. A geragio
do médulo Analisador de Protocolos depende sobretudo do tipo de protocolo e de sua estrutura, da gramatica da descrigio do
quadro de dados e do processamento do pacote em tempo real. A concepgdo de protocolos de comunicagiio requer vérias
fases : especificagdo, validagio, simulago, implementagdo e testes os quais sdo realizados por diferentes ferramentas.

Este artigo introduz uma metodologia original que utiliza uma Gnica linguagem ao longo de todo o processo desde a
especificagdo até o projeto. Esta abordagem ¢é baseada em VHDL, uma linguagem de descrigo "hardware” de alto nivel
normalizada pelo IEEE. E também destacado neste trabalho um enfoque que permite a implementagéo de protocolos de
forma sistematica, baseado principalmente na separagdo entre a andlise da sintaxe do quadro ¢ no processamentos dos dados
nos campos especificos. S3o apresentados e analisados para validagdio dois diferentes protocolos de comunicagio.
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Specification, VLS| Parser Generator, VHDL Validation, AAL3/4 protocol.
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1 - Introduction

High-level ISO protocol implementation has been traditionally carried out using software approaches. New
technologies in networking, namely the new-generation transmission links, have resulted in the need of
communication controllers that can handle high-speed traffic. It will become more difficult to implement the
corresponding protocols in software [1](3] since such implementations would be too slow and offer unacceptable
transfer delays for many applications [4][12]. To reduce the message transfer delay and achieve a higher
processing speed, a specialized, VLSI-based implementation would be necessary [2][16]. Therefore we assist an
increasing trend for hardware by designing ASIC's dedicated to the execution of low-layer 15O and IEEE
protocols [5] as well as circuits dedicated for cell based high speed networks like B-ISDN, DQDB
or LANs ATM(FORUM ATM)[20].

The design process of communication protocols requires three main step: specification, validation and
implementation. There are also phases like simulation to aid the designer in the debug. Nowadays, these steps are
carried out by using distinct languages. The protocol specification is often written in natural language or using
formal description techniques such as LOTOS, ESTELLE or SDL. The description of the architecture uses
specific languages such as VHDL [17] for hardware implementation points to go right to silicon. Software
implementation is done using classic programming languages like C, ADA or OCCAM [13] for parallel
execution. Some tools exist to generate C source code from formal description languages. But they often produce
non-optimized programs, and the programmer must re-write a part of code. Moreover, they are adapted only for
software implementation, and the emergence of high speed protocols increase the importance of the hardware
points. This large disparity of languages during the design introduces uncertainty. We show in this paper how to
reduce this incertitude by using the VHDL language all along the design process.

In the most general case, however, the commercial circuits are not entirely autonomous. They depend, in
fact, on the host microprocessor in order to perform the complete protocol execution. Furthermore the upper
levels are in this case managed by an executable code which is loaded in the station system kernel. These software
implementations are slow, their transfer delays are, for many applications, unacceptable [10]. A hardware solution
can provide, under certain considerations, a good increase to this rate throughput [6][13][19].

The throughput requirement is not the only reason that can explain the tendency for developing VLSI circuits,
because economic necessities are also a primordial factor: integration provides substantial decrease in the
equipment cost, the supplementary costs due to research and study supplementary costs are redeemed by the
number of manufactured pieces. Moreover, miniaturization can reasonably come up to industrial needs related to
environment and size requirements.

Our main design goal is the implementation of a communication circuit dedicated to the execution of system
protocols that can greatly reduce the delay to transfer a message, hence enabling the host station to take full
advantage of the network capacity, and minimizing the intervention of software in the management of such data
protocols and services. .

We must take into account that protocol specifications are, in the most general case, software-oriented ; the
frame structure is often defined in such a way that a real-time processing cannot be carried out "easily" using a
hardware circuit. Our approach is based on a flexible architectural model that performs two separate tasks: the
analysis of the frame structure and the processing of data associated to its different fields. We propose a design
methodology based on automatic module generation and leading to communication architecture synthesis. By
studying ATM protocol we have realized that there are some redundancies within certain protocols levels, and
that the AAL frames present fixed lengths in their control fields, with a specific purpose in each field, which
allowed us to adapt our generators to process the AAL3/4 (for WAN in accord with ITU standards)[16][19] and
the AALS (in accord with the Forum ATM recommendation)[20]. A data communication circuit has to run a
certain number of parallel and communicating processes [3]. Consequently, it is composed of dedicated machines
which are allocated, statistically or dynamically, to these processes. The Reception Machine is the part of the
communication circuit which is in charge of processing the incoming frame. If we want our circuit to implement a
protocol regardless of its level and of the standard it is issued from, then a specialized module within this machine
must be available to analyze the structure of the frame, called in this paper by the skeleton, to understand the static
and/or the dynamic fields it contains and finally to "hack" the frame in order to transmit fields data to some
processing units like address recognition unit, network clock management unit, CRC management unit, and
others. This module will be called : The Protocol Parser.

In the present paper, we will focus over the analysis of the frame in the reception case and the architecture of
the protocol parser module. Chapter 2 is intended to the study of the frame skeleton and the definition of the
associated parser architecture, place and role within the reception machine of a communication circuit. Chapter 3
specifies and implements the module's architecture. In chapter 4, we present the validation to a well-defined class
of protocol parser modules by presenting a dedicated silicon generator and by carrying out two case studies of the
HDLC protocol and the AAL3/4 ATM protocol. Finally, chapter 5 gives out some general conclusions concerning
the protocol formal description and relationships to the silicon architecture generation domain,
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2 - Hardware Protocol Implementation

2.1 - Behavioral Modeling
The implementation of a MAC-level protocol [7] is based on two processes: the transmit process and the
receive process, each of which executes a number of functions to manage the outgoing or the incoming frames.

The transmit process consists in assembling the different fields of the frame in a given order. Those fields can
be cither provided from the application-side interface and are considered as data or commands in the MAC level,
or "internally" generated by the transmit process itself. One typical example of an internally generated field is the
FCS (Frame Check Sequence) which is computed by the transmit process and appended to the outgoing frame.
The receive process can be seen as the reverse of the latter. It consists in disassembling (parsing) the different
fields of the incoming frame in order to send them either to the application or to some internal processing units.
The FCS field, for instance, is treated during the reception to check the coherence of the frame,

Fields generated or processed internally in the MAC level are sometimes called function codes. They are
related to events occurring during the frame transmission or reception (data request, data acknowledge, ...). In
many cases, they may have data associated, as arguments, to them. In both the transmit and the receive processes,
the assembling/parsing operation is essentially based on the different structures the frame may have. These
structures represent the frame syntax. On the other hand, for each possible structure of the frame, a set of
processing tasks must be executed. Those represent the frame semantic.

2.1.1 Frame definition

A given frame can be defined as a variable length vector of N bits. We call frame skeleton an increasing
sequence {bjli=1 _ nwhere:

- bp=0; bj>0foreachiin[l.n],; where by, is the frame total length.

Two successive terms, b;_j & bj, of this sequence delimit a field F; (with 1_i_n). The frame is thus organized as a
set of n fields. For a given i, the knowledge of the terms b;, (j = i+1, i+2, ..., n) can be predetermined ; this is the
case of a "simple" frame where the skeleton is said to be static. On the contrary, values of {bj}; j+1 can depend
on the content of the field F; ; starting from bj, the frame can have a multitude of structures following the value of
that field and the skeleton is then said to be dynamic.

2.1.2 - Function-Code Specification

A basic ISO protocol implementation is based on two finite state machines. Each one transmits an event to
its correspondent either to inform it of a data transmission or an acknowledgment, or to formulate a request, This
event is coded in-frame within a given field that is called as s Function-code,

Let us present some formal features of the function-code field :

- The function-code is a predefined field within a frame. The field location, length and
definition domain are fully known,
- The function-code type is enumeration. This means that the corresponding field takes

its value from a predefined finite set.

- Data can be associated to a function-code.

- A function-code can modify the structure of the rest of the frame. This is the case of the
dynamic skeleton frame discussed before. The new structure, that is the new values of the
skeleton sequence can be carried by some data frame fields associated to the function-code
and the skeleton knowledge is then explicir (length and type of parameters for example). In the
opposite case, the skeleton knowledge is implicit.

The identification of a certain value which belongs to the function-code definition set (by a certain
function-code recognition unit) is known as function-code recognition. This recognized value induces usually the
triggering of a corresponding task to perform some specific treatment. As we have said previously, data can
eventually be associated to this function-code to indicate, for instance, the length of the frame or a variable part of
it, a clock value, etc... Corresponding data field (or group of fields) is then considered as argument(s) to such
actions launched by the recognition process.

A classical example of function-codes is the address field within a frame, this field can be used 7o imoke a
Junction besides its "natural" role of routing. In the IEEE 802.2 protocol specifications [11], management function
uses reserved addresses. This is an example in which the function-code is implicitly carried in a ficld.

The Polling bit (P) in the HDLC protocol is another example [9]. Here, the function-code is explicited by the
transmitting station. In fact, put to 1, this function-code request the secondary station(s) to give an immediate
response. In some cases, and in order to simplify the treatment, this bit can be seen as a part (a sub-field) of the
HDLC frame command field, the later being considered as a global function-code.

Another example taken from the HDLC protocol specification(figure 1) is the first bit of the command field (8
bits). In fact, the off (0) value of this bit indicates an information frame format. In this case, the rest of the field is
structured as below. On the on (1) value, another function-code is encountered : the next bit. It indicates either a
supervision format or a non-sequential format.
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figure 1 - HDLC function codes

This 1s an illustration of function-codes modifying the frame skeleton. We will call them skeleton Junction-
codes. Let us notice that the second skeleton function code do not exist in the information format case.

Command field function-codes involving the frame skeleton definition appear also in many protocol
specifications, for example in the X25 and ISO transport protocols [9][21]. In the IEEE 802.4 protocol
specifications [11], the first two bits of the global control field define a skeleton function-code. If those bits are
off, then the field describes a MAC frame. The next six bits indicate the MAC control frame type. The recognition
unit has to match the value of these bits, which belongs to a restricted definition set, among the 26 theoretical
possibilities. On the other hand, if the skeleton function code value is 01, then the field describes a LLC data
frame. In this case, the next six bits have a different structure : bits 3, 4 and 5 constitute the MAC-action field,
which is a static function-code, while bits 6, 7 and 8 constitute the priority field. Information contained in this last
field must be associated as arguments to the previous skeleton function-code. The function-code is said to be pre-
Jixed. In the X25.3 protocol specifications [9], the skeleton function code is defined by the first half-byte and the
third byte of the frame (except for the RR, RNR and DT frames). The DT frame is defined only by the first bit of
the third byte ( if equal to zero), the seven last bits of this byte contain the P(R), M and P(S) information. This
type of function-code is said to be post-fixed. In the ISO transport protocol [23], the skeleton function-code is
defined by the second byte of the frame. The variable part of the following frames (CR, CC, DR, DC and ER)
contains other function-codes particularly for exchanging parameters. This type of function-code is said to be
nested. From the previous examples, we notice that the function-codes could be static or dynamic, pre-fixed or
post-fixed, explicit or implicit. They also could be cascaded or nested.

2.1.3 Protocol syntax
The protocol syntax is, then, related to two attributes: (i) the set of all the fields involved in the frame
composition and (ii) a set of rules that govern the sequencing of these fields in the frame structures.

+ The field: A field is a set of bits {b;} properly coded for transmission in the physical laver. Every field
type is characterized by its size (the number of bits it contains) and its value. It is initiated by asource unit and
conveyed to a farget unit. Two sorts of fields can be encountered within a frame: a MAC field and a physical field.
The first one is intended for the MAC level while the second is entirely processed by the physical layer. Its value
is ignored by the MAC layer.

The value and the size of a given field can be constant or variable. Variable-size fields (simply referred to as
variable fields) have a number of bits that may change from one frame to another. The actual size of every one of
them is determined during the frame processing.

Many protocols contain special function codes which value can change the remaining structure of the current
frame. We call them structure-modifying function-codes (SFC). More than one level of hierarchy of SFC may
exist.

* The field sequencing: The sequence of fields in a given frame determine the frame tfype. The different types are

defined in the protocol specifications. For example, consider an hypothetical protocol with four frame types
illustrated in figure 2-a.
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(a) protocol frame types (b) relation between frame types

figure 2 - frame types
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Let F be the set of these types:
= {Fl-F2| FS 3 F4}
and f the set of the field types involved in all the possible frame structures:
f= {fl ' f31 fs; f41 f51 f6, f';. fs, fg}

The relation between the different frame types is represented in figure 2-b.

In this example, f1, 2 and {7 are SFC. According to the actual value of f1, either 2 or 6 follows. If the second
field is £2, then one might have F1 or F2 type, and so on. This relation between the different frame types may be
expressed by a graph where the nodes represent the fields and the arcs indicate the possible sequences of fields.

2.1.4 Protocol semantic

The frame semantic is concerned with the treatment triggered during the frame processing. It allows to map the
different fields of F to a set of processing tasks T = {T}.}. To every processing task are associated (i) two signals:
start-activation. S and end-activation, E, (ii) a set of parameters, P, (i1i) the data carried within the field, D and (iv)
the operation result, R (see figure 3). For example, consider a field that contains the address of the target station.
The associated processing task, activated during the reception of the field, have as input the value carried within
the field (D). This value is to be compared to the address of the station, regarded as a parameter (P). The output
(R) is the fact that the address has been recognized or not.
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(a) field processing during reception (b) field processing during transmission

figure 3 - field processing

2.2 - Structural Modeling

After having presented in section 2.1 the behavioral modeling of a communication protocol, we will focus in
this section on the architecture of a dedicated communication circuit. Such a circuit can be divided into three parts
[7]; the MAC protocol processing part (the circuit core), the application-side interface, and the medium-side
interface.

2.2.1 The MAC protocol processing part

The representation of a MAC-level communication protocol by two graphs can be translated to a circuit
architecture. Such an architecture is composed of two control parts and a set of processing units that are bounded
to the different treatments associated to each field. The control parts implement the frame syntax (the field types
and sequence). They are also in charge of triggering the processing units by driving the (5,E) couples of signals.
Each control part is modeled by an array (see figure 4) in which the rows refer to the different (possible) ficlds
{f;} of the different frames and the columns represent the features of each one of them (size, type, function, ...).
The receive/transmit control part is synchronized by the receive/transmit bit clock. For each field being processed,
a different state of the array is entered depending on the sequencing conditions (in the case of more-than-one-bit
wide field, the current state remains the same).

2.2.2 The application-side interface

The application-side interface must allow the communication circuit to exchange data with the host (the
station). It essentially depends on the complexity and on the “level of intelligence™ of the later (microprocessor-
based system, hardwired station, ...). One can functionally separate this interface into two parts: an adaptation
part and a memory buffer. The first part permits to adapt the signals of an external bus (the station-shared bus) to
the internal circuit ones. The memory buffer can be of different sorts: specialized register set, FIFO queue,

DPRAM,...
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figure 4 - the array model of the control part

2.2.3 The medium-side interface
The medium-side interface implements the physical layer. It depends on both the medium characteristics and
the communication protocol features and performs chiefly synchronization and data encoding/decoding tasks.
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figure 5 - architecture of the communication circuit
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Different control signals are exchanged with this interface such as the receive and transmit clocks, the start-of-
frame detection, a contention detection, ... Figure 5 presents an architectural model of the MAC-level
communication circuit

2.3 - Reception Machine Architecture on a Communication Circuit
As we have mentioned above, a VLSI communication circuit is composed of a certain number of

processors (or machines) dedicated or allocated to the treatment of the parallel processes taking part in the transfer
operation [12]. Let us suppose, for simplification purposes, that the circuit performs serial data transmission and
reception. One principal machine will then be the serial interface managing the serial link. A parallel interface is
usually available to manage the host microprocessor bus accessing the shared memory. Two data flows can be
distinguished :

- data originated from the memory via the parallel interface, processed by a transmission machine and
transmitted on the serial link via the serial interface, this is the transmission data flow, and

- data received over the serial link via the serial interface, processed by a reception machine and stored in the
memory via the parallel interface, this is the reception data flow.

All the machines within the circuit are monitored by a control part to which other annex processors are
linked ; let us mention for instance the initialization process, the error treatment process and others. Figure 6 and 7
give respectively a simplified synoptic of a communication integrated circuit and the Reception Machine block
diagram. The role of the reception machine of a given layer is to process the frames provided by the distant
transmission machine of the same layer. Let us give hereinafter the principal functional modules composing this
processor whose modules are schematized in figure 7.
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figure 6 - communication circuit functional figure 7 - a reception machine block diagram

partitioning

_ The Protocol Parser Module is in charge of parsing the serial incoming frame. This means that the module

must "understand” and "consume” the frame skeleton providing a syntactical analysis process. This operation is
accompanied with the frame parsing and cutting processes. That is the reason why we will call such a module : a
parser. Data and other information and parameters contained in the frame fields are then supplied to specialized
processing units which must be activated by the parser.

A set of Processing Units are in charge of treating information furnished by the parser, Examples of
these units are : address recognition unit, network clock management unit, CRC processing unit and, naturally, the
skeleton function-code recognition units which perform the matching between the incoming values and those of
the definition set. On the other hand, signals originated from theses skeleton function-code recognition units must
be used by the frame analysis module, a feedback loop is then necessary in the case of dynamic skeleton frame
analysis. The total number of the processing units and the internal architecture (serial or parallel) of each one of
them depend on the implemented communication protocol and the degree of expecied real-time treatment in the
packet processing.

It is fairly obvious that different types of function-codes demand different architecture implementations.
The CRC processing units is naturally serial machine, whereas an address recognition is performed more easily in
a parallel way. Basic implementation of these units can be done using serial or parallel comparison operators, the
definition values of the function-code being for example stored in a ROM. A PLA-based implementation of the
recognition binary tree can be also considered in the case of a serial bit-by-bit comparison.

In order to permit the storage of data in memory, the frame analysis module performs data deserialization
into an internal bus. Parallel data is stocked in a FIFO queue, sequenced by a specialized control part, whose
function is to match the speed of this internal bus to the shared memory one. The optimal FIFO size and its word
size in function of the microprocessor working frequency have been studied in [15].

A Direct Memory Access Module is in charge of transferring the deserialized data, temporarily stocked in
the FIFO, towards the host shared memory. Let us mention here that data which cannot be processed by the
current level reception machine are generally stored in the shared memory and are to be processed by the software
programs. The whole reception operation is globally sequenced by a General Control Part.

In the next section, we will present the protocol parser functional architecture. The other modules are not
immediately concemed by the present study.

3 - The Protocol Parser Architecture

The necessity of frame cutting depends on the implemented protocol and particularly on the degree
of the expected real-time treatment of some specific fields of the frame. Real-time treatment are carried out by the
communication circuit without having recourse to microprocessor resources and programs[8][16].

Figure 8 gives a generic functional architecture of the protocol parser and figure 9 gives the generated
Parser Module that follows it. The Serial Control Part is in charge of sequencing the frame analysis process. We
suppose that the start-of-message field has been recognized earlier (in a serial manner) by an appropriate detection
unit. The frame parser is then activated by a control signal. Furthermore, the control part communicates with the
delimiting field recognition block which indicates the limits of the frame being processed. This block can be a
simple ROM in which the skeleton sequence are memorized in the case of a static protocol implementation. The
terms of this sequence are then furnished one after the other to a comparison device related to a frame bit counter.
In a dynamic protocol implementation, however, this block is much more complicated. Feedback signals coming
from the skeleton function-code recognition units are used by this block to compute the implicit terms of the
sequence. Speed is a primordial factor in this case, especially if a real-time treatment is engaged.
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The serial field supplying block delivers the field data on serial lines taken as derivations to the frame line.
Moreover, activation signals are delivered to the concerned processing units in order to awake them and to tell
them whenever data are available.

The interface serial-to-parallel block is a simple parallel shift register. Deserialized data are transported on a
reception machine internal bus towards the FIFO queue. The same bus is used by the Parallel Field Supplying
Block in order to deliver parallel data to the concerned processing units, Parallel activation signals are also
furnished to these units via the Parallel Control Part, which treats the serial activation signals and outputs a set of
control signals aimed at the parallel field supplying block.

The internal architecture of the parser components as well as that of the associated processing units depend on
the implemented protocol specifications.

3.1 - A Dedicated Protocol Parser Silicon Generator

The term Silicon Generation (or the well-known but improper term Silicon Compilation) has been widely
used in the domain of Integrated Circuits design since it was first introduced by Dave Johansenn in 1979 at the
16th DAC. Intuitively, the silicon generation denotes all the processes that lead to the final layout of an integrated
circuit starting from a behavioral description of its functioning in the same way that the program compilation
leads from a high-level language description of an algorithm to a machine-executable code.

With the arising of the circuit complexity, manual methods of design became less and less convenient. They
offer reduced possibilities to evaluate timing, consumption and/or area figures of a given architecture so that we
understand easily why the silicon compilation term is also applied to every program helping to reduce the
complexity of the design process, even if it is not dedicated to layout generation. It is clear that ASICs are the
main domain of application for silicon generation tools.

A module generator can be defined, in the most general case, as a reduced silicon generator which, taking
into account the function of the module and some given parameters, outputs a logical model of the block plus its
final layout [20].

One can distinguish two categories of module generators :

- Generators of general-purpose blocks[15], such as FIFO, DMA, ROM, RAM, PLA,... which are intended to
output regular structures. Generation parameters are typically the number of word, the number of bits per word
and the ratio aspect in the case of the ROM and RAM generators and the number of inputs/outputs plus a truth
table in the case of the PLA generators. We can add to this category the data path generator which could be used
to implement a circuit in a bit-slice style for instance[14).

- Generators of specific modules. In this case, a target architecture must exist. The generator takes as input a
certain number of parameters (called parameters of flexibility) and generate the architecture according to them.

In the area of communication system design where system engineers are more and more invited to design
VLSI circuits to implement communication protocols. Appropriate module generators[20], which accept a certain
formal description of the protocol specifications in order to generate the corresponding frame analysis module,
would be a very useful system CAD utility which relieve system engineers of the difficult VLSI circuit manual
design task and avoid having recourse to professional VLSI circuit design engineers.

3.2 - The Protocol-Parser Module

3.2.1 - Functional Specifications
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The object of this chapter is the validation of the frame-parser concept by a dedicated study. We will
present a well-defined class of flexible modules intended to be automatically generated according to certain
parameters, namely the number of fields within the frame and the size of each one of them. The FIFO bus width is
another parameter of flexibility, yet its choice is not entirely open since it must be compatible with the direct
memeory access unit bus in the reception machine and the host microprocessor bus.

The target class of circuits is characterized by the following features :

- frames processed by the generated circuit must have a limited (though variable) number of fields :

- the frame skeleton is statistically defined (dynamic function-codes will not be considered) ;

- the skeleton sequence term values will only be known at the generation time. This means that the target
architecture is not intended to the processing of a determined protocol frame ;

- the considered function-codes can be either simple (without associated data) or, in the opposite case, pre-
fixed. Post-fixed function-codes are not considered. Nevertheless, the CRC, which can be seen as an example of
such function-codes can be treated if it is located at the end of the frame. The treatment manner is detailed in the
case study below.

- generation parameters are inspired from a target sub-set of skeletons defined in OSI high-level protocol
standards.

3.2.2 - The Architecture

The flexible circuit architecture has already been shown in figure 8. The values of the {bj}terms which
define the frame skeleton are stored, at the generation phase, in a ROM which corresponds to a given frame
specifications. We have chosen, however, to enhance the dynamic character of this memory by storing more than
one skeleton in it. An index signal will initialize the memory address counter in order to choose the appropriate
stage. This is fairly useful if we want the circuit to process a group of frames whose skeleton is entirely defined
by a code figured in the beginning of their header. A dedicated recognition unit is associated to this function-code
in order to generate the index signal.

In spite of the use of a "layer-organized" ROM, the previous architecture remains somehow rigid. A more
flexible choice consists in using a RAM, but then we come up against the problem of the writing interface in the
memory at the initialization phase. A possible solution could be the use of the serial link (data in link) to enter the
desired values in the memory, (notice that this is not usually done in communication circuit architecture).

Elements of the memory are compared, one after the other, to the value of the bit up-counter and the
comparison result is sent to the serial control part. All the other module components have the same function
explained hereinabove.

4 - The Parser Validation

4.1 - Case Study 1 : The HDLC protocol
The objective of this case study is to illustrate, via a widely-known example, the architecture that has been

chosen, where it is generated the analysis module of a simplified HDLC protocol. The skeleton of a data frame is
illustrated below (figure 10).

L
P 4
fanion address | command data FCS fanion
01111110 (8 bits) (8 bits) variable (16 bits) (8 bits)
> A 1
¥

figure 10 - HDLC data frame skeleton

The fanion field constitute the delimiting frame sequence, every frame must start and end by a fanion. The
same flag can be used simultaneously as a closing fanion of a frame and an opening fanion of the next one, We
will suppose, in our example, that this flag is detected by the start-of-message detection unit and an enabling
signal is sent to the circuit in order to start functioning.

The address field (one byte size) must identify the secondary station(s) involved in the considered frame
transfer operation.

The command field (one byte size) contains the commands of the primary station, the responses of the
secondary one(s) and the sequence numbers, An example of its internal structures has been given above. In our
case, we will consider it as a single field intended to only one processing unit. The HDLC frame can thus be seen
as static.

The data field can be composed of an undetermined number of bits (in fact, HDLC is a bit-oriented
protocol). Nevertheless, in practical implementations, it is often structured into characters. We will adopt, in this
study, a multiple-of-bytes data field. Furthermore, we suppose that the zero elimination process has already been
performed.
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The Frame Check Sequence (FCS) field calculation at the transmission time takes into accounts all the bits
between the start fanion and the first bit of the FCS field. It is a post-fixed function-code. The detection of the
corresponding Cyclic Redundancy can be used to indicate the end of this field. Notice that the beginning of the
field (the end of the data field) is not known, data can have an undetermined (but bounded) number of bytes.

As it has been already said, the simplified HDLC protocol we are implementing is a static protocol, it
belongs to our generator target class. As the data field length is not known, we will load in the skeleton ROM the
maximum authorized size. If the frame is error-free, the cyclic redundancy check (CRC) is used to determine the
end of the FCS field. In this case, the data receiving unit must count the number of bytes it receives and not
validate the last two of them.

The circuit simulation waveforms were obtained from the input frame given in the figure below :

01111110 §10101010 00001000 | 1100001100111100 1110010010011011 01111110

address command data FCS

(SrDatal) | (SrData2) (SrData3)

figure 11 - input frame stimulus

We can recognize the serial and the parallel activation signals corresponding to the address, the command
and data fields (resp. SrAct[1..3] and PrActl, PrAct2, PrAct3[1..3] in the simulation file). For clarity reasons, the
serial frame derivations corresponding to each unit are figured (the equivalent name to every field in the
simulation file is done above). Parallel data can be sampled from the parallel bus (PrData[0..7] in the simulation
file) after each parallel activation pulse. The CRC detection signal indicates the end of processing, for this reason,
the third signal of the parallel activation pulses corresponding to the data field (a ty5 field) is not used.

4.2 - Simulation waveforms and the width of the Data Bus
As we have said before, the deserialization width, noted W, is one of the generation parameters. This width
has an important influence on the field processing manner. In fact, if we divide the frame into segments of size
W(figure 12), we can distinguish five types of fields :
W bits

Frame

-

figure 12 - frame segmentation

- tyl: The field width is less than W, its beginning coincides with a W-division instant ;
- ty2: The field width is less than W, its ending coincides with a W-division instant ;
- ty3 : The field width is less than W, it is entirely situated between two successive W-
division instants ;
- ty4 : The field width is less than or equal to 2*W, but only one W-division separate it into
two pieces ;
- ty5: The field width is greater than W, it occupies several successive W-segments.
One can extract the following two relations between the different field types :
tyd i: <ty2><tyl>;
ty5 = <ty2><W> <tyl>.

Notice that, the ty4 type can be seen as a particular case of the ty5 type. In figure 13 it is illustrated the
functioning of the circuit by means of waveforms, we can distinguish the serial activation signals and the parallel
activation signals of the correspondent real-time processing units.
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figure 13 - derived circuit signals to activate real time processing units

The serial activation signals, delivered by the serial field supplying block and sequenced by the senal
control part, delimit each processed field. A typical use of these incoming signals is the enabling of a 3-state gate
having as input a derivation to the frame serial link. There is as many 3-state gates as the number of fields in the
considered frame. To every serial activation signal corresponds one or a set of parallel activation pulse(s) which
indicates the first data availability instant on the internal bus.

For tyl, ty2 and ty3 types, the rising front of the serial activation signal is translated to the following W-
division instant to construct the parallel activation signal (one cycle duration).

For ty4 type, corresponding field information must be activated twice since it is separated into two parts
belonging to two successive W-segments : a group of two signals is then needed, the first pulse is generated as
before, the second pulse having its rising front W cycles afterwards.

As for ty5 type, a set of three pulse signals is necessary : the first one is generated as in ty type, the second
pulse having its rising front W cycles afterwards and repeated as long as the associated serial activation signal
does not fall down within a W-segment, the third pulse having its rising front coincided to the W-instant
following the falling front of the same serial activation si gnal. (see functioning waveforms for illustration).

All these signals are used for example to load different parallel registers, this is the reason why we have
preferred not to carry the ty4 or ty5 set of pulses on only one physical wire.

4.3 - Case Study 2 : Implementation of AAL3/4 protocol

The ATM protocol reference model, following the principles of a layered communication, has three
identified layers: Physical, ATM and ATM Adaptation. All the layers above the ATM Adaptation layer are
referred by the name Higher Layers.

The two lowest layers of the model are completely defined and some components already exist. The physical
layer deals with the access to the medium and cell delineation. The ATM layer is in charge of cell header
generation and extraction, cell demultiplex and multiplex and virtual channel identification. The ATM Adapration
Layer (AAL) functions [20] are only performed at the network boundaries, The specification of this layer has
been made in the international standards organization (ITU, ANSI, ..). It performs functions required by the user,
control and management planes. Its functions depend on the higher layer requirements. It is split in two parts: the
Segmentation And Reassembly (SAR) sub layer deals with the segmentation and reassembly of message, lost or
miss-inserted cell detection and multiplexing/demultiplexing and the Convergence Sublayer (CS) is in charge of
error detection and handling and identification of information.

4.3.1 Protocol specification

This section presents the concepts of VHDL used to write functional specifications of a protocol, This
presentation is based on an example taken from the Segmentation And Reassembly (SAR) sublayer of the
AAL3/4 as normalized by the ITU&T. It deals with the control of ATM cells sequencing inside a message, by
means of the Sequence Number (SN) and the SAR Type (ST) fields. The SN field is a number incremented for
each new cell in the message. The ST field discriminates the first cell (BOM : Beginning Of Message), the last



XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 485

cell (EOM : End Of Message) and others cells (COM : Continuation Of Message) of a message. The SSM value
in the SN field indicates a message containing only one ATM cell. A finite state machine in accord with the ST
control algorithm defined in [17] is implemented to control the SAR34 Type field. This controller is necessary to
ensure that no cell on a connection has been lost or miss-ordered. But it must be done simultaneously for all
multiplexed connections opened at the current time. The VHDL source code corresponding to the state diagram is
described in [18]. The process implementing the state diagram reacts on two events: the arrival of a new cell
(IN_SYNC) and the timer alarm (SAR_TIMER_IN). All parameters of the entity are bounded to a validity signal
like at the layer interface.

To manage the cell multiplexing on ATM connections, we must use tables containing the current state, the last
value of SN field encountered on all the connections (ST_SN_TABLE_OUT_PARAM), the connection
parameters (maximum delay between two consecutive cells) (SAR_DELAY_TABLE OUT_PARAM). These
tables are defined in a package like record of the previous objects. A timer is used to control the delay between
two consecutive cells on a same connection. It is accessed by a signal named SAR_TIMER_OUT PARAM
containing the connection identifier, the command (START, STOP, ...) and the time at which it must ring (NOW
+ SAR_DELAY_TABLE_IN_PARAM). The last parameter is a time value containing the current time of the
simulation incremented by the maximum delay allowed for this connection. The SAR timer is implemented with a
scheduling list, i.e. an array of dates (VHDL dates) sorted by time. Functions and procedures are used in the timer
process to update this scheduling list.

4.3.2 Services Specification

We describe, in this section the method we have used to specify service in ATM systems. Examples
illustrating this step are taken from the AAL3/4 functional implementation.

A layer is represented in VHDL by a design entity. Service primitives offered by this layer are represented by
the "ports" (signal parameters) of the design entity. "Ports" are typed signals. The data unit contains user data
represented as an array of bytes (USER_DATA for example) and service parameters like for example ATM-
CEI{Connection Endpoint Identifier).

AAL_UNITDATA_REQUEST AAL_UNITDATA_INDICATIC

Yiosl ’ 1
[ ' AAL entity

AAL prolocol

[ AAL interface ]
L=
Vv

ATM_UNITDATA_REQUEST ATM_UNITDATA_INDICATIO

Meansgement Plane

figure 14 - AAL Interfaces

As it is showed in figure 14, each service primitive is made of two parts: a data unit
(ATM_UNITDATA_INDICATION_PARA) and a signal that indicates information validity
(ATM_UNITDATA_INDICATION).

This second signal is necessary because VHDL does not immediately set complex signals. A gap has to be
created to invalidate data during a short time when a signal is modified.

The entity describes, by means of its "ports”, all interactions with upper layer, lower laver and management
plane as shown on figure 14 for the ATM Adaptation Layer.

A data unit transferred between two layers doesn't have the same meaning for each of them. Indeed, the upper
layer asks to the lower layer to send a data unit. This unit contains only user-data for the lower layer but it
contains Protocol Control Information and user data for the upper layer. Thus we have implemented a translation
mechanism at layers interface. This entity works in both directions (receive and send) and translates a non
structured information into a structured information in the receipt direction and the opposite in the sending
direction. This entity consists only in type casting and translation functions.
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4.3.3 - Validation of the Protocol Parser Silicon Generator

Before the validation simulation operation, a top-down analysis of the circuit functionalities is done. This
results in the definition of the different functional blocks and consequently of the operators (parallel registers,
counters, comparators, ... ) which make them up. The validation itself has been divided into two successive parts :
the validation of the functional specification with a protocol layer test, and the consistency checking interface
with the architectural description.

4.3.3.1 - Validation of functional specification

The validation of functional specification can be executed in two phases: first, each protocol layer is tested
independently and then the global verification on all protocol layers is realized. VHDL makes these tests easier
thanks to its modularity and the layer sharing,

The protocol layer test consists in connecting the layer to be tested with the management plane and an entity
'dealing with traffic generation and analysis. This control entity can take place either above (figure 15) or below
the tested layer. The path at the top (respectively. bottom) of the layer is buckled to allow to test both directions,
i.e. sending and receipt. Traffic is composed of upper layer Service Data Unit or lower layer Service Data Unit. In
this configuration, packets can be analyzed at the top and the bottom of the entity, what is an interesting point to
debug the protocol specification,

For the global validation, we connect together a sub-set or all layers of the protocol reference model.

Protocol layer to be tested
Management Plane ( ) Y

Packets analysis ¢ T Packets generation

Control entity

Packets analysis

figure 15 - configuration for a protocol layer test

The higher layer is buckled on itself and the lower layer is connected to a control entity. The structure defined
here allows to test conformance of packets at the higher and lower level and also at each interface between two
layers.

4.3.3.2 - Methodology consistency checking

To describe an architecture from functional specifications and to be sure about consistency of the two
descriptions, there are currently two methods in research progress:

- Automatic Architectural Synthesis (or High Level Synthesis) : using a functional description at the
behavioral level, it gives a description at the register transfer level. Logic synthesis tools such as Design Compiler
from Synopsys, Silsync from Racal-Redac, High-Design from Genrad and Autologic from Mentor Graphics allow
to make the ultimate phase, i.e. the components and circuits synthesis on silicon. Many high level synthesis
systems exist such as CMU-CAD and its successor the System Architect's Workbench from Carnegie Mellon
University, Yorktown Silicon Compiler from IBM, and Amical from the IMAG-TIM3 laboratory.

- Formal Verification: using functional and architectural descriptions written by hand, it validates the
consistency in a symbolic way. Formal verification groups two kinds of methods: the deductive proof that
consists in transforming both the descriptions with symbolic manipulations to obtain a set of equations to be
compared [18] and the functional verification that associates a model with the system, verifications being done
on this model [17]. However, both these methods are currently limited by a sub-set of VHDL and by small sized
descriptions. This section defines a by hand but systematic method to ensure the consistency between functional
and architectural specifications, using some rules.

4.3.3.3 - Principle of the consistency checking

The consistency checking between functional and architectural specifications consists in simulating both
descriptions independently. Produced results by each of them are compared. This verification depends on the tests
quality.

Nevertheless, the organization of these two specifications is fundamentally different about tasks partitioning
between entities, interfaces and entities structure. So, interfaces must be fitted to reuse test sequences realized
during the functional specification step. In particular, signals of architectural specification interfaces must be
converted to make them identical with functional specification interfaces. The consistency can be checked at the
global level. The global design entity of architectural description must be encapsulated with a signal converter to
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obtain compatible signals (see figure 16). The build of this signal converter is described in the next sections.
Then, test sequences are injected in the architectural description and functional specification and results are
compared to verify the consistency.

This method can also be used for a sub-entity. Indeed, a design entity can be described at an architectural level
although the remainder of the system is described at a functional specification level,

RESULTS |
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figure 16 - configuration for the global level consistency checking

Thus, it is possible to test only a part of the system. Nevertheless, a specific signals converter must be developed.
The structure of the system is only a recursive view of the global level one.

4.3.3.4 - Primary rules

This method needs the functional specification of the system and a set of time constraints associated with, and
the architectural description of the system to be studied. Two important rules are the basis of this method. First,
one or more entities of the architectural description must have exactly the same functions as the ones they replace.
In other words, architectural description entities can't only execute a part of the functions of the replaced entities,
the other part being done in other architectural description entities not inserted for the verification. Thus,
functional and architectural descriptions must realize the same functions until a given abstraction level at which
the verification is performed. This concept is useful for the consistency checking of a sub-set of the description.
Indeed, the verification at the global level is accomplished on only one entity of each description, each of them
executing all functions.

Secondly, the functional specification can't be entirely independent of the architectural description time
characteristics. It is often necessary to synchronize the two descriptions modifying time criteria in the functional
specification. Moreover, functional specifications without time constraints are out of mind. Indeed, this
corresponds to operations executed in a null time, that is unrealistic in architecture.

4.3.3.5 - Signals converter building rules

The signals converter is the basis of the verification by simulation presented in this section. Several types of
correspondence between functional and architectural descriptions signals can be identified. The different
problems encountered are: different signals types, different signals number and different time constraints between
functional and architectural descriptions. Of course, these problems can be combined in one interface. The first
case deals with the homogeneous types conversion. We suppose in this case that a functional specification signal
has only one corespondent in the architectural description, and we forget time constraints. A conversion function
from the functional specification parameter type to the architectural description one and an other one in the
reverse way solve the problem. One function per distinct type of interface parameters must be define in each way.
All these functions can be grouped in a VHDL package. Table | shows the homogeneous conversions. Example
of hardware applications are put in brackets. The last conversion is often mixed with time constraints.

Functional specification signal type Architectural description signal type
Integer Bit vector (wires)
Enumeration Bit vector (1 to N coding. minimum coding, ..)
Floating point Fixed point representation
Number and exponent representation
Array index Address (Address bus)

Table 1 - homogeneous types conversion
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The second case concerns the non homogeneous types conversion. We suppose, like in the previous case, that
signal temporal constraints are the same for functional and architectural descriptions, the next part dealing with
synchronization problems. In this case, a conversion function is insufficient. The system must react on events
from functional and architectural descriptions 1o do the correspondence between signals. A conversion entity is
necessary, Parameters of this entity are those of both descriptions. Functional specification parameters stay in the
same way but architectural description ones are inverted, i.e. an iz signal becomes an out one and an owuf signal
becomes an in one. This entity consists of one process for each way of conversion (from functional to
architectural to convert data entering and from architectural to functional to convert results). Table 2 shows the
non homogeneous conversions,

Functional specification Architectural description
| signal with elementary type Several signals (data + control)
1 signal with complex type (a record for Several signals more or less complex (one
example) signal per record field for example)

Table 2 - non homogeneous types conversion

The last case deals with synchronization of the descriptions. Functional specification describes the system with
the functions it realizes and it doesn't involved in data transfer, The data transfer schedule between functional and
architectural descriptions can be fundamentally different, for example with parallel or pipeline executions.
Functional specifications often contains one signal per request or command. In the architectural description, we
can choose to transfer data on a bus. We have several signals from the functional specification that must load a
single signal concurrently. In all these cases, we must svnchronize both the (functional and architectural)
descriptions by means of clocks or operators of latency.

For example, we can look at the interface between the ATM and the ATM Adaptation Layers described earlier.
We are going to extract the part dealing with the reception side of the protocol. The functional specification
signals are ATM _UNITDATA_INDICATION and ATM_UNITDATA_INDICATION _PARAM The architectural
description signals are cell _sync-in, byte_clock-in and cell_data_in. The conversion entity needed to performs
consistency checking between both the descriptions is presented below.

entity Convert_entity 1s
port ( -- Ports for communication with the ATM entity
ATM UNITDATA INDICATION « . In BIT;
ATM _UNITDATA INDICATION PARAM : in LOWER_ATM_SDU;
== SAI Rx interface

cell sync-in : out type bit;
byte clock-in : out type bit;
cell data-in ;: out type data transfer 8);

end Convert entity;
architecture Convert of Convert_entity is

begin == Conversion from functional to architectural
process
variable i : integer;
begin
wait on ATM UNITDATA INDICATION until ATM UNITDATA INDICATION = 'l1';
cell sync-in <= 'l1', '0' after delay cell;

for 1 in 1 to 53 loop
cell data in <= Cell to Byte(ATM UNITDATA INDICATION PAREM, i):
byte clock-in <= '1', 'Q' after delay byte;
end loop;
end process; -- Conversion from architectural to functional
end Convert_entity:

The Cell_to_Byte conversion function core is not very interesting. It consists of taking the ith byie of the
parameter. The reverse order conversion (Byre_ro_Cell) performs the translation from the architectural
parameters to the functional signals. The core of the conversion entity has two processes, one in each conversion
way.

5 - General Conclusions
We have shown in this paper that VHDL provides interesting features to design communication protocols. We

can underline the work done with the same language in the same environment all along the conception, the means
to set executable specifications and the use of time at each level of the description. The functional specification




XV SimprOS10 BRASILEIRO DE REDES DE COMPUTADORES 489

contains more than 15000 lines of VHDL code. The architectural description and specified integrated circuits are
currently being developed by SGS Thomson (France) and KTAS (Denmark).

The previous study has been done from the point of view of the realization of certain system CAD utilities
to help system engineers in designing VLSI circuits implementing communication protocols. Within studies
intended to the communication circuit architecture synthesis, the ultimate goal is the development of a silicon
architecture generator of protocol parsing modules using a formal high-level description of the frame skeleton.

We will briefly discuss below the formal description tools that could be used in this work for the sake of
comparisons :

- Distributed system description languages normalized by the ISO can be used to combine the specifications
of protocol and services and those of frame skeletons. This track is worth thinking over for obvious reasons of
clarity and compactness of description. Nevertheless, the existing languages at the present time, such as LOTOS
and ESTELLE, do not to offer possibilities for all levels specification and for hardware silicon implementation.

- All-purpose programming languages like ADA and C constitute another important possibility. These
languages offer the advantage of being known by a wide population but they are not specifically designed to
describe communication protocols or hardware components.

- A description based on the graph theory and/or Petri networks can also be considered if it is combined with
a distributed system description method.

Whatsoever the tool one shall use, it must have the important following features which we've encountered
in VHDL :

- The description tool must be completely independent of the design technology. This is a well-known
principle in the silicon compilation domain

- It must be able to follow, completely or partially, the protocol specification derivations.

- The generated target architecture must be verified and validated before being used. The tool does offer the
possibility of a formal verification of this architecture, the simulation-based validation of all of the possible target
circuits being simply out of question.

Another conclusion concemns the protocol implementation complexity. In fact, due to the variety of
function-code nature, corresponding protocol frames have skeleton whose definition can be more or less complex.
If we want to perform hardware implementation of these protocols then some evaluation tools become necessary
to draw comparisons between the different choices of frame skeletons and real-time processing units and then
between the different generated architectures.

Circuits generated by a silicon generator have usually less performance (speed criterion) and are less
optimized (surface criterion) than full-custom integrated circuits. In our case, the rapid availability of results must
be motivating enough to encourage the choice of silicon generation tools and to facilitate the choice of a hardware
solution to the protocol implementation problem.
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