142 Simpésio Brasileiro de Redes de Computadores 633

Buffer Overflow Avoidance Techniques for Group Communication Protocols®

Raimundo J. de Arauijo Macédo®, Paul D. Ezhilchelvan and Santosh K. Shrivastava®

"Universidade Federal da Bahia - UFBA
Laboratono de Sistemas Distribuidos - LaSiD
Campus de Ondina, 40.170-110
Salvador, Bahia, Brasil
email: macedo(@ufba br

*University of Newcastle upon Tyne
Department of Computing Science
Newcastle upon Tyne, NE1 7UR, UK
email: {santosh.shrivastava, paul ezhilchelvan}@newcastle.ac.uk

Mensagens transmitidas ou recebidas através protocolos de comunica¢do de grupo (multicast)
tém que ser armazenadas localmente para possivel retransmissdo, até que certas condigdes de
estabilidade sejam satisfeitas. Num sistema distribuido assincrono, com tempos de transmissdo
e processamento de mensagens ndo limitados, o nimero de mensagens ‘instaveis’ pode crescer
indefinidamente, causando estouro de buffers. Nessas circunstincias, novas mensagens so
poderdo ser recebidas descartando-se mensagens ‘instaveis’, comprometendo assim a
capacidade de retransmissdo do protocolo. Portanto, existe a necessidade de um mecanismo
efetivo para o controle de fluxo de mensagens. Este artigo trata do problema de controle de
fluxo no contexto de um protocolo de ordem total, assincrono e simétrico para comunicagdo
em grupo. Sdo apresentados trés algoritmos de crescente eficiéncia e que possuem as
propriedades de safety (estouros ndo ocorrem) e liveness (um processo transmissor ndo &
indefinidamente impedido de transmitir novas mensagens). Provas de corre¢do e resultados
experimentais sio também apresentados.

Abstract

Fault-Tolerant Group Communication Protocols require that transmitted or Received
Messages be kept locally for possible retransmission until certain stability conditions are
known to be satisfied within a group. In an asynchronous distributed system, with potentially
unbounded transmission and message processing delays, the number of such ‘unstable’
messages may grow indefinitely, leading to the possibility of buffer overflows whereby new
messages can be received only by discarding ‘unstable’ messages and thus sacrificing
retransmission capabilities. Hence there is a compelling need for an effective flow control
mechanism. This paper addresses the problem of flow control in the context of a
asynchronous, symmetric, total order group communication protocol. It presents three,
increasingly efficient flow control algorithms which are shown to be safe (no buffer overflows)
as well as lively (a sender will not be indefinitely blocked from sending new messages). Proofs
of correctness and experimental results are presented.

Key Words: group communication, multicast protocols, flow control, network protocols,
fault tolerance.

% A less extensive version of this paper has appeared in the Proceedings of the IEEE Pacific Rim International
Symposuim on Fault-Tolerant Systems, Newport Beach. California, USA. December/1995.

634 SBRC 96

1. Introduction

Many fault-tolerant distributed applications can be structured as on or more groups or
processes that co-operate by multicasting messages to each other. The building of such
applications is considerably simplified if the members of a group have a mutually consistent
view of the order in which events (such as message delivery and process failures) have taken
place. A multicast protocol that delivers message is a causality preserving total order to all
functioning members of a group is thus an important component of the underlying
communication system. Design and development of fault-tolerant group communication
protocols for distributed systems has been therefore an active area of research [e.g., Chang84,
Peterson89, Melliar-Smith90, Birman91, Amir92a, Mishra93]. Fault-tolerant group
communication protocols require that a transmitted/received message be kept locally for
possible retransmission until that message is known to have become stable (ie., Known to
have been received by all members of a group). If we assume variable (potentially unbounded)
transmission and message processing delays - which would be the case in asynchronous
systems - then and number of such ‘unstable’ messages at processes may grow indefinitely,
leading to the possibility of buffer overflows whereby new messages can only be received by
discarding unstable messages and thus sacrificing retransmission capabilities. Hence there is a
compelling need for an affective flow control mechanism.

This paper addresses the problem of flow control in the context of an asynchronous, total
order group communication protocol called Newtop [Macedo93, Macedo94, Ezhilchelvan95,
Macedo95a, Macedo95b,]. We have developed three algorithms that guarantee that the
number of unstable messages in any given process does not exceed the stated bound, thus
preventing buffer overflows. Our algorithms also guarantees liveness: a process that wishes to
multicast a message, will be eventually permitted to carry out the multicast.

The version of Newtop considered in this paper is symmetric (i.e., a single, sequencer process
is not relied on for message ordering), though the low control algorithms can be easily adapted
for the asymmetric version. Newtop has a low message space overhead (the protocol related
information contained in a multicast message is small) and this advantage is not compromised
in the development of the flow control algorithms. Newtop is also fault-tolerant: ordering and
liveness is preserved even if membership changes occur (due to failures such as process
crashes and network partitions). In the next section, we present an overview of Newtop which
is essential to understand the workings of the flow control algorithms. Section 3 presents 3
algorithms, each one containing an improvement over the previous algorithm; these algorithms
are shown to be correct. In section 4, we describe the performance of the first algorithm in the
experiments carried out over an early implementation of Newtop.

2. An Overview of Newtop
2.1. Background and Assumptions

In a symmetric total order protocol, when a message is received at a node, its delivery to the
local process(es) may have to be delayed, as there may be concurrent messages from other
members of the group in transit. Once it is certain that all such messages have been received,
then these messages can be delivered. In Newtop, we make use of logical clocks[Lamport78]
for totally ordered delivery of messages. Messages are assigned block-numbers (logical clock

142 Simpésio Brasileiro de Redes de Computadores 635

values), such that messages with the same block-number imply that they are concurrent. The
principles underlying Newtop can be easily understood, if each process is visualised to
maintain an array of vectors (each vector is of size equal to the cardinality of the group); each
such vector, called the Causal Block, is used for recording information about messages
received with the same block-number. Once a Causal Block is detected to be complete (there are
no more distinct messages to be received with the same block-number), the correspending
messages can be delivered to the process in some fixed order. In order to ensure that Causal
Blocks eventually complete, we employ a time-silence mechanism that ensures that a process
transmits a message now and then (only a null message, if a given process has no other
message to transmit), carefully avoiding a situation where all member processes of a group
continuously send only null messages.

Consider now that a process multicasting a message crashes (or gets disconnected) in the
middle of the multicast, such that only some of the members receive the message. When
failures do occur, the time-silence mechanism alone will not be able to make Causal Blocks
complete. To ensure block completion despite failures, Newtop (in common with other
protocols, e.g., [Amir92b, Mishra93]) provides another liveness mechanism: each process is
associated with a local group-view process that can execute a membership protocol with its
counterparts to reach agreement on the membership of the group®. Thus, if the group-view
process of Pj suspects a failure of some remote process (Pk) that does not seem to be
responding, then the group-view process of Pj initiates a membership agreement on Py, the
outcome of which is that either processes agree to eliminate Pk from the group, with an
agreement on the set of messages sent by Pk, or Pk continues to be a member of the group and
Pj is able to retrieve missing messages of Pk. Thus, even if a Causal Block is complete at a
process, it is necessary to keep the messages with that block-number for a while (as it may be
asked to supply some of those messages to others). Once it is known that a given block is
complete at all the members of the group, only then can the messages with that block-number
can be discarded after delivery (such messages are said to be stable). Our flow centrol
mechanism is therefore based on piggybacking block completion and message stability
information on multicast messages.

In order to explain the basic principles behind our flow control mechanism, we do not need to
know the full details of the membership service or the time-silence mechanism: it is sufficient to
assume the existence of liveness mechanisms that ensure that a given Causal Block will
eventually complete. This also means that to describe our flow control algorithms and establish
their correctness, we can ignore the consequences of process failures altogether. In the
description on Newtop to be given in the next section, we will therefore only briefly mention
how the membership service and the time-silence mechanism actually work (fine details of
these are covered in the cited Newtop papers).

o 0 o i o o o 0 o e . B 0O 0 e e e - e e o e - S e e e e P

* Process crashes should be handled ideally by a fault tolerant protocol in the following manner: when a process
does crash, all functioning processes must promptly observe that crash event and agree on the order of that event
relative to other events in the system. In an asynchronous environment this is impossible to achieve: when
processes are prone to failures, it is impossible to guarantee that all non-faulty processes will reach agreemeant in
finite time [Fischer85]. This impossiblity stems from a process' inability to distinguish slow processes from
crashed ones. Asynchronous protocols therefore need to circumvent this impossibility result by permitting
processes 1o suspecr process crashes and to reach agreement only among those processes which they do not
suspect to have crashed or disconnected.

636 SBRC 96

We now state the major assumptions: we consider a group named g that is initially formed with
distributed processes {P|, P. Py}: we assume that when the group g is formed every

member process Pj. | <i <n, has its membership view Vj(g) set to the initial group
membership: Vi(g) = {P], P2, ... Pp}i Pj communicates with other members only by
multicasting to all processes in its membership view. We also assume the existence of a
message transport layer that is capable of providing uncorrupted and sequenced message
transmission service between member processes, if the processes are alive and the destination
processes are not partitioned (either due to physical network failure or message congestion)
from the sender; no assumption about message transmission time is made. Each Pj is assumed
to have M, M > 0, message buffers available for storing sent and received messages until those
messages are known to have become stable.

We will next describe the interactions that take place between a member process Pj and the
Newtop processes in the host node of Pj when Pj sends, receives and delivers a message in
group g. When Pj intends to send m in g, it prompts a Newtop process send; which does not
respond to P immediately if there is no free buffer available for storing m. Within some finite
time. however, the send; process is guaranteed to find buffer space for m; following this, it
performs some Newtop operations on m which include incorporating some protocol-related
information into m, stores m in the local buffer, and entrusts a copy of m with the transport
layer process for transmission. Once m is entrusted with the transport layer process, the event
of sending m by Pj, denoted as sendj(m), will be said to have occurred. When the transport
layer process picks up from the network a message m destined for Pj, it sends an interrupt to Pj
which is intercepted by a Newtop process called flow-control. Note that the interrupt will not
include any protocol-related information contained in m, and may at best indicate the sender and
type of m. The process flow-controlj responds to the interrupt by providing a buffer into which
m will be copied over-writing any previous contents of that buffer. The message m will be said
to be incoming while it is in possession of the transport layer process, and will be said to have
arrived at P; after it has been copied into the buffer provided by flow-control;. It is easy lo see
that the response of flow-controlj must be prompt and ideally be without having to process any
information that accompanies the interrupt. The arrival of a new message m will cause another
Newtop process called receive; to process the protocol-related information of m. Once that 1s
done, m will be said to have been received by Pj and the event receivej(m) will be said to have
occurred. A received m is subsequently delivered in total order to Pj by another Newtop
process called deliveryi. When deliveryj places m in the input queue of P;, we will say the
event deliveryj(m), delivery of m to Pj, has occurred.

Note that as the processing within Pj's node is asynchronous, the time period that elapses
between the arrival and the reception of m cannot be bounded and known. This means that the
transport layer level acknowledgements can only indicate the arrival of m at a given destination
member process, but not the reception by, nor the subsequent delivery to, that member process,
therefore they cannot be used in developing algorithms for flow-controli which should be based
only on Newtop level, message-reception acknowledgements.

In describing the flow control algorithms, we will denote (for notational simplicity) the Newtop
processes working for Pj as Pj itself when the meaning is obvious; i.e., we will say Pj
multicasts. receives. and delivers m when sendj(m), receivej(m). and deliveryi(m) occur
respectively. Also. we will assume that a sent or received message never exceeds a known

142 Simpésio Brasileiro de Redes de Computadores 637

bound on message size. and can be stored in any one of M local buffers. We will make a
simplifying assumption that every member process P; is “hungry” for input messages and
instantly consumes a delivered message when message delivery to Pj is done by placing a
reference to the buffer containing the message into the input queue of Pj. (If message delivery
is done by copying the message into the input queue of Pj. we require an equivalent assumption
that the input queue is never full.) This assumption spares us from having to deal with the case
of stable messages which cannot be discarded because the local application process is slow in
taking them in for processing. Later we state modifications necessary to realise this "hungry
processes’ assumption. In this paper, we do not consider the following issues: a process being
a member of more than one group. a recovered or new process joining a group and processes
forming a (new) group.

2.2 Newtop Algorithm

We first consider a static. failure-free environment where the group membership and (therefore)
processes membership views do not change. In Newtop. each member process P; maintains a
logical clock called the Block Counter denoted as BC;. BC; is an integer variable and its vzlue
can only increase monotonically. When g is created BC; of every P, is initialised to - 1. Before
P; multicasts a message m. it advances BC, by 1. The contents of incremented BC,; is assigned
to m as its block number in the message field m.b. As BC; is advanced by 1 for every
multicast, consecutively multicast messages will have increasing block-numbers.

BC; may also be modified by P; before delivery;(m): before delivering a multicast message m,
P, sets BC; to be m.b, if the current value of BC; is less than m.b. Thus, the two events under

which BC; may be advanced are:

CAl (Counter Advance before send;(m)). Before P; multicasts m, it increments BC; by one,
and assigns the incremented value to m.b: and,

CA2 (Counter Advance before delivery,(m)): Before Pj delivers m, it sets BC; = max({BC;,
m.b}.

Note that block-numbers of member processes are advanced in a manner similar to Lamport's
logical clocks [Lamport78), with the difference that delivery in place of receive events advance
BC. We can state the three following properties possessed by block-numbers of multicast
messages (where "—' is used to indicate the ‘happened before’ relationship [Lamport78]).

prl: senditm) — sendi(m') = m.b < m'.b:
pr2: for any m. and Pj, j#i: de!iver_\-j{nu — seudj(m"J = m.b <m".b: and,

pr3: forall m'.m™ m'b=m".b = m" and m" are concurrent.

Properties prl and pr2 follow directly from CAl and CA2. respectively. Together they imply
that for any distinct mm and m'. any Pj and Pj: sendi(m)— sendj(m’) = m.bh < m'.b. Propert\
prd states that two distinct messages multicast with same block-number are necessarily
concurrent. These messages must have been multicast by distinct processes. as CAl forbids
(Wo send events to occur in & given process with the same value of BC.

638 SBRC 96

Each P; maintains a vector called the Receive Vector. denoted as RVj, This vector has one
integer field for every Pj € Vj(g): this field records the block number of the latest message
received from Pj. Let Dj denote the minimum value in RVi: Dj = min{RV;[j] | Pj € Vi(g)}].
Recall that messages from a given process are sent with increasing numbers and are received in
FIFO order (transport layer assumption). Therefore. Dj < BC;j for all Pj € Vi(g) and Pj s
guaranteed not to receive any new m such that m.6< Dj. So Pj can ‘safely’ deliver il received
m. m.b £ Dj. The message delivery conditions for P, are stated below:

safel: a received m, is deliverable if m.b< Dy

safe2: deliverable messages are delivered in the non-decreasing order of their block-numbers:
a fixed pre-determined delivery order is imposed on deliverable messages of equal
block-number.

The two safety conditions ensure that the received messages are delivered in total order when
they become deliverable. A received message can be guaranteed to become deliverable. only if
processes in Vi(g) remain livelv by sending messages so that Dj increases with time. Newtop
provides each process with a simple mechanism. called the rime-silence. that enables 1 process
to remain lively by sending nul/ messages during those periods when the process 1s required to
be lively but is not generating computational messages.

2.2.1 Time-silence Mechanism

The time-silence mechanism of P;. rimesilence;, works as foilows. A process Pj maintains in
the interger variables SENT; and RECD;. the largest block number of the messages P; has sent
and received at any given time. respectively. Whenever P; receives a multicast message with
block-number B, it checks whether SENT; 2 . If SENT; < B, then a umeout. denoted as
timeout(f). for some predetermined time period is set. This timeout period indicates the
duration within which P; is expected to multicast a message with a block-number p or larger -
thus making its contribution towards the delivery of all m. m.b < B, by all Pj € Vi(g) tincluding
itselN. When rimeout() expires. P; multicasts a null message m with the block-number m.b =
RECD; if SENT; < B is still true: if SENT; 2 B, the expiry of rimeout(p) 1s ignored. Note that
by multicasting a null message with block-number m.b = RECD; , P contributes to the delivery
of all m. m.b < RECD;. Stated below is the third possibility CA3 by which the BC; is
advanced due to umesilence;.

CA3 (Counter Advance due to tmesilence;): Before P, multicasts a null message m. 1t sets m.b
= RECD; and BC, = m.b.

Note that for a multicast message. block-numbers are computed using different algorithms
depending on whether the message to be multicast 1s null or non-null. Despite this difference.
property prl (which is: send,(m) — sendi{m’'s = m.b < m'.b) can be observed to be
maintained. ie. successive multicasts from P; will have increasing block-numbers.

Null messages contayn only protocol related information (such as block-number. destination
group identifiers etc.). They arc distinet and distinguishable from applicauon-related messages.
which will be called non-null 11essages. where distinction is required. A null messige. upon
being received. is treated by Newtop exactly like a non-null message except that when a null
message 1s due for delivery. it i~ not supplied for processing.

142 Simpésio Brasileiro de Redes de Computadores 639

From the point of view of flow control and buffer management, null and non-null messages are
treated alike. Hence Pj should send a null message-only if it can speed up the delivery of a non-
null message. From the description of the time-silence mechanism, it can be seen that if P;
multicasts a null message then some other process in the group must have multicast a non-null
message with the same block number. This implies that null messages are multicast only to
enable the delivery of non-null messages in finite time.

Despite the judicial use of null messages, the time-silence mechanism can increase the message
overhead of Newtop. However, the time-silence mechanism or some equivalent mechanism
(such as periodic exchange of 'l am alive' or 'synchronise' messages by processes) is essential
for ensuring the liveness of any symmerric total order protocol (see [Mostefaoui93].
[Mishra93]). More importantly, it is essential for failure detection/suspicion without which a
(synchronous or asynchronous) membership service cannot be built.

Finally, we observe that the timesilence mechanism of a given Pj ensures that SENT; = RECD;
becomes true in finite time if RECDj ever becomes larger than SENT;; timesilence mechanisms
of all other Pj ensure (in the absence of failures) that Dj continually increases with SENT; such
that if SENT;j does not increase for a sufficiently long period of time then Dj may eventually
become equal to (but never larger than) SENT;.

2.3. Group Membership Service

Suppose that Dj of Pj is less than SENT;. D;j will not increase if Pj cannot receive any message
from some Pk, Pk € Vi(g), because Pk has either crashed or got disconnected from Pj. Since
the repair time can be unbounded, the progress of Dj can be made to resume only by excluding
Pk from Vj(g) and thereby excluding Pk in the computation of Dj: Dj = min{RV;j[j] | Fje
Vi(g)}. In other words, the liveness of message delivery requires that every Pj updates its Vi(g)
taking failures into account; Pj employs a Newtop process group-viewj to meet this
requirement. Recalling that when g is created, each functioning P; gets installed Vi(g) = (P,
Py, ... Py}, the group-view;j suspects failures in the following manner: it expects a message
from a member process Pk, if the block-number of the last message received from Pk is less
than SENT;; if a message with block-number 2 SENT; does not arrive within a predetermined
timeout period, the crash/disconnection of Pk is suspected and an agreement protocol over the
membership of P is initiated.

The outcome of this agreement protocol is that all functioning and connected processes agree
either to eliminate Pk from their group membership views, with an agreement on the last
message sent by Pk, or to drop the suspicion on Pk and to retrieve the missing messages from
anyone who has it and to accept them as "late" messages. Therefore, once a process receives a

message, it keeps it as long as necessary (in case it may be asked to supply a copy). Suppose
that the elimination of P is agreed and LAST is the block-number of the agreed last message

from Px. The group-view process of every Pj will do the following: when Dj becomes equal to
LASTk, it will remove Pk from the membership view Vij(g). Below, we mention some
guarantees provided by the group inembership service which are relevant to development of the
flow control mechanisms:

640 SBRC 96

Gl group-view; ensures in the presence of failures that D; continually increases with
SENT; such that Dj becomes equal to, but never larger than, SENT;. if SENT; does not
increase for a sufficiently long period of time; and,

G2 any two mutually unsuspecting processes will have identical membership views for
identical values of their respective D.

A realistic, non-trivial implementation of the group membership service will require the
following from the flow control algorithms:

(1) flow-controli must permit Pj to multicast a (null or non-null) message before Pj can be
falsely suspected by processes in Vi(g); and,

(i) flow-control; must not discard a sent or arrived message before the message is received
by all Pj e Vi(g).

In what follows. we will describe our flow control algorithms which are shown to meet the
above requirements by satisfying the following liveness and safety conditions:

liveness: Pj will not be indefinitely blocked when it intends to multicast a (null or non-null)
message; a precise bound on this blocking cannot be obtained, but a reasonably accurate
estimate can be obtained and should be used in fixing the timeout for suspecting failures. (The
more accurately the bound is estimated, the less will be the number of false suspicions.)

safety: flow-controlj does not allocate or free a message buffer for storing an incoming message
until the message contained in the buffer is received by all Pj € Vi(g).

In describing the flow-control algorithms we will ignore the effect of failures in group
communication, with the knowledge that group-viewj of each functioning Pj ensures in the
presence of failures that Dj increases in value to become equal to SENT; whenever SENT;
becomes larger than D;j.

3. Flow Control in Newtop
3.1 Basic Concepts

Recall that each process is assumed to have M message buffers for running Newtop for group
g created with the intial membership (P, P2, ..., Py}. M2 N *n, where N is some positive
integer that is known to all processes in group g. As stated before, it is necessary to ensure that
a process can always retrieve a missing message from another (functioning and connected)
member process. This in turn means that we require a mechanism that enables a process to
safely discard a received message. To develop such a mechanism, we will first define the
concept of stability:

Definition: A block number B is said to be stable in Pi. if Pj knows that Dj 2 P for all Pj e
Vi(g). A message with a stable block number will be termed stable message.

Once Pj knows that a message has become stable, it is assured that every process in Vi(g) has
received that message. So. the safest way to reuse a message buffer will be to wait until the
message contained in that buffer is known to have become stable. We next define a stronger
stability condition. called super-stability:

142 Simpésio Brasileiro de Redes de Computadores 641

Definition: {8 is said to be super-stable in Pj, if Pj knows that [is stable in all Pj in its current
membership view Vj.

Once Pj knows that [is a super-stable block, then, it also knows that all the members in its
current membership view Vj have discarded the messages with block numbers upto and

including B. Thus super-stability information can be used for deducing free buffers available at
remote member processes.

We describe how stability and super-stability information is computed and disseminated. P;
maintains integer variables Sj and Zj, the largest block number that it knows to be stable and
super-stable, respectively. (Sj and Zj are initialised to -1.) It piggybacks the values of Dj, S;

and Zj onto every message it multicasts. in the message fields m.D, m.S and m.Z respectively.
Pj maintains three vectors called the Complete Vect. ., the Stable Vector, and the SuperStable
Vector denoted respectively as CVj, SV and SSVj These vectors, like the Receive Vector

RVj, have one integer field for every Pj € Vi(g), the fields CVi[j], SVi[j] and SSV;[j], j # i.
respectively record the values m.D, m.S and m.Z of the latest message m received from P.. For
a given vector XVj, we will use XVmp and XVmyx to denote min{ X Vij[j] | all Pje Vi(g)} and
max [XVi[j] | all Pj e Vj(g)} respectively. Whenever the contents of RVj change (due to
sending or receiving of a message), Pj computes CVi[i], SVi[i] and SSVi[i] as RVmn. CVmn
and SVmp respectively; it then computes Sj and Zj as SVmx and SSVmx respectively.

3.2 Algorithm 1

Pi sends m only if the following three conditions hold:

Mi.1: m.b - N is super-stable, that is, Z; 2 m.h - N;
fl11.2: m.b - N + 1 is stable, that is, S; 2 m.bh - N + 1: and,
f11.3: m.b - N + 2 is complete, that is, Dj 2 m.bh - N + 2.

A process Pj generates free buffers by the following rule:

fbl: Any buffer that contains a stable m is considered to be free and is used for storing
incoming messages.

Since f1/.1 is true, a sentm is assured of the availability of a free buffer at every recipient. The
rationale behind f7/.2 and f11.3 is as follows. By applying condition f11.2, it is guaranteed that
a received message m, m.h = 3, will bring the information that at least block number § - N + |
is stable at the sender. Since this condition will be followed by all processes, it is guaranteed
that when block number 8 completes at Pj, block 8- N + | will be super-stable, and block + 2
- N is stable (thanks to f7/.3). Thus completion of a block, B, ensures that the first two
conditions are true for the next block (B + 1). Fortunately, the liveness mechanisms of Newtop
ensure f1/.3 can always be relied upon to become true. The minimum size of a Block Matrix is
therefore three. The proof of correctness is provided to show that the three conditions together
implement flow control properly for N 2 3, i.c., they guarantee that there is no buffer overflow
and that a sender never blocks indefinitely. First, we give an example to illustrate the workings
of the algorithm.

642 SBRC 96

Fig. | illustrates the construction of Causal Blocks for a process Pj in a particular context of
group communication; N is assumed to be 8. In fig. I(a), blocks 0, 1, and 2 are super-stable,
block 3 is stable and block 4 is complete. (Note: by rule fbl, the messages represented by the
super-stable and stable blocks will be discarded by Pj.) Given this initial situation, let us
suppose that Pj intends to multicast a few, say more than fourteen, messages and see how Pj
can perform these multicasts without causing buffer overflow. Since the current values of Zj,
Si and Dj are 2, 3, and 4 respectively, Pj can send messages with block-numbers m.b,5 <m.b
< 10 without being blocked by rules f11.1-f11.3, but will be blocked from sending a message
with block-number larger than 10. Let us suppose that Pj multicasts six messages with m.b, 5
<m.b < 10, and the figure |(b) depicts the current situation.

Let us suppose that every other Pj in the group initially has Zj. Sj and Dj as 2,3, and 4
respectively, and has no non-null message to multicast. Each Pj will be soon prompted by
timesilencej to multicast a null msg with msg.b = 10, msg. £ = 2. msg.§ = 3 and msg.D = 4.
This will cause in each process the completion of all causal blocks upto 10, the super-
stabilisation of block 3 and stabilisation of block 4; this in turn allows Pj to multicast its next
(non-null) message m with m.b = 11, m.Z =3, m.§ =4 and m.D = 10 (see fig. 1(c)).
Prompted by timesilencej, every other Pj will eventually multicast a null msg with msg.b= 11,
msg.X =13, msg.S = 4 and msg.D = 10 - thus causing the completion of causal block for 11,
the super-stabilisation of 4 and stabilisation of all blocks upto 10. Pj can now send its next
message with m.b = 12, m.Z=4,m.5 = 10 and m.D = 11. At the completion of causal block
for 12, P; will have Zi = 10, Sj = 11 and Dj = 12; it can now send siX more messages with
m.b, 13 <m.b < 18. without blocking. This situation (depicted in figure 1(d) with blocks 0 to
7 omitted) marks the completion of one cycle (of N blocks), starting from the initial situation
shown in l(a).

Observe that no process has more than N, N= 8, unstable messages of Pj at any given time.
(This observation can be extended to indicate that if all processes are lively as Pj in the above
example, no process will have more than N* n, N* n < M, unstable messages at any given
time.) This observation is proved in lemma 1.1; for an intutive explanation, consider the
situation of figure | (c): Pj has Zj = 3, Sj = 4 and Dj = 10, and has just multicast a message
with m.b = 11. When Pj is making the multicast, a given Pj may not have the 4th block stable
(yet) as it may not have yet received all messages with m.b = 10. So, for a brief period
following the arrival of P's message with m.b = 11, Pj will have eight unstable messages of Pj
with m.b, 4 <m.b < 11 once the arrived message is "seen” by the Newtop process receivej,
Sj will raise to 4 and all messages with m.b = 4 will be discarded. Thus, the above example
illustrates that even if every other process in the group has no (non-null) message to multicast,
a single process can multicast any number of messages without causing overflow and without
being blocked permanently.

142 Simpésio Brasileiro de Redes de Computadores 643

0 Q| 0 8
1 1 1 9
2 2 2 10
B ONOOOENG ol ARALARIAARAY, B YY PRro e VAR
$ 70 4 7 4 P 1202777777977
5 SU777777777
6 6 L
7 1 P77 77—
8 8 U
9 o777 7
10 o777 7777
11
(a) (b) (c) (d)

B super-stable S~ stable [77777] complete [____] incomplete

Fig. 1: Causal Blocks indicating the workings of Algorithm | with N = 8.

Correctness proof
We now prove the correctness of the flow control algorithm, for any N 2 3

Lemma 1.1: Atany given time, the message buffers of Pj will have no more than N unstable
messages from Pj.

Proof: The proof is by contradiction. Suppose that Pj has N+1 unstable messages of Pj. Order
these messages according to their block-numbers. If B is the largest block number, then the
smallest must be at least B-N since Pj can multicast no more than one message with the same
block-number. By f1/./, when P; multicast the message with block-number B, it must have had

Zj 2 B - N; that means Sj 2 - N. Hence the message m. m.b 2 B - N, in Pj's buffer must be
considered stable by Pj. Hence the lemma.

Corollary 1.1: When Pj multicasts m, every Pj, Pj e Vij(g) and j # i, will have a free buffer to

receive mi.

Proof: By fl1.1, when Pj multicasts /m, it must have had Zj 2 3 - N; that means Sj 2 B - N. So
Pj has no more than N-1 unstable messages of Pj; by lemma 1.1, it can have at most N unstable
messages from any other process. Since M 2 N*n, m will have a free buffer in the host node of
P;.

J

Remarks: Every message that is being multicast is guaranteed by the rule f17.7 a free buffer at
all (functioning and connected) destination processes. This guarantee extracts a price: a process
will have, for most of the time, at most (N-1) unstable messages per remote process and will
have to store N unstable messages only for a brief period of time. This may be an under-
utilisation of M. M 2 N * n, message buffers which can accommodate at most N unstable
messages per process. When the Newtop process receivej of Pj examines and records the
protocol-related information contained in a newlv arrived message m from Pj, Sj becomes at

644 SBRC 96

least m.S 2 m.b - (N-1) (due to rule f1/.2) and Pj's unstable messages present in the buffers of
Pj will be at most N-1 with block-numbers in the range: [m.h - (N-2), m.b]. (Also see the
observation made in the example used to illustrate the workings of the algorithm.) Thus, Pj will
have N unstable messages of Pj only for the period between the arrival of the Nth unstable
message from Pj and processing of the protocol-related information contained in that message
(ie.. until that message is received). Though this period may be short, it cannot be accurately
bounded in asynchronous processing environments.

Lemma 1.2: When Pj receives m from Pj, the following three conditions become true in finite
time: ;2mb-N,Sj2mb-N+land Dj2m.b-N+2.

Proof: Lemma is trivially true if m.b - N + 2 < 0. Suppose that all three conditions are not true
when m is being received by Pj. When Pj sent m, by rules fI1.1 - fl1.3, Zj 2 m.b - N, §j 2
m.b-N+ land Dj2m.b - N+ 2. Therefore, m.X2m.b -N,m.S2m.b-N+ land m.D 2
b - N + 2. So, the first two conditions become true as soon as Pj receives m and recomputes
its Zj, Sj and Dj. Dj2m.b - N + 2 implies that Pj has received from Pj a message with block-
number larger than or equal to m.b - N + 2. (If Pj has not received such a message from Pj,
then that must mean that Pj has removed Pj from its membership view before Dj 2 m.b - N+2
could become true - in which case Pj would not be transmitting m to Pj.) So SENT; 2m.b - N
+2.1f Dj < m.b - N + 2, then Pj has not received some messages that were received by Pj. If
these messages arrive, by corollary 1, Pj will have free buffers to receive them. If they do not
arrive due to failures, the group-view process of Pj ensure that Dj increases to SENT; 2 m.b -
N + 2. (See G1 in section 2.3.) Hence the lemma.

Corollary 1.2: Pj does not block indefinitely, when the message to be multicast is null.

Proof: If Pj is prompted by timesilence; to send a null m, then it must have received a message
m', m'.b = m.b. By lemma 1.2, Pj will be able to send m in finite time.

Lemma 1.3: P; does not block indefinitely, when the message m to be multicast is non-null,
provided N >2.

Proof: Suppose that Pj has received m’, m'.b 2 m.b. The lemma is true by lemma 1.2. So we
will assume that Pj has received no m’, m'b 2 m.b. If Pj has not already sent any message at
all. then the non-null message m will have to be sent with m.b = 0 and the rules f11.1 - fl11.3
are trivially met since N >2 and Zj, S;. and Dj are all initialised to -1. Suppose that Pj has
previously multicast messages. Let /astj denote the last message multicast by Pj. Since m 1s
non-null, lastj.b must be m.b -1 according to CAl. Letm.b - 1 > 0. After receiving lasty, every
Pj, Pj € Vi(g). can send a message with block-number = lastj.b (see lemma 1.2); even if Pj
has no non-null message to send, the rimesilencej will prompt Pj to send a null message. Thus,
every Pj, Pj € Vi(g), eventually sends a message msg, msg.b 2 lasti.b = m.b - 1. Every msg
that Pj receives with msg.b 2 m.b - | will indicate that msg.Zzmb-1-N.msg.§2(m.b -
1) - (N-1) and msg.D 2 (m.b - 1) - (N-2). So when Dj 2 m.b - | becomes true, £j 2m.b - N
and §; 2m.b - (N-1) will become true - thus permitting another message to be sent with block-
number m.b. Hence the lemma.

142 Simposio Brasileiro de Redes de Computadores 645

Theorem 1I: The algorithm 1 ensures that a buffer will not be used for storing an incoming
message until the message contained in the buffer is received by all Pj € Vi(g) (safety), and that
Pi will not be indefinitely blocked when it intends to multicast a (null or non-null) message

(liveness).

Proof. Follows from Lemmas 1.1 - 1.3.

3.3. Algorithm 2

The remarks that follow corollary | observe that the message buffers in a given process are not
being used optimally by the previous algorithm. The second algorithm improves the usage of
buffer spaces by removing the rule f1/.1. Consequently, it does not guarantee a free buffer for
every incoming message; if a free buffer is not available for storing an incoming message, the
“oldest” unstable message will be discarded to make space for the incoming message. A
process Pj is not required to maintain Z; and SSVj; all other vectors, D; and Sj are maintained

as in the first algorithm. The flow control rules are as follows:

A process Pj can multicast a message m, only if

fl2.1: m.b - N is stable, that is, Sj 2 m.b - N; and,
f12.2: m.b - N + | is complete, that is, Dj 2m.b - N + 1.

A process Pj generates free buffers by the following rule:

fb2: Any buffer that contains a stable message is considered to be free and is
preferred for storing an incoming message. When there are no free buffers, an incorning
message is received using the buffer that contains a message with the smallest block-number; if
there are more than one message with the smallest block-number, then one of them is randomly

chosen.

The second algorithm guarantees a buffer for every incoming message. What remains to be
shown is that the procedure for generating space for new messages is safe. The next lemma
shows that if the oldest unstable message is discarded to generate a free buffer space for storing
an incoming message, then the discarded message, though unstable locally, is stable in some
other process and therefore it must have been delivered by all functioning member processes
and need no longer be preserved for retransmission.

Note that the oldest unstable message is discarded only when there is a pending incoming
message waiting to be received.

Lemma 2.1: If Pj discards an unstable u to make space for an incoming m, then there exists a

member process, say Pk, that has Sk 2 u.b.

Proof. That the unstable y is evicted for receiving the incoming m. indicates that each one of
Pi's M buffers contains an unstable message. Note that M 2 N * n. Considering the messagzes
in the buffers of Pj, two cases arise: (i) M = N * n and there are exactly N messages from each
of the n processes in the group g (including Pj): and, (ii) there are more than N messages from
some processes. say Pk.

646 SBRC 96

Consider case (i). Let the incoming m was sent by Pj and let yj represent the oldest message of

Pj that is held in the buffers of Pj (i.e.. yj has the smallest block-number among all Pj's
messages held in the buffers of Pj). The rule fb2 confirms that the message buffers of Pj have

no message with block-number smaller than w.b. So, yj.b 2 p.b. Recall that no process sends
more than one message with the same block-number. So, even if each one of Pj's N messages

in Pj's buffers had been multicast with sequentially increasing block-numbers, pj.b = m.b -N;
this means m.b -N 2 uj.b 2 p.b. By f12.1, Pj must have had §; 2 m.b -N before it multicast
m. So, Sj 2 p.b and the lemma is true for k=j.

Let us take the case (ii). Let gk and m’be Pk's messages in the buffers of Pj with the smallest
and the largest block-numbers respectively. Obviously uk.b 2 u.b. Even if each one of P's
more than N messages in Pj's buffers had been multicast with sequentially increasing block-
numbers, uk.b < m'b -N; this means m'h -N 2 ux.b 2 u.b. By f12.1, Py must have had Sk
> m".b -N before it multicast m'. Hence the lemma.

Lemma 2.2 When Pj receives m from Pj, the following become true in finite time: S; 2 m.b -
N and Dijzm.b-N + 1.

Proof-Sketch: Lemma 2.1 indicates that when Pj discards an unstable y to make space for an
incoming message, it must have Dj 2 p.b and therefore it must have delivered u; this means
that no unstable message u gets discarded before the protocol process of Pj have "taken notice
of" all the protocol related information contained in y. Therefore this lemma can be shown to be
true by adopting similar arguments used in the proof of Lemma 1.2.

Lemma 2.3: P; does not block indefinitely, when the message mr to be multicast is non-null.
provided N >1.

Proof-Sketch: The lemma can be shown to be true by adopting similar arguments used in the
proof of Lemma [.3.

Theorem 2: The algorithm 2 ensures that a buffer will not be used for storing an incoming
message until the message contained in the buffer is received by all Pj € Vi(g) (safety), and that
P; will not be indefinitely blocked when it intends to multicast a message (liveness).

Proof: Follows from Lemmas 2.1, 2.2 and 2.3.
3.4. Algorithm 3

Suppose that Pj is prompted to multicast a null message with block-number, say [, and that B-
| is larger than the current value of SENTj; after multicasting the null message. Pj will no
longer multicast a message with m.b, SENTj < m.b < B. As per algorithm 2 (also algorithm 1),
the buffers that would have becn used if Pj had multicast messages with m.b in the range
SENT; < m.b < B. will remain unused. This is because the rule f12.1 (also rules fI1.1 and f11.2
in algorithm 1) assumes (the wor .t case) that Pj will always have N unstable and consecutively
block-numbered messages storec in its buffers. and hence requires that a new m must not be
sent until the message with bloc<-number m.h- N gets stable and discarded. So. the 'holes’

142 Simpésio Brasileiro de Redes de Computadores 647

created by null message multicasts lead to an under-utilisation of buffers; this situation is
avoided in algorithm 3 where f12.1 is replaced by a simple rule that the total number of sent
messages that remain unstable must be less than N. (Note: the rules f12.2 and fb2 are

unchanged.)

To illustrate the usefulness of this optimisation, let us consider the workings of algorithm 2 in
the situation depicted by figure I(c): let us regard super-stable blocks as merely stable blocks
and take N=7 (instead of 8). The scenario of figure 1(c) is as follows: Pj is the only process in
the group that has non-null messages to multicast; every other Pj, Pj€ Vi(g) and j # i, had
multicast a null message msg with msg.b = 10, msg.S = 3 and msg.D = 4, and had not sent
any message with block-number m.b in the range, 5 < m.b < 9; Pj has Sj = 4, Dj = 10, and has
Just multicast a message with block-number = 11. Suppose now that a given Pj generates six
non-null messages to multicast. As per algorithm 2, Pj can send the first message with block-
number = 11 after the 10th block completes which will happen when Pj receives a non-null m,
m.b = 10, from P;j and null msg, msg.b = 10, from other processes; it cannot however

multicast the remaining five messages with block-number m.4 in the'range, 12 < m.b < 16 until
the 11th block completes which will cause Sj to become 10 and satisfy the rule f12.1. This
waiting for the completion of the | 1th block is forced despite the fact that Pj has sent no

message in the blocks numbered from 5 to 9 (inclusive) which are complete but not stable. As
per the algorithm 3, Pj has sent (at this point in time) only two unstable messages (with block-

number 10 and 11) and therefore can send the remaining five messages without having to wait
for the completion of the 11th block: these five messages fill the holes created by Pj's

multicasting of the null message msg with msg.b = 10. Thus, the algorithm 3 is effective in
utilising holes when the need arises. The flow control rules of algorithm 3 are as follows:

A process Pj can multicast a message m, only if

fl3.1: less than N of the messages it had sent, are unstable; and,
f13.2: m.b - N + | is complete, that is, Dj 2m.h - N + 1.

Pj generates free buffers as in fb2 of algorithm 2.

Lemma 3.1: If Pj discards an unstable u to make space for an incoming m, then there exists a
member process, say Pk, that has Sk 2 u.b.

Proof. That the unstable u is evicted for receiving the incoming m, indicates that each one of
Pi's M buffers contains an unstable message. Note that M 2 N * n. As in lemma 2.1, two cases

arise: (i) M = N * n and there are exacly N messages from each of the n processes in the group
g (including Pj); and, (ii) there are more than N messages from some processes, say Pk.

Consider case (i). Let the incoming m was sent by Pj and let 1 represent the oldest message of

Pj that is held in the buffers of Pj (i.e., Hj has the smallest block-number among all Pj's
messages held in the buffers of Pj). The rule fb2 confirms that the message buffers of P; have

no message with block-number smaller than w.b. So, Mj.b 2 pr.b. Note that Pj has sent (N-1)
messages between sending and yj and m. Therefore, by f13.1. when m was sent by Pj, ij must
have been stable in Pj. So. Sj 2 uj.h 2 b and the lemma is true for k=j.

648 SBRC 96

Let us take the case (ii). Let uk and m' be Pk's messages in the buffers of Pj with the smallest
and the largest block-numbers respectively. Ob;iously Uk.b 2 iw.b. Note that Pk has sent more
than (N-1) messages between sending and uk and m". By fI3.1. when m" was sent by Pk, Uk
must have been stable in Pk. So, Sk = uk.» 2 p.b. Hence the lemma.

Lemma 3.2 If Pj receives m from Pj, j # 1. then it can (eventually) send m', m'.b 2 m.b,
provided N >1.

Proof: When Pj sent m, by rule f13.2, Dj 2 m.b - (N-1). This implies that Pj has received from
P; and from every other process a message with block-number larger than or equal to m.b - (N-
1). So SENT; 2 m.b - (N-1). If Dj < m.b - (N-1), then Pj has not received some messages that
were received by Pj. When these messages do arrive, by lemma 3.1, Pj will have free buffers
to receive them and will not discard them before the protocol-related information in them are
recorded. So, Dj 2 m.b - (N-1) eventually becomes true. Thus the rule f13.2 is met for Pj to
multicast m', m'.b = m.b.

That Dk 2 m.b - (N-1) becomes true for every Pk (including Pj) in Vi(g), implies that every Pk
has Sk = m.b - 2(N-1) because every message msg that Pk received with msg.b 2 m.b - (N-1)
will have msg.D 2 m.b - 2(N-1).(See rule f13.2.) This means that every Pk can send m’ with
m'.b > m.b - (N-1) + 1, even if Pk had sent one message for each block-number in the range
[m.b - 2(N-1)+1, m.b - (N-1)]. Since Pj has sent m, every Pk will be eventually prompted by
the timesilencek to send a null m', m'.b=m.b if there is no non-null message to muiticast; thus
every Pk is guaranteed to send m', m'.b=m.b if it had not already sent any msg' in the block-
number range: m.b - (N-1) + | < msg'.b <m.b. In other words, every Pk is guaranteed to
have Dk 2 m.b - (N-1)+] within some finite time and if Pj had not sent any msg' in the block-
number range: m.b - (N-1) + 1 < msg'.b < m.b, then the lemma is true straightaway. So, (o
summarise, Dk 2 m.b - (N-1) becomes true for every Pk (including Pj) implies (1) every Pk has
Dk = m.b - (N-1)+1 within some finite ime and (i) Pj can m, m'.b=m.b, if it had not sent any
any msg' in the block-number range: m.b - (N-1) + 1 Smsg'.b < m.b.

By repeating the above arguments we can show: D 2 m.b - (N-1)+1 becomes true for every
Pk implies (i) every Pk has Dk 2 m.b - (N-1)+2 within some finite time and (ii) Pj can send
m', m.b < m'.b<m.b+1, if it had not sent any msg' in the block-number range: m.b - (N-1) +
2 < msg'.b < m.b. Repeating this line of arguments will lead to: Dk 2 m.b - (N-1) + (N-2) =
m.b -1 becomes true for every Pk implies that Pj can send m', m.b < m'.bsm.b+(N-2). Hence

the lemma.

Lemma 2.3: Pi does not block indefinitely, when a message m (o be multicast is non-null,
provided N >1.

Proof: Suppose that Pj has received m', m"b 2 m.b. The lemma is true by lemma 3.2. So we
will assume that P; has received no m', m'b 2 m.b. If Pj has not already sent anv message at

all, then the non-null message m will have to be sent with m.b = 0 and the rules f13.1 and fi3.2
are trivially met since N >1, and Sj and Dj are all initialised to -1. Suppose that Pj has
previously multicast messages. Let lastj denote the last message multicast by Pj. Since m 1s
non-null. lastj.b must be m.b -1 according to CAl. Letm.b - 1 >0. After receiving last;, every

Pj, Pj € Vi(g), can send a message with block-number = last.b (see lemma 3.2); even if Pj

142 Simposio Brasileiro de Redes de Computadores 649

has no non-null message to send, the rimesilencej will prompt Pj to send a null message. Thus,
every Pj, Pj € Vi(g), eventually sends a message msg, msg.b 2 lasti.h = m.b - 1. Every msg
that Pj receives with msg.b 2 m.b - 1 will indicate that msg.D = (m.bh - 1) - (N-1). So when D;
2 m.b - | becomes true, rule f13.2 is satisfied for P; send m; also, S; 2 m.b - N becomes true
which ensures that the number of unstable messages sent by P;j are at most (N-1) - satisfying
the rule f13.1 for P; to send m.

Theorem 3: The algorithm 3 ensures that a message buffer will not be used for storing an
incoming message until the message contained in the buffer is received by all Pj € Vi(g)
(safery). and that Pj will not be indefinitely blocked when it intends to multicast a (null or non-
null) message (/iveness).

Proof: Follows from Lemmas 3.1, 3.2 and 3.3.

3.5. Enhancement: Hungry Application Processes

We will now remove the assumption of hungry application processes that quickly consume a
delivered message. If the message delivery queue that connects the protocol delivery process to
application processes is full, then a deliverable message cannot be delivered and the message
delivery must wait for a delivered message to be consumed. To handle such delays, we will
define Aj for process Pj as the maximum block-number of delivered messages. Note that Aj <
Dj. Using Aj instead of Dj in determining stable block-numbers will ensure that the sending of
new messages is blocked sufficiently long to accommodate the delivery delay caused by slow
application processes. So. SVi[i] will now be set to Aj and the message fields m.D of outgoing

messages 1o Aj.

4. Experimental Results

We have performed experiments to evaluate the effect of the flow control mechanism on the
performance of Newtop. In the experiments we have a process group with six members
distributed over three workstations; algorithm one was implemented. We consider the case
when only one process is sending messages. In this circumstance, the time-silence mechanism
of the inactive processes is responsible for the completion of blocks. The time-silence timeout
for the experiments was fixed to 50 msecs. The graphs depicted in figs. 2 and 3 are for the
sender process. For each run, 1000 messages of 32 bytes each were transmitted. We varied the
inter-message transmission time (denoted in the graphs as transmission time) from 400 msecs
to 6 msecs and calculated the maximum number of unstable blocks as well as the average
delivery delays.

Figs. 2 and 3 graphically show the data collected during the experiments when the flow control
mechanism was switched off and on (with N fixed to 50) respectively. It is interesting to note
that when the flow control was switched on, besides limiting the number of unstable blocks to
50. the average deliverv delav was alse reduced for inter-message transmission times of lese
than and equal to 50 msecs. The explanation for this is that when the inter-transmission time 1s
higher. a larger number of messages are transmitted without stability information (1.e. £, S and
D) being updated at the sender. This causes the number of incomplete blocks to grow quickly
and thus increases the average delay overhead for message delivery.

SBRC 96

650
a8
o > 120
o 200+ < 100
.&-' o 800
€ 1004 S 600
ric < 40
O' 2 _! 200 i n i
1000 100 10 1 1000 160 10 1
Trans. Time Trans. Time
Fig. 2: |1-sender and 5-receivers with flow control switched off.
0 ¢ 8001
“ a5 2 600-
@It °
i O 4004
e Dr >
- 10 ¢ (200“
0 4 t 4 0 t 1
1000 100 10 1 1000 100 10 1
Trans. Time Trans. Time

Fig. 3: 1-sender and 5-receivers with flow control switched on.

5. Related Work

Flow control algorithms for unicast communication protocols (such as TCP/IP) have been
extensively explored. Usually, these algorithms utilise the notion of sliding windows. In a
sliding window scheme, transmitted messages are sequentially numbered before being sent to
the destination. At any given time, the sender has a "window" whose size indicates the
maximum number of messages it can transmit without waiting for acknowledgements from the
sender. The window size is determined by the receiver following a request from the sender. If.
for example. the window size is k+1. then the sender can send any message numbered from n
to n + k and thus the window extends from n to n + k. As the receiver acknowledges the receipt
of the sent messages, say w messages, the window slides forward to become [n+ w, n + Kk +
w]. The sequence numbers of all messages that were sent but not yet acknowledged, will be
represented within the sender's window. Such messages are unstable and are kept until their
reception is acknowledged by the sender. If the window is full when the sender wants to
transmit a message. the sender b'ocks until the window slides forward.

Flow control schemes for fault-tc-lerant multicast protocols have not recetved much attention in
the literature. As discussed earlicr. in fault-tolerant group communication protocols. not only
sent messages must be kept for passible retransmission but also any received messages. This
makes flow control a significant «nd challenging problem to be solved. The importance of flow

142 Simposio Brasileiro de Redes de Computadores 651

control as an essential requirernent for the correct working of a fault-tolerant multicast
protocol has been pointed out in [Amir92a]; this paper briefly outlines a flow control scheme
implemented for the Transis system. To the best of our knowledge, [Cristian93] is one other
paper that exphicitly describes flow control schemes for the pinwheel multicast protocols. We
will briefly compare our algorithms with theirs.

In Transis, unstable messages are kept in buffers and the flow control algorithm is designed
to minimise the chances of buffer overflow. Each process computes the size of the sliding
window that consists of unstable messages. Sending of new messages are delayed depending
on the window size: the smaller the window size, the smaller will be the delay. When the
window size exceeds a maximal size, sending of messages is blocked. This will reduce
chances of buffer overflows in other processes. Group membership service is relied on to
unblock the flow and to retrieve any messages lost due to ‘buffer-spills’. The flow control
algonthms of Newtop, in contrast, guarantee that buffer overflows never occur. This is
achieved by forcing processes to observe certain completion and stability requirements
before sending new messages and thereby deducing accurate information about message

stability conditions.

Two flow control algorithms are proposed in [Cristian93]. The first algorithm, like ours,
guarantees buffer overflows never occurs. It is considerably simpler than ours and this is due
to certain features of the pinwhee! multicast protocol: each process acts as a coordinator in a
predefined ranking order. Hence if P, is known to be acting as the coordinator then all
messages 1t sent and ordered in the previous round are implicitly stable. The second
algorithm tolerates buffer overflows which are permitted to occur in an controlled manner:
when there 1s no free buffer, a process carefully chooses a received message and discards it to
accommodate the incoming message. (Unlike in our second algorithm, the discarded message
need not even be delivered, let alone be stable.) Messages discarded in this manner are
considered to have been lost in transmission (an omission failure) and they are retneved
using mechanisms designed for retrieving lost messages. It is not clear from the paper, how
and whether the simplicity of the first scheme and the robustness of the second will be
preserved in the presence of failures. Our experience with the implementation of fault
tolerant multicast protocols shows that recovery from a (real or supposed) message loss is
usually costly and can lead to further message losses.

6. Concluding Remarks

Flow Control is an important aspect of protocol design. However, it has not received much
attention in the hiterature for fault-tolerant multicast protocols. We have presented three flow
control algorithms for a multicast protocol that ensures that a sender process does not cause
buffer to overflow from a limit at any of the functioning destination processes. This is
achieved by piggybacking block completion and block stability information (two integer
values) on top of normal messages. This permits a process to compute whether it is safe to
transmit a message.

We have implemented our first algorithm as part of an early version of Newtop. We are
presently working on the integration of the third algorithm with a Group Communication
Platform being developed at LaSiD-UFBA, the system BCG'

' From the Portuguese “Base Confiavel de Comunicagdo em Grupo”

652 SBRC 96

Acknowledgements

This work has been supported in part by grants from CNPg/Brazil (grant N* 200811/89.4),
ESPRIT basic research project 6360 (Broadcast), and UK MOD and the Engineenng and
Physical Sciences Research Council (GR/H1078).

References

[Amir92a] - Yair Amir, Danny Dolev, Shiomo Kramer. and Dalia Malki. "Transis: A Communication
Sub-System for High Availability”, 22nd International Symposium on Fault-Tolerant Computing
(FTCS-22nd). Boston. July 1992.

[Amir92b] - Yair Amir, Danny Dolev. Shlomo Kramer, and Dalia Malki, "Membership Algorithm for
Multicast Communication Groups”, Proc. of the 6th International Workshop on Distnbuted Algonthm,
pp 292-312, November 1992.

|Birman91] - Birman, K., Shiper A., and Stephenson, P. "Lightweight Causal and Atomic Group
Multicast”, ACM Transactions On Computer Systems, Vol. 9. No 3. August 1991, pp. 272-314.

|Chang84| Chang. J. and Maxemchuk. N. F., “Reliable Broadcast Protocols”. ACM Transactions on
Computer Systems, Vol 2., No. 3. August 1984, pp. 2510273,

[Cristian93] Cristian, F. and S. Mishra, “The Pinwheel Asynchronous Atomic Broadcast Protocols”,
Technical Report 93-331, Department of Computer Science & Engineering, University of California,
San Diego, USA.

|Ezhilchelvan95] - Ezhilchelvan, Paul, Macédo, Raimundo J. A., and Shrivastava, Santosh K.
"Newtop: a Fault-Tolerant Total Order Multicast Protocol”, 15th International Conference on
Distributed Computing Systems, Vancouver-Canada, June 1995, IEEE.

[Fischer85] - M. Fischer, N. Lynch, and M. Peterson, "Impossibility of Distributed Consensus with
One Faulty Process”, J. ACM, 32, April 1985, pp 374-382.

| Lamport78] - Lamport, L., "Time, clocks, and ordering of events in a distributed system”, Commun.

ACM, 21, 7 (July 1978), pp. 558-565.

[Macedo93| - Macédo, R. J. A., Ezhilchelvan, P., and Shrivastava, S. K., "Newtop: a Total Order
Multicast Protocol Using Causal Blocks", Broadcast deliverable report, Volume I. First open
Broadcast workshop, Newcastle, october, 1993,

[Macedo94] - Raimundo A. Macédo, "Fault-Tolerant Group Communication Protocols for
Asynchronous Systems”. Ph.D. Thesis, Department of Computing Science, University of Newcastle
upon Tyne, 1994.

|Macedo95a] Raimundo J. A. Macédo and Santosh. K. Shrivastava, “The Implementation and
Performance Analysis of a Total Order Delivery Protocol for Group Communication™ The
Proceedings of XXI Latin American Conference on Informatics and the XV Congress of the Brazilian
Computer Society. Pages 287-299, July, 1995, Canela-RS, Brazl.

[Macedo95b] Macédo, R. J. A., Ezhilchelvan, P, and Shrivastava, S. K. “Flow Control Schemes for a
Faul-Tolerant Multicast Protocols”, The proceedings of the Pacific Rim Intemational Symposuim on
Faul-Tolerant Systems (PRFTS'95), December 4-5, 1995. Newport Beach, California, USA. IEEE
Computer Society.

[Melliar-Smith90] - M. P. Melliar-Smith, L. E. Moser, and V. Agarwala. "Broadcast Protocols for
Distributed Systems", IEEE Transactions on Paralell and Distributed Systems, Vol. 1. No. 1, January,
1990,

|Mishra93] - Mishra, S., Peterson L., and Schlichting, R_, "Consul: a Communications Substrate for
Fault-Tolerant Distributed Programs". Distributed Systems Engineering, 1 (1993), pp. 87-103.
[Peterson89] - L. L. Peterson, N. Bucholz, and R. Schlichting, "Preserving and using context
information in interprocess commumicatiop”, ACM Transactions on Computer Systems. Vol. 7. No 3.
August 1989, pp. 217-246

