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Abstract

This research investigates dynamic load-balancing mechanisms on a distributed-memory MIMD machine, through the
implementation of an application chosen from the computational graphics field (ray-tracing). The application-system per-
formance is compared using user-dependent farmer load-balancing approach and user-transparent, effective and scalable,
dynamic load-balancing algorithms. Tasks are generated, at execution time, using a multiple-spawning mechanism based
on remote procedural calls. The selected implementation environment is composed of T800 transputers programed in the
occam and ‘C’ languages. The implementation of a real application have evidenced the significance of such load-balancing
tools regarded to the practicability of the system-level resource management facilities and performance improvement.

Resumo

Fsta pesquisa investiga mecanismos de equalizagio de demanda computacional (carga) em maquinas MIMD de memdria
distribuida, através da implementagio de uma aplicagio escolhida do campo da computagio grifica (ray-tracing’). O
desempenho do sistema é comparado usando-se o mecanismo de equalizacio de carga ‘farmer’, nio transparente ao usuirio,
e um mecanismo dindmico. lransparente ao usudrio, eletivo & escaldvel. Processos sio gerados, em tempo de execucio,
usande um mecanismo de ‘multiple-spawning’ tendo como base primitivas de chamadas de procedimentos remotos. O
ambiente de mulliprocessamento selecionado ¢ composto de “transputers’ TS00, usando linguagens de programagio occam
e 'C. A implementagio de uma aplicagio real evidenciou a significincia das ferramentas de equalizagio no que diz respeilo
A praticidade das facilidades de gerenciamento de recursos no nivel do sistema e o aumento de desempenho.

1 Introduction

This research has been focused on medium grain concurrent computer machines consisting of many entities
(nodes or processors) [Fox et al., 1988). Each entity is a complete computer, built up of CPU, memory and
communication facilities. This class of machines, composed of multiple autonomous nodes (computers) inter-
acting through communication devices and operating asynchronously with distinet instruction streams and data
sets, is classified as a loosely-coupled distributed-memory MIMD ({Multiple Instruction, M ultiple Data) machine
[Flynn, 1966, Watts, 1989].

Parallel distributed-memory MIMD machines cannot be built by simply interconnecting large quantities of
existing CPU, memory and 1/O resources, because such an approach could easily produce a system that is unman-
ageable lo program and makes ineffective use of its components. The management of resources is a mechanism
used to provide efficient access and use of resources (the multi-processor system) by consumers (any combina-
tion of users, which may involve multi-task or multi-thread programes). Some of the objectives of the resource
management mechanism are: (1) To decrease the application execution time, thus increasing the overall useful
compulational performance of the system. (2) To increase portability. facilitate programmability and usability of
general purpose multi-processor supercompulter systems.

The main aim of this paper is to compare, through the implementation of an application chosen
from the computational graphics field (ray-tracing). the application-system performance using four dynamic-
placement load-balancing mechanisms. A short description of this research can be found in the literature
[Muniz and Zaluska, 1996]. =
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2 Hardware and software environment

The specific target hardware environment consist of a distributed-memory MIMD Parsys Supernode machine
composed of 25 MHz T800 transputers [Nicoud and Tyrrell, 1989, Inmos. 1989]: links were run at 20 Mbits/second
(neighbour processors are connected through hard-wired links). Each processor module has 4 Kbytes of internal
1-cycle memory and 4 Mbytes of external 4-cycle memory. The topology selected was a 4x4 torus processor
network as shown in Figure 1. The principles demonstrated are general and not restricted to any particular
MIMD hardware machine. In terms of programing languages, the research work was developed using the occam 2
language [Inmos, 1988a, Inmos, 1988b. Inmos, 1988c] and the parallel ‘C’ language [Inmos. 1990).

3 Placement and routing facilities

The design of an efficient, run-time, processes placement system requires a set of ‘Remote Procedure Call” (RPC)
primitives and creation of communication facilities [Dally and Seitz, 1986, Pountain, 1990, Dally. 1992]. to support
the exchange of data among the running processes. Autonomous communication mechanism makes intermediate
processors transparent to through-routed packets (messages addressed to anyone else). In this research work, fully
connected facilities were achieved using a virtual point-to-point store-and-forward message passing mechanism: the
automatic routing package ‘Virtual Channel Router’ (VCR) [Hill, 1993, Debbage, 1993]. The VCR also provides
a set of ‘Remote Procedure Call’ (RPC) primitives - an occam 2 language extension [May, 1989]. Such RPC
facilities were used to place run-time processes.

It is necessary to stress that although cost-effective multi-processor systems are now commercially available
[Fox et al., 1988. Meiko, 1992]. the full utilisation of such parallel hardware power is still restricted because of a
lack of facilities such as a proper load-balancing mechanism [Dally et al., 1992]. Any processing system in which
the computation and communication demand cannot be predicted a priori requires dynamic (run-time) run-time
strategies for optimum efficiency.

4 Location policies

The systern load demand equalisation can be achieved by a careful placement of newly-created tasks (pro-
cesses) on under-utilised processors. The system performance is compared using ‘Gradient Model’ (GM) scheme
[Lin and Keller, 1986], the ‘Extended Gradient’ (EG) mechanism [Muniz, 1994] (which is derived from the GM
mechanism) and the farmer approach [Pritchard et al., 1987].

4.1 Gradient model mechanism

In the GM scheme, exchange of load-balancing information is restricted to a small and pre-defined subset of the
other nodes in the network, therefore a potential scalable scheme. The status of each node is determined by local
processor availability and the status of its neighbour nodes - this status represents the logical distance (number of
intermediate neighbour nodes plus one) to the nearest idle node in the network. This information is propagated,
from lightly-loaded to over-loaded nodes, through an interchange of messages among neighbour nodes. T he load
status of each processor, in a network, is updated (and broadcast) at periodic intervals whenever the status of the
processor changes. A ‘snapshot’ of a distributed-memory MIMD transputer network machine, organised as a 4x4
torus topology, using GM scheme is represented in Figure 1.

4.2 Extended gradient algorithm

Although the GM scheme is scalable, it has two serious drawbacks [Nishimura and Kunii, 1990]: (1) Information
from idle (lightly-loaded) nodes propagates to over-loaded nodes through intermediate ones. In the worst-case
there is a distance of ‘d" hops between possible source and destination processors, where ‘d’ is the maximum
distance between any pair of nodes in the network. Since the system load changes dynamically, the processor load
status may be considerably out-of-date [Shin and Hou, 1991]. (2) If there are only a few lightly-loaded nodes in
the network, more than one source processor may emit a task toward to the same lightly-loaded processors. This
‘overflow’ effect has the potential to transform lightly-loaded processors into heavily over-loaded ones.

The EG mechanism confirms that a processor is still idle, in order to overcome the problem of out-of-date
information and avoid the overflow effect. before transferring load. In other words, once a processing resource
is required and not locally available then the local process responsible for resource allocation interrogates the
remote processor identified by the GM scheme as lightly-loaded to confirm that it is still available and reserves
it to receive the new processing demand. The EG strategy (like the GM scheme) allow processes to be loaded
from any processor into the network (i.e. simultancous loading activity from different user-processes is possible),




XV SIMPOSIO BRASILEIRO DE REDES DE COMPUTADORES 207

- Tu

Symbols: rectangle with
l
(31”} "{(2”"} ‘"G:’“)J =4, round corners is a pro-

p2 | P! t: o2 "', cessor identified as py,
""’-‘“" i p1, ... the continuous
': and dash lines between

' processors represent the
i physical link; Tuple (x.y).
{m i inside a rectangle with
;} round corners. represents

r: the logical distance (num-

([2_”) ) .1' ber of intermediate neigh-

-
-

___a--1
-'J-r-'
-
e
-
-
—
A-q
H
—
S
L)
-

e bour processors plus one)
----- U and the identification of
the nearest idle processor.
A single idle processor
(node 11) is shown.

Figure 1: Snapshot representation of the GM scheme on a 4x4 torus network.

providing global placement space. Although communication between any two nodes in the network is possible,
this communication facility is used efficiently therefore keeping the EG scalable [Muniz and Zaluska, 1995].

4.3 Farmer distribution approach

The farmer dynamic load-balancing approach is suitable for many scientific applications where the same process is
executed in every processor in a network, on different initial data. Once loaded, the master process (the ‘farmer’)
distributes data to identical processes (the ‘workers’) in different processors. Process placement is decided at
compile time and batch of data are distributed on demand to the workers (at run-time). The master process is
also in charge of collecting the results generated by the worker processes.

The farmer mechanism requires a good match between the application model and the computational paradigm.
It also needs to be tailored to the application. designed and crafted by the user rather than a system-level,
user-independent mechanism. Farmer-based approaches make the processing-network-resource-availability visible
through just one input processor, the one that executes the farmer load-balancing approach, therefore a centralised
scheme. This characteristic of the farmer paradigm causes the bottleneck effect [Lin and Raghavendra, 1992] which
makes such approaches not scalable. albeit working reasonably well for systems with a relatively small number of
processors (maybe up to tens of processors).

4.4 Control results (farmer + VCR)

An entirely separate implementation of the farmer mechanism was undertaken to act as a control both on the
farmer-based mechanism previously described and the EG mechanism version. Although this version also uses
the same farmer-based resource management mechanism, it was implemented using the VCR mechanism. instead
of using a user-dependent routing mechanism crafted at the user-level. This version thus provides an easier
implementation because of the global communication facilities and valency-free mechanism provided by the VCR.
Connections between root transputer and each one of the network transputers is through the VCR communication
mechanism (the VCR provides, at software-level, global communication facilities for local-connected transputer
networks).

5 Processor (CPU) ‘busyness’ measurement

A simple measure for the instantaneous loading level of a processor (the load status) could be the number of pro-
cesses that are ‘Ready to Run’ (RTR). This measure can be correlated with the instantaneous processor utilisation.
However, instantaneous sampling of the processor RTR process queune length can produce rapid fluctuations in the
instantaneous load of the processors. These fluctuations can be due to processes that may be temporarily quening
for other resources available (such as 1/0, timers, etc) or they may also be caused by special system processes of
very short life time. The fluctuations may result in misleading information about the load status of a processor, thus
resulting in potentially non-productive placement or migration activities. To avoid non-productive placements. it
has been suggested [Barak and Shiloh, 1985] that instantaneous processor load is taken every atomic unit of time,
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and that it is averaged over a period of time at least of the order of the time required to migrate an average-sized
process. Processor idleness was therefore indirectly measured by timing how long a process takes to be scheduled
- the implementation is based on a proposal made by Rabagliati [Rabagliati. 1990, Jones et al., 1980]. The process
determines the processor idleness by reading the time and then puts itself on the back of the low-priority process
queue. When it next executes, it reads the time again and calculates how long it took to get around the processor
RTR process queue. In normal operation, the availability measurement process runs concurrently, with other
system and application processes. If this is the only process RTR then an ‘idle count” variable is incremented.
Processor utilisation can then be estimated over a period by comparing the value of the idle count variable with
the maximum value expected with no load, A two threshold policy is used. By comparing the idle count variable
against these thresholds the processor availability is then classified as “lightly-loaded’ or ‘over-loaded’.

6 The application

A real application was chosen from the field of computing graphics (ray-tracing). The ray-tracing application
takes as input an array, where each value represents the *z" coordinate of a surface. and then develops ray-tracing
calculations for each possible pixel on the screen. When the processed array is sent to the screen a visual ray-tracing
representation of the surface is produced. A surface ray-tracing application is particularly interesting because the
input surface size can easily be adjusted and then divided into a desired number of independent subsurfaces (data
partitioning), therefore an equal number of totally independent processes can be started at execution time. in order
to estimate the efficiency of the dynamic load-balancing mechanism in providing resources ‘on demand’, Each one
of these run-time-generated processes must compute one of these subsurfaces. A geometric distribution of an
application into a number of smaller ones. executing the same code at run-time, is a relatively straightforward
method of generating a large number of processes. A system running a larger number of processes than available
processors is required for the load-balancing mechanism to manage the system processing capacity effectively.
This application was originally designed and implemented in the ‘C’ programing language to run on a network
of transputers hosted by a UNIX workstation [Clarke. 1992]. The application uses ‘Xwindows’ primitives which
are available through a special ‘Xtransputer” library and an extended Inmos iserver [Inmos. 1988b], the ‘Xiserver’
[Clarke, 1992].

6.1 Porting strategy

Some of the main modules of the ray-tracing implementation were ported in their original form with almost
no changes: (1) The xhost module. executed on the root processor to handle input and output including the
‘X-windows™ interface. (2) The xsurf module, which also executes on the root processor and provides surface
generation. loading and collection. (3) The trace module, to perform the ray-tracing task. Other modules were
modified or eliminated. For example. the code related with the farmer load distribution paradigm is no longer
required. Other processes had to be added, for example, the processes related to the real-time process-spawning
tree mechanism (the spawn module) and a module which is executed in every network processor to handle the
surface loading and collection events.

A multiple spawning of processes mechanism is used to distribute the processes at execution time. The actual
processing demand is characterised by a single root process and an associated array descriptor of the surface to
be computed. The processes are spawned recursively by splitting this descriptor array and passing it down the
subtree. At the leafl nodes of the tree (i.e. an array of size one) the actual subsurface is computed. The spawning
of processes was achieved using the appropriate VCR RPC primitives [Hill, 1993, Debbage, 1993]. The RPC
primitives provide dynamic full occam mechanisms [May, 1989] which enables an occam process to be started at
run-time. The spawn module, which performs a multiple process-spawning tree mechanism takes as input from
the xhost module a surface job descriptor and then breaks this into work packets which are passed down to a
recursive spawning tree mechanism. such as any divide-and-conquer algorithm. The link between the logical tree
node (process) and the physical one (processor) is indicated by the EG mechanism. When a work packet of size one
is reached. the subsurface described by this work packet is processed (the ray-tracing calculation is performed).
With the return of this process-spawn tree recursive mechanism a result-surface-descriptor is produced, which is
than used by the xhost module to fetch the processed surface result array.

7 Results

Practical experiments using the ray-tracing application were performed for a screen area of 150x 150 pixels which
was divided into 64 subsurfaces (hence 64 processes). The total surface area was tuned to provide a total processing
demand of about half a minute. Ray-tracing processing activity was performed on this surface using each one of
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the load distribution paradigms described previously. For comparison purposes, the farmer strategy using VCR
was also run on a network consisting of just a single processor. Average experimental results are shown in Table 1.

Cy Ca Cy Cy Cs Cs
Farmer Farmer GM EG Farmer
original, +VCR, original, system-level.  4+VCR, single

16 processors 16 processors 16 processors 16 processors processor
1 28 20 >50 29 328
2 448 416 >800 464 328
3 3% 79% <41% 1% 100%

Table 1: Ray-tracing surface execution time.
Average measured results for the ray-tracing calculation of a surface array of 150x150 pixels, execution

time shown in seconds (line 1). Line 2 represents the machine processing activity available during the exper-
iment in processor-seconds (Lz;=number_of_processorsxLy;). Line 3 shows the machine utilisation percentage
(L3i=100x328/La;). The result single processor farmer + VCR is presented as control experiment.

8 Conclusions

A benchmark of load-balancing approaches is an intriguing task, since load-balancing policies are optimised for
specific objectives and the result varies with different conditions - there is always a particular situation in which a
particular load-balancing mechanism is best. It is reasonable to expect that the previous ray-tracing farmer version
would have a better performance than that one (farmer + VCR), because internode messages communication was
designed and hand-crafted into the user-level code. Surprisingly, the farmer version using VCR had a better
performance than the previous (original) custom-designed implementation. Comparison between the performance
of the EG mechanism and the farmer approaches has shown an additional cost in terms of the application total CPU-
processing time requirements. This increase in CPU-processing demand is mainly due to the load profile demand
requirements of the ray-tracing application, a single and intense processing demand burst. Also. a load-balancing
mechanism designed specially for a specific application (like farmer) will almost invariably perform better for
the particular target than a more general load-balancing mechanism. Another factor which needs to be taken into
consideration is that the farmer-base load-balancing approaches are non-scalable and were coded specifically for this
ray-tracing application (application dependent), while the EG algorithm is a distributed, simple to use, potentially
scalable and application-user-independent. The EG mechanism has produced significant improvements compared
to the GM scheme yet retains the considerable advantage of a scalable mechanism. Under these circumstances the
performance of the system (machine plus the real application) using EG load-balancing mechanism demonstrated
conclusively that the algorithm can provide useful improvements for real applications that generate workload in
an unpredictable fashion. In addition, the implementation of a real application using load-balancing mechanism
provides a demonstration of usability and applicability of such system-level resource management facilities.

Enhancing the basic features provided by a concurrent architecture will probably become a major focus of
computer engineering and architecture research [Inmos, 1991, Dally et al., 1992]. Such improved architectures
will support message-passing parallel computation directly in a cost-effective way. They will incorporate facilities
optimised to reduce practical design constraints, including facilities currently implemented in software such as
remote procedure calls, automatic processor ‘busyness’-level measurement. exchange of load level among processors
and hardware communication devices. Such machines will facilitate the exploitation of load-balancing mechanisms
using significantly finer-grain programing models than those practical at present.

Finally. the ‘ease of use’ of a parallel system is of vital importance if these machines are to realise their potential
and become widely adopted by end users. The provision of automatic load-balancing at the system-level makes an
important contribution to this ease of use and this aspect has also been a major aim of the work reported in this
research.
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