142 Simpésio Brasileiro de Redes de Computadores

611

Testing unstable properties in
communication protocols

Antonio A.F. Loureiro Osvaldo S.F. de Carvalho

Departamento de Ciéncia da Computacao
Universidade Federal de Minas Gerais
Caixa Postal 702, 30161-970 Belo Horizonte. MG

E-mail: {loureiro,vado}@dcc.ufmg.br

Resumo

O teste de protocolos é uin processo dindmico que pode mostrar comportamen-
tos validos ou nao durante a execuc¢ao do protocolo num ambiente de teste. Neste
trabalho nos estudamos o problema de validar propriedades dinimicas instaveis du-
rante o processo de teste e durante a execugao normal do protocolo. Propriedades
dinimicas instdveis definem comportamentos temporais desejaveis ou nao de um
protocolo. Neste trabalho nés apresentamos um novo algoritmo para testar pro-

priedades instaveis que funciona on-line de forma distribuida.

Abstract

Protocol testing is a run-time activity and we can only hope to detect valid or
invalid behaviors in an actual execution of a protocol implementation embedded
in a testing environment. In this paper we focus our attention in the validation
of dynamic unstable properties during the testing process and afterwards, during
normal execution. Dynamic unstable properties define desirable or undesirable tem-
poral evolutions of the behavior of a communication protocol. We shall present a
novel on-line distributed algorithm and the corresponding design principles that
will improve the testing process and the reliability of a protocol implementation by

checking unstable properties.

1 Introduction

The validation' of global predicates is a fundamental problem in distributed computing
that has been used in different contexts such as design, simulation, testing, debugging.
and monitoring of distributed programs [1. 7, 15, 16, 18]. A global predicate may either he
stable or unstable, Informally, a stable predicate means that once it becomes true during
a computation it will remnain true after that. such as a system deadlock. An unstable
predicate does not have this characteristic. An example is a predicate that relates the

'The terms checking, detection, and validation will be used interchangeably in this paper when referring

to the validation of desirable behaviors (i.e.. predicates or properties) in a protocol.

612 SBRC 96

length of two queues, each one in a different process. In fact, an unstable predicate may
switch from valid to invalid and vice-versa during the execution.

The initial work in the detection of global predicates has concentrated on the valida-
tion of stable properties such as distributed termination [5, 6] and deadlock detection [2].
Chandy and Lamport [3] proposed an algorithm to take snapshots in a distributed svs-
tem that became the basis of other algorithms which check stable properties. The word
snapshot in this algorithm means the local state of a process P; in the system. Therefore.
when P, receives a message to take a snapshot it records its local state and “relavs the
‘take snapshot’ message along all of its outgoing channels”™ [3]. These snapshot’ messages
are used by a global monitor to construct only consistent global states (see Definition 6).

Note that a stable property defined in terms of global predicates can be checked by
a global monitor which takes snapshots and constructs the consistent global states. If
the stable predicate is found to be true in at least one consistent global state constructed
from the snapshots taken in the individual processes then it can be inferred that it will
remain in that state at the end of the algorithm. If the predicate is false in the global
states constructed, then it was also false at the beginning of the algorithm [3].

Unfortunately this approach does not work for unstable predicates which may be true
during an execution but not checked, or found to be true in some states but it may have
never happened because the global monitor constructs all possible consistent global states
(see [1] for an example of this situation).

The testing process is a run-time activity and we can only hope to detect valid or
invalid behaviors in an actual execution of a protocol implementation embedded in a
testing environment. In this paper we focus our attention in the validation of dynamic
unstable properties during the testing process and afterwards, during normal execution.
Dynamic unstable properties define desirable or undesirable temporal evolutions of the
behavior of a communication protocol. We shall present a novel algorithm and the cor-
responding design principles that will improve the testing process and the reliability of a
protocol implementation by checking unstable properties. The goals to be accomplished
are summarized as follows:
> Protocol testing:

e Mechanism to check global predicates hased on local predicates.
¢ Identification of consistent global states where any type of predicate can be checked.

> Protocol execution:
e Obtain information to avoid the problem of state build-up ([11]).
e Obtain information for use in exception handling.

The rest of this paper is organized as follows. Section 2 describes the formal model used
in this paper. Section 3 discusses the tasks involved in the detection of dynamic properties.
Section 4 describes the design principles related to the testing process, including the
algorithm to detect the properties. Section i describes the design principles related to the
execution of the protocol implementation. Section 6 discusses the related work. Finally,
Section 7 presents the conclusions for this paper.

2 Formal model

In this section we present some definitions that will be used in the algorithm described in
Section 4. Our algorithm is based on the communicating extended finite state machine

142 Simpdsio Brasileiro de Redes de Computadores 613

(CEFSM) model. First we present the nomenclature for identifiers that will be used
this paper.

Nomenclature 1 (Identifiers) Identifiers can have a subscript and/or a superscript
both of which are used to indicate an element in a set. Let O7 represent an identifier.
The subscript 7 refers to the i-th element of O. For example. process F;. The superscript
refers to the z-th element of T, in the case O, is also a set.

Definition 2 (Communicating extended finite state machines)
A communicating extended finite state machine is a labeled directed graph where ver-
tices represent states and edges represent transitions. A designated vertex represents the
initial state of the machine. Transitions are labeled with the pair &%ﬁ"%' An event is
the sending of a message, the reception of a message, or an internal event not related to
a channel (e.g., a timeout or a service request from a service user). Messages should be
defined in a finite set ¥ of message types. The communication between machines is asyn-
chronous. The communicating channels between each pair of machines are not perfect
so that messages can be reordered, corrupted or lost. The channels are assumed to have
infinite capacity?

Formally, a communicating extended finite state machine £, (1 =1...r)isa five-tuple

;ol- = (qu E.‘-, 513 ,\‘-“5'?),

where

e S; is the set of local states of machine F,.

e T, is the set of message types that machine P, can exchange with other machines.
This is represented by the sets {£,;} and {£,;}. respectively. Therefore. ¥, =
{Zi;} U{Z,:}. The set {E,,} is empty. i.e., machine F; cannot send or receive
messages from itself.

e &; is the transition function and is defined as é;: S;

e), is the output function and is defined as A;: S; x

o 50 is the initial state of machine F,.

X E, == Sg.
i = Zi.

In the labeled directed graph that represents a CEFSM. a message preceded by a +
sign means that it was received. and a message preceded by a — sign indicates that it was
sent. u

Let P be a protocol specification comprised of processes Py. P;...., Pr. Each process
is modeled as a CEFSM and they are interconnected by a set of communicating channels
Cy,Ca,...,C,. Each process P, (i = 1...r) has a finite set of variables B Vs Ve
In this model, the concept of a global state plays a fundamental role in the correctness of
a communication protocol.

Definition 3 (Causal precedence order) A causal precedence order defines a partial
order of events in a system P. Let E be the set of all events that can occur in P ard let

2In practice, we can model an infinite buffer using a finite buffer by discarding new incoming messages
when the buffer is full.

614 SBRC 96

< (“happens before”) be the binary relation denoting causal precedence between events
as defined by Lamport [9]. Therefore. we have:

(i) (t=j)Alb=a+1)V

def

el < eif = (ii): (ef =send (m) to j) A (e:‘ = rcv (m) from 1) V

(iii): Jef: (€2 < ex) Alef < ¢2)
Condition (i) says that all events that occur in P, are totally ordered. Condition (ii) says
that if we consider a message (m) then the sending event precedes its receiving event. And
condition (iii) says that it is possible to define chains of related events based on causality.
i.e., relation < is transitive. L

A protocol computation can be represented by a partially ordered set? or poset for
short, based on set E, i.e., Cp = (E.<). Graphically, we can represent a distributed
computation using the space-time diagram. as shown in Figure 1.

If we analyze this space-time diagram we can realize that process P, enters in a local
state s7 after event e? happens. It is easy to see that there is a duality between events
and local states in this computation. Let S be the set of states in the computation Cp.
Therefore, we can rewrite the binary relation < as follows:

(i): i=))A(b=a+1)V
2 { (ii): (e =send (m) to j) A (e] = rev (m) from)V
(iii): Fsf:(s? < sp) A (s < sj}

1

All three conditions have the same meaning as before but in this case we have states
instead of events. Therefore. the protocol computation can be represented by another
poset based on the set S.i.e..Cp = (S.<).

0 £ 2 _ - N B 3 &)
s [s3] T [s3] 1 [sf] t (s3] [sS)

B

P

ol)

I

8 o (8 e lef] aled

Figure 1: Example of a space-time diagram representing a distributed computation based
on states.

ISince an event cannot happen before itself, the < relation is an irreflexive partial ordering or a prece-
dence relation, i.e.. antisymmetric and transitive. Precedence relations share many of the properties of
partial ordering relations. However. when a physical situation leads to the definition of a precedence rela-
tion, it is often expedient to include the reflexivity property so the terminology and results in connection
with partial ordering relations can be applied [10].

142 Simpésio Brasileiro de Redes de Computadores 615

Definition 4 (Local state) The local state -, of a process P, is defined as the contents
of each local variable (V}!,.... V) in P. "

In the following, we give a definition of global states that does not include communi-
cation channels which can be encoded as part of each local state.

Definition 5 (Global state) A global state is an n-tuple of local states. one for eacl
process P;, and is represented as follows:

where v, represents the local state of process F;. ; n

Definition 6 (Consistent global state) Informally, a global state is consistent if i
could occur during an execution and a global clock in the system could be used to label
precisely the total order of events. Formally, a global state I' = (,....7.) is consistent
iff for any pair (v;,7;) € I, then either v, < 7, or 4, < v for 1 <1,7 < n and ¢ # J.
according to the transitive closure of relation < between local states. "

The set of all consistent global states define exactly the states that could have happened
in any computation with respect to the events that occurred in each process. Therefore.
predicate values are meaningful only if evaluated in a consistent global state.

The set of all consistent global states I define a lattice structure £ and its minimal
element is the initial global state I'® = (17,...,72). In the lattice £ there is an edge -

l1zfrom a node representing a global state I'* = (v;,...,7%,....7) to a node representing
PR = (s ,yf”", ...,7n) Iff there exists an event e that F; can execute in its state
%

Definition 7 (Sequence of global states) Informally, a sequence of global states rep-
resents a computation where the order of each global state in the sequence is given accord-
ing to a global clock. Thus this sequence represents the serialization of the global states
in a particular computation. Formally, a sequence of global states I'®. "', ... I'*=' [...
represents a sequence of events ¢'.e?.... that is consistent with the relation <. In this
sequence, global state I'* is reached after executing event ¢ in global state ['*~'. ¥

From this definition we can see that there is a duality between sequences of global
states and sequences of events. In other words, a sequence of global states define a
possible computation of P where the events are implicit. and a sequence of events also
define a possible computation of P where the states are implicit. In either case we have a
valid computation of P that starts at the minimum element of lattice £ and goes upwards
along one path. Furthermore, this lattice of consistent global states represents all valid
observations of P.

Now we present the definitions of local and global predicates that will be used in
Section 4.

Definition 8 (Local predicate) A local predicate of a process P, is a formula in propo-
sitional logic (i.e.. a boolean expression) where each term of the formula is a local variable
of P,. The set of local predicates @ valid for protocol P can be expressed as:

1
(vb — {¢]1---1¢f1-m;n----9321----O,liu---qorpl“}

==] % J

i=1l.n

616 SBRC 96

Definition 9 (Global predicate) A global predicate of protocol P is a formula in
propositional logic (i.e., a boolean expression) where each term of the formula is a lo-
cal predicate of process P,. A set of global predicates ¢ valid for protocol P can be
expressed as:

@:{‘b;.q)z,....‘bg} L3

3 Tasks involved in the detection of unstable dy-
namic properties

The detection of unstable dynamic properties involves two tasks. The first one defines
the ways a property (global predicate) can be expressed. and the second is the design of
algorithms to detect such properties. Clearly the rules used for expressing the properties
will guide the design of algorithms to detect such properties. For instance, a property can
be defined in a general way (1, 4] involving relations among variables in different processes.
In this case we need to identify all the consistent global states, which can be represented
by a lattice, to determine whether the property definitely or possibly occurred [1].

In Section 6 we compare the different solutions proposed in the literature to repre-
sent predicates and their algorithms and the representation used in this thesis with the
algorithm proposed in Section 4.3.

4 Design principles related to testing

This section has four parts. The first part describes how dynamic properties are repre-
sented (Section 4.1). The second part explains the basic principles used to detect dynamic
properties (Section 4.2). The third part describes in details the algorithm to check dy-
namic properties based on local predicates (Section 4.3). Finally, the fourth part shows
that for a specific type of protocol, namely 3-way handshake protocols, we can compute
general properties using this algorithm (Section 4.4).

4.1 Representation of dynamic properties

Recall from the discussion in Section 1 that we are interested in checking dynamic prop-
erties during the testing phase as well as during normal execution of the protocol after
the testing process. In this case, the representation of dynamic properties must consider
two important requirements. First we need to check properties continuously, and second.
a dynamic property should describe a valid trace for the protocol specification.

It is well known from automata theory that the languages accepted by finite automata
are the languages defined by regular expressions. Furthermore, regular expressions can
define infinite languages which. in our case. represent the valid traces for the protocol spec-
ification. From Definition 9 we can see that a global predicate p is a regular expression
which defines a finite trace. If we want to extend the global predicate to represent an infi-
nite language, we must include the operation for concatenation of expressions represented
by the symbol + as in p*.

142 Simposio Brasileiro de Redes de Computadores 617

Definition 10 (Dynamic property) A dyvnamic property is a global predicate ex-
pressed in the form given in Definition 9 which may contain the operation for concatenation
of expressions represented by the svmbol +.]

The way a global predicate is expressed is different from equivalence of a regular
expression L and a finite automaton Ay in two aspects. First, in the case of language
recognition there is only one svmbol to be processed at each state of the automaton A,. In
the case of property detection we shall see that we may have a set of valid local predicates
in each state of the automaton A4 that corresponds to the property ®. Second. a dynamic
property can only use the symbol + for concatenation of expressions and not the symbol
*. (See the discussion following Theorem 13 for not including the symbol *.)

From Definition 10 it follows that a dynamic property can be expressed by a deter-
ministic finite automaton (DFA). In fact an automaton is a convenient representation for
properties since:

e it represents the nature of communication protocols. that is, of reactive systems:

e it is compatible with the communicating extended finite state machines model used

in this paper to represent protocols;

e it allows the protocol behavior to be partitioned. that is paths and phases. where

paths represent partial traces.

Definition 11 (Deterministic finite automaton) A deterministic finite automaton
(DFA) is a directed graph where each transition represents a local predicate, and each
automaton state represents an evaluation of the global predicate in some state of the
process P;.

Formally, a deterministic finite automaton A; (j = 1...t) is a five-tuple

A; = (@}, L;, 65,8}, QF;),

where

Q; 1s the set of states of automaton A,.

¥; is the set of local predicates associated with A;.

d; is the transition function and is defined as ¢;: QQ; x £; — Q.

q? is the initial state of automaton A;.

QF); is the set of accepting states of automaton A,.]

Figure 2 shows a binary relation between local predicates and global predicates. Let
the binary relation y; (1 =1...r) from o; to £ be defined by

R, ={(6F,5,), ¢f €0, Z, € Z | ¢f is a term of §,}.
The equivalent matrix representation M, for R, is given in Figure 3. The entry
M, [¢7,5;] = 1 iff &7 is a term in the definition of the global predicate ®;. Otherwise it
IS zero.

Note that if column j of M,, has all entries equal to zero it means that predicate ¢,
does not contain any local predicate of ¢; and this column can be removed. If line r of
M, has all entries equal to zero it means that predicate o does not appear in any global
predicate. The designer should analyze this problem which may be an indication of error.

618 SBRC 96

Local predicates Global predicates
of processes of protocol P

-] =~ e
0
@;
M, = O I
o}

Figure 3: Matrix representation of binary relation R,,.

4.2 Detection of dynamic properties

To detect a property we will build the automaton A; that represents the global predicate
®;. The idea of the detection algorithm is to superimpose onto each process F, (1 = | ...n)
that implements protocol P a local checking procedure that repeatedly performs the
following steps:

(i) check and determine the valid local predicates in the set o; when process F, goes
to a new state, and move the automaton A, to a new state if there are transitions
associated with the valid local predicates:

(ii) append the current state of the automaton A} when P; sends a message to another
process; and

142 Simposio Brasileiro de Redes de Computadores 619

(11i1) check the local predicates as in (i) when P, receives a message from P and move
the automaton A; to a new state based on the current state and the state received
from Pj. '

The basic idea of this procedure is to use the automaton A; to keep track of the protocol
behavior. If the behavior exhibited by the protocol is valid. the automaton A;, which
represents property ®. will eventually reach an accepting state.

Note that this high level algorithm can be applied to any protocol or distributed pro-
gram in general. In Section 4.3 we shall describe this algorithm in detail. The properties
to be checked depend on each protocol and we shall assume that they are part of the
input to the algorithm.

In the following we apply this high level algorithm to an example. Suppose we have
two processes P; and P, that implement a protocol P such as the ISO Transport Protocol.
Furthermore, each process implements a different class of the transport protocol. Given
this scenario we would like to make sure. for instance, that the parameters negotiated
during the connection establishment remain valid for the entire connection. Let ¢, =
{o1, 41,47} and ¢, = {0}, d%, 03, @1} represent the set of local requirements for processes
P, and P, respectively. Let us assume that the property that says that “the parameters
selected must remain valid for the entire connection” can be expressed as ¢, = (¢} V
2)Y Aol Ad? A (d3)t. This predicate can be represented by the automaton in Figure 4-
(a). Figure 4-(b) depicts a possible computation for this protocol with the relevant events
and messages shown. Next to each event is the set of local predicates that hold at that
moment. The current state of the automaton is given inside a circle. Without loss of
generality, assume that the protocol P executed the following computation according to
the lattice of consistent global states as shown in Figure 4-(c):

(030)1 (0*1]1 (11 1]! (1*2)1 (212}' (2*3)~ ('}-3)1 (1:3)1 (41‘”

The initial state of the automaton for both processes is ¢7. When the event e} occurs the
state of the automaton A, in P, goes to ¢; after checking the local predicates. At this
point, a message (m.q}-) 1s senl. to P;. Process P, receives the message and checks its
local predicates. At this moment P, is in state q_? and P, in state q}. Note that the only
possible transition in the automaton of P, is (¢}, ¢},¢;) and therefore this transition is
executed. If the local predicate o] is not valid when event ¢! happens then we must take
the automaton to its initial state since we cannot have a valid computation that started
at a valid state with an invalid prefix. Then computation proceeds as before. When
the event €3 occurs, the state of the automaton A; in P, goes to q, after checking the
local predicates. At this point, a message (m. q;) was received from P,. Again, the only
possible transition in the automaton of P, is (¢7.¢3,¢"') and therefore this transition is
executed. When the state ¢ is reached. the property ®; is true in process P,. Process P,
will eventually detect this property if the local predicates associated with ®, remain true
(i.e., ¢] and ¢?) and P, sends a message to P;. If the former condition does not hold it
just reflects the temporal behavior of the protocol. If the latter condition does not happen
it is because the protocol was not designed to send another message to P,;.

There are two important points that shonld be noted in the algorithm proposed. First,
the properties do not specify interleaved behaviors of the protocol but conditions that
should hold with time. This can be seen from the lattice of consistent global states
of the distributed computation as shown in Figure 4-(c). All possible interleavings can

620 SBRC %6

be obtained from the lattice. Independent of which path of computation occurs, the
property will hold iff along the path the local predicates of each process are valid when
the checking is performed. Second. the checking procedure does not modify the behavior
given by the protocol specification. it simply appends the current state of the automaton
to each message sent.

4.3 Algorithm to check dynamic properties based on local
predicates

The algorithm to check dynamic properties is given in Figure 5 and is divided into several
parts as explained below,

4.3.1 Data structures and algorithm

P> Data structures
The data structures used in the algorithm are described in the following:
o StateOfAutomaton|l ... t]: each entry of this array represents the current state of
the Automaton A; (j...¢) in the Process P,.
e LP[1...p;]: the z-th entry (r = 1...p;) of this array indicates whether the local
predicate ¢f is true at the current state of Process P;.
The variable p; represents the cardinality of the set o; as given in the Definition 8.
o ValidLP: set of valid local predicates when process P, moves to a new state.
e EndOfTransition: boolean variable that indicates whether or not there is no more
transition to be executed.

D> Initialization: Lines 1-3
Initializes each automaton to its initial state that is by definition the state ¢}.

D> Main part: Lines 4-9
This is the main part of the program that repeatedly checks the properiies when the
process P; goes to a new state or appends the array StateOfAutomaton to (m) when a
message 1s sent.

The part that checks the properties can be seen as a function and is given in lines 10

to 46.

D> Check each local predicate defined in P;: Lines 10-12

When process P, goes to a new state. we need to check each local predicate in order to
evaluate the global properties. The truth-value of each local predicate depends on its
definition. We give a generic function called CheckLP that checks a local predicate.

B> Validation of global properties: Lines 13-44
In this part we check each property in the set ®.

> Determine the set of valid local predicates in ® at the current moment:
Lines 14-23

An automaton A} can only execute a transition for a local predicate of iff this local

142 Simpdsio Brasileiro de Redes de Computadores 621

®; = (63 Vo)t Ao} Aol A(03)"

@3, &3

(a) Global property and the corresponding DFA.

{} {e1} {¢1.01} {ol,01} {0l 01}
e e el H B
P e i
P, .
eg 5.'12 f-% Eg r-:;

{}{¢},93.03) {0}.08} {4} 0h 03H{4}. 0% 2}

(b) Time-space diagram of the distributed computation with the valid local predicates at each state.

0.0

(c¢) Lattice of consistent global states of the distributed computation.

Figure 4: Checking of properties in a distributed computation.

predicate is a term in @, and is valid at the current moment in the process F,. If the local

622 SBRC 96

predicate is a term of ®; but is invalid and there is a transition associated with of at the
current state of A} then the automaton A} must be reset. This guarantees the validity of
Theorem 12.

Theorem 12 An execution (trace) that is validated according to the dynamic property
® does not contain an invalid prefix (sequence of invalid local predicates) after its initial
state ¢7.

Proof. By definition, the initial state ¢} is a valid state for the automaton A;. If A,
changes its state from ¢ to g}, it is because there is a local predicate o} valid at state
g; and a transition (¢}, o, ¢;) exists. If the local predicate ¢f is invalid then it is not
possible to execute the transition. Suppose the current state of automaton A; is ¢} and it is
possible to associate a sequence of valid transitions with the path that led the automaton
to this state. Now suppose that (¢], ¢, ¢}) is a possible transition at state ¢ but the local
predicate ¢7 is invalid so that it is not possible to execute this transition at this time. If
we leave the automaton at this state it is possible this predicate may become true later on
and we will execute this transition. That means that if the property @ eventually holds
after the state g later on, ® will be true but during the computation there was a false
condition. To avoid this inconsistency., we reset the automaton to state ¢;. a

D> Determine the next state of the automaton when it receives a message:
Lines 24-26

At this point the current state of the automaton A, is given by StateOfAutomaton[j| and
a new state g7 is received. Therefore, one of these states has to be chosen so the process
of checking the property can be carried on. Before showing how this state is determined.
let us examine the situations in which an automaton A, can and cannot move.

The automaton in P; can move if there is a transition 7 = (¢}, ¢f.¢;) where ¢/ is the
current state of A} and ¢7 € ValidLP (case i). The automaton cannot move when there
is a transition 7 but ¢f € ValidLP (case ii), and when there is no transition 7 where
@¢f € ¢; (case iii). If case (ii) occurs it means that the automaton must be reset as shown
in Theorem 12. In case (iii), the automaton can only move from this state if there is a
predicate ¢f in process F; (k = 1...n) that satisfies condition (i). The automaton must
move until one of the conditions (ii) or (iii) happens.

Recall from Definition 10 that a global property may contain concatenation of expres-
sions represented by the symbol +. Therefore state ¢] has the following characteristics:
(a) it cannot be an accepting state for the automaton; (b) there is no transition that ends
at q?; and (c) it has just one transition that starts at q_‘,’. Condition (a) follows from (b)
but it was intentionally given to emphasize the characteristic of this state.

To determine the state of the automaton we need to enumerate the possible combi-
nations in which processes P, and P, stopped moving (i.e., conditions (ii) or (iii) above).
The combinations are:

| Combination || 1 | 2 [3 | 4 |
P (11) | (i) | (1) | (ii1)
P, (11) | (ii1) | (1) | (iid)

Condition (ii) means a reset and condition (iii) means that the move depends on the other
process.

142 Simposio Brasileiro de Redes de Computadores 623

Suppose that P, is the process that receives a message. (For P; is equivalent.) The
first combination is trivial and the state of the automaton A} remains unchanged. The
fourth combination shows that the next state of A} must be the state of the automaton A
received from the process P;. The second and third combinations are symmetric. Let us
analyze the second combination. The automaton AJ’- is in the state ¢} and the automaton
A? is in the state ¢7. If the state ¢f in A? can be reached directly from state q; (i.e.. with
transitions involving only local predicates in P;) then this situation is similar to the fourth
combination and the next state of the automaton must be ¢7. However, if the state ¢
cannot be reached directly from ¢Y, it means that process P has already contributed to
this path, i.e.. there is at least one transition with a local predicate of P, before reaching
state ¢f. Since there is no transition that ends at q; (condition (b) above) it means that
the automaton A! was reset and therefore the next state of A} must be ¢} according to
Theorem 12. This analysis also applies to the third combination.

Theorem 13 When a process P, receives a message with the state of the automaton A,
in P, the next state of automaton A; in P, can be uniquely determined.

Proof. Given above. 0

Note that if we allow the concatenation of expressions represented by the symbol «
in the definition of global properties, then the conditions (a). (b), and (c) above do not
hold anymore and we cannot apply Theorem 13 directly as stated. This does not seem to
be an important restriction since if a local property can happen zero or more times, it is
probably meaningful if it has to happen at least once.

D> Determine whether the automaton can move: Lines 27-40

At this point we know the set of valid local predicates and the current state of the au-
tomaton A; and would like to determine if the automaton can move to a new state. This
must be done following the conditions (i), (ii), and (iii) described above.

D> Check whether the current state of the automaton satisfies the global prop-
erty: Lines 41-43 ,

If the current state of the automaton A; is an accepting state then the property ® is valid
at the current state of process P,.

4.3.2 Complexity of the algorithm

We provide an analysis of the complexity of the algorithm to detect one property &;
in lines 13 to 44. Let p; be the cardinality of the set of local predicates o; and e the
cardinality of the set é,. The algorithm has five sequential parts. The first part (lines
10-12) validates each local predicate of. Suppose that each predicate can be checked in
constant time. Then the validation of the local predicates can be carried out in time O(p;).
The second part (lines 14-23) determines the set of valid local predicates in ®; which is
also executed in time O(p,). The third part (lines 24-26) determines the next state of the
automaton when it receives a message. There are four cases to be analyzed and this part
is executed in constant time. The fourth part (lines 27-10) moves the automaton A}, if
possible. Since this depends on the number of transitions in A; this is bounded by Ofe).

The fifth part checks if the current state of the automaton satisfies the global property

624 SBRC 96

Begin of algorithm to check dynamic properties

1
Set A = {A;,A;,...} of automata that represents the set of properties ¢ =

{®,,®2,...} to be detected by process P;.

Input:

Set ¢; = {¢!....,¢"} that represents the local predicates valid for process P;.

Matrix M, that represents the binary relation R, .

Output: e Validation of each local predicate in ;.

o Validation of each dynamic property represented by an automaton in the set A.

/* Initialization */

(1) foreach automaton A; € A do
(2) State Of Automaton|j] — ‘I_?i
(3) od;

/* Main part */

(4) do forever

(5) (when process P, goes to a new state) —
(6) Check properties;

(7) (when process P, sends a message (m)) —
(B) Appends the array State OfAutomaton to (m);
(9) od;

Figure 5: Algorithm to check dynamic properties (Part 1 of 3).

and this can done in constant time. Therefore, the five parts together are bounded by

O(pi + €).

4.4 Special global states in the computation

In [1] Babaoglu and Marzullo show that a property ® involving relations among variables in
different autonomous® processes (i.e.. general predicates) can only be detected by building
the lattice of consistent global states and then traversing it to determine whether ¢
definitely or possibly is true. This problem arises because we are considering asynchronous
distributed systems where the processes are autonomous and may execute at different
speeds.

In a synchronous distributed system the coordination among processes happens in
global synchronization points. Intuitively this means that the computations of the co-
operating processes participating in a synchronization converge to a single global state
since all computations have to reach that specific point (state). At that synchronization
point, general properties can be evaluated. In asynchronous distributed systems there is
a similar situation if there is only one autonomous process P4 participating in a synchro-
nization and P, is the last process to enter the synchronization state. This is exemplified

1A non-autonomous process can only initiate a communication in response Lo a message received.

142 Simpédsio Brasileiro de Redes de Computadores 625

/*** Check properties ***/
/* Validation of each local predicate defined in P; */

(10) foreach local predicate ¢ € o, do
(11) LP[¢7| — CheckLP(¢7):
(12) od;

/* @/

/* Validation of global properties */
(13) foreach automaton A, € A do

/* Determine the set of valid local predicates in @ at the current moment. */

(14) ValidLP — {};

(15) foreach local predicate of € ¢, do

(16) if M, [¢7.E;] =1 then

(17) if LP[#?] = true then

(18) ValidLP - ValidLP U {oF}:
(19) else /* go to the nert iteration */
(20) fi;

(21) else /* go to the nezt iteration */
(22) fi;

(23) od;

/* At this point set “ValidLP" contains the local predicates valid at the current
moment in P;. */

—

Figure 5: Algorithm to check dynamic properties (Part 2 of 3).

in Figure 6 with two processes.

Suppose process P; is autonomous and P; is not. To execute a service in this protocol.
P; sends a request to P, which may reply with a positive or negative response. If the
response is positive, P, can go to a state S; that represents “service accepted.” Note
that process P, is already in a state S; that represents “service accepted” by the time
P, receives the response message. Therefore P, was the last process to enter state S
that is our synchronization state. In the executions of Figures 6-(a) and 6-(b) a positive

response is represented by events |e} |, and |¢]| and ’8‘3 respectively. The global states
corresponding to these events in the time-space diagrams are in the lattices. This type of
protocol is often called 3-way handshake.

Independent of which computation sequence occurred that contains state S; (e.g..
[..,(3,3),(4,3),(4,4),...] or [....(3,3),(3.4).(4.4)....] in Figure 6-(b)), we can check
general properties at this state since P, is in state S as well. Furthermore, P, is not au-
tonomous and therefore will remain at S;. The same argument can be extended to systems
consisting of two or more processes that are non-autonomous and only one autonomous

626

SBRC 96

(24)
(25)
(26)

(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)

(41)
(42)

(43)
(44)

/* Determine the next state of the automaton if a message (m, ;) was received

from Py(k=1...ah k#it). T
if received message (m.q;) then
StateOf Automaton[j| — state according to Theorem 13:

fi:

/* Determine whether the automaton can move */
EndOfTransition — false: O =053
while - EndOfTransition do
if (3 (StateOfAutomaton(j], of, ¢;) € b))
if ¢F € ValidLP then
if StateOfAutomaton(j] = ¢; then
& — & — (g oF -)
fi;
StateOfAutomaton(j] — ¢/;
else StateOfAutomaton(j] — 4
EndOfTransition — true;
fi:
else EndOfTransition — true:
fi:
od;

/* Check whether the current state of the automaton satisfies the global property.

3

if StateOfAutomaton[j] € QF,; then
/* Global predicate ®; is valid at this state. */
[* @

fi

od;

Figure 5: Algorithm to check dynamic properties (Part 3 of 3).

process. This leads to the following theorem.

End of algorithm to check dynamic properties __|

Theorem 14 3-way handshake protocols with two or more non-autonomous processes
and only one autonomous process have a global state where general properties can be

checked.

Proof. Given above.

142 Simposio Brasileiro de Redes de Computadores

627

€1 e € §
; i i :
P? -
e &l e3
(a) Execution 1.
ey g @l Ll g se
P > >/
P2 - 2 \
ed " ieg €3 e3 €3 e5

(b) Execution 2.

0,0

Figure 6: Special global states in asynchronous distributed systems.

5 Design principles related to the execution

The algorithm to detect dynamic properties in Figure 5 provides two types of information

when process P; goes to a new state:

1. if each local predicate of € ¢, is valid or not, and

2. if each global property ®; £ ® is valid or not.

The first information is provided in point @and the second in point @01' the algorithm.
The fault/failure model [13] relates program inputs. faults. data state errors. and
failures. A failure is a manifestation of a fault. Although it may or may not occur when

628 SBRC 96

there is a fault in the system.

If the protocol implementation runs in “detection mode” (i.e., with the detection al-
gorithm present) we can use these two pieces of information to tackle the problems of
state build-up® (see [11]) and exception handling when a fault is detected. Here there is
no general solution since these mechanisms depend on the semantics of each protocol. A
possible strategy in the case of exception handling is to abort or reinitialize the imple-
mentation when “critical” local predicates and properties are not satisfied. This solution
is better than allowing an erroneous behavior of the protocol implementation if no action
is taken [14]. From the point of view of the other cooperating processes, the action of
aborting or reinitializing an implementation can be seen as a physical failure and therefore
the protocol should handle it.

6 Related work

In the following we present the related work in chronological order.

Miller and Choi [12] define linked predicates “that can be ordered by the happened-
before relation and are specified by expressions using the — operator.” They use these
predicates in breakpoints in a distributed debugger for halting the system. The halting
algorithm is based on the Chandy-Lamport snapshot algorithm (3].

Spezialetti and Kearns [17] consider monotonic events that are similar to stable prop-
erties and discuss “conditions which must be met in order for specific assertions to be
made about an event or the system state.”

Cooper and Marzullo [4] consider general properties which are intractable in practice
since they involve building a lattice of consistent global states that can be exponential in
the number of events in the system. Furthermore. all possible paths have to be checked.

Hurfin, Plouzeau and Raynal [8] consider unstable nonmonotonic global predicates.
called atomic sequences of predicates. These predicates describe global properties by
causal composition of local predicates augmented with atomicity constraints that specify
forbidden properties. '

Garg and Waldecker [7, 19] define properties in terms of boolean expressions using
logic operators. The algorithm to detect these properties is implemented using a global
monitor that collects information from all processes and evaluates the predicates.

Venkatesan and Dathan [18] also define properties in terms of boolean expressions
and give a distributed algorithm to detect these properties. However, the evaluation
of properties is performed off-line and they assume that executions of the system are
reproducible. Furthermore, they only consider FIFO channels.

The algorithm proposed in this paper considers properties expressed as boolean ex-
pressions with concatenation of expressions represented by the symbol +. We give a
fully distributed detection algorithm that works on-line and does not modify the protocol
specification.

5A reactive system interacts continuously with its environment. In this case valid input events may
lead to an erroneous state in the protocol implementation. When the implementation reaches an erroneous
state it may either continue to run but producing erroneous output or may crash and stop. An erroneous
state was reached in the implementation because the values associated to its local variables and the
contents of its communication channel are not correct according to constraints or requirements given in
the protocol specification. Note that this behavior can only be identified if test sequences are as long as
the length of the faulty path.

142 Simpdsio Brasileiro de Redes de Computadores 629

In the case of a centralized monitor Py, cach process P, (: = 1...n) has to send
« message to Py so the property can be checked. Furthermore. if we want to use the
information provided by the algorithm during normal execution (see Section 5) then the
execution in process P, has to be delaved. The algorithm proposed in this paper does
not have the cost of sending extra messages since it is distributed and does not delay the
execution of process F,.

For an overview of the concepts related to this paper and some of the approaches
proposed in the literature. the interested reader is referred to [16].

7 Conclusions

Verification and testing are two complementary techniques and should be used during the
protocol development cycle.

In the context of protocol testing, most of the properties that characterize valid or in-
valid behaviors cannot be expressed in terms of stable properties. In fact, these properties
are more properly expressed in tertns of desirable or undesirable temporal evolutions of the
communication protocol behavior. These properties are inherently unstable since there is
no guarantee that they will remain either valid or invalid in a protocol computation.

In this paper we have presented a new algorithm to detect dynamic unstable properties
that can be used in the testing of distributed processes (modules) of a communication
protocol. This algorithm provides two types of information that can be used for tackling
two problems during program execution: state build-up and exception handling.

The algorithm is based on the observation that given a protocol specification there are
multiple valid computations (traces) each of which can be defined by a causal precedence
order. Dynamic properties are specified by stating conditions (using local predicates) that
should hold on all possible computations.

We have also presented a new theorem that can be used to check general properties
for a specific type of communication protocol, namely 3-way handshake protocols.

From the point of view of testing communication protocols or concurrent reactive
systems the algorithm presented in this paper is an improvement over the ones presented

in [7, 19] and [18].

References

[1] Ozalp Babaoglu and Keith Marzullo. Consistent global states of distributed systems: Fun-
damental concepts and mechanisms. In Sape Mullender. editor, Distributed Systerms. ACM
Press Frontier Series, chapter 4, pages 55-96. ACM Press and Addison-Wesley, second
edition, 1993.

[2] K. Mani Chandy, L.M. Haas. and Jayadev Misra. Distributed deadlock detection. ACNM
Transactions on Computer Sysiems. 1(2):144-156. May 1983.

(3] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states ol
distributed systems. ACM Transactions on C'omputer Systems, 3(1):63-75, February 1985

[4] Robert Cooper and Keith Marzullo. Consistent detection of global predicates. In Proccedings
of the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 167-174. Santa
Cruz, CA., USA. 20-21 May 1991. Published as ACM SIGPLAN Notices, 26(12). December
1991.

630

SBRC 96

(5]

(6]

[9]
[10]

[11]

(12]

(13]

(14]

(15]
[16]

(17]

18]

[19]

Edsger W. Dijkstra and Carel S. Scholten. Termination detection for diffusing computation.
Information Processing Letters, 11:217-219, August 1980.

Nissim Francez. Distributed termination. AC'M Transactions on Programming Languages
and Systems, 2(1):42-55, January 1980.

Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates in distributed
programs. [EEE Transactions on Parallel and Distributed Systems. 5(3):299-307. March
1994.

M. Hurfin, N. Plouzeau. and M. Raynal. Detecting atomic sequences of predicates in
distributed computations. In Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, pages 32-42. San Diego, CA. USA. 17-18 June 1993. Published as
SIGPLAN Notices, 28(12), December 1993.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558-565. July 1978.

C. L. Liu. Elements of Discrete Mathematics. McGraw-Hill Computer Science Series.
McGraw-Hill, second edition. 1985.

Antonio A.F. Loureiro, Samuel T. Chanson. and Son T. Vuong. A critical assessment of
design for testability in communication protocols. In 132 Simposio Brasileiro de Redes de
Computadores, pages 61-80, Belo Horizonte. MG, May 1195.

Barton P. Miller and Jong-Deok Choi. Breakpoints and halting in distributed programs. In
Proceedings of the Sth International Conference on Distributed Computing Systems. pages
316-323, San Jose, CA, USA, 13-17 June 1988.

D. Richardson and M. Thomas. The RELAY model of error detection and its application.
In Proceedings of the ACM SIGSOFT/IEEE 2nd Workshop on Software Testing, Analysis.
and Verification. Banff, Alberta, Canada, July 1988,

John Rushby. Formal methods and the certification of critical systems. Technical Report
CSL-93-7, SRI International. Computer Science Laboratory, Menlo Park, CA, USA. 1993.

Beth A. Schroeder. On-line monitoring: A tutorial. Computer, 28(6):72-78. June 1995.

Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed Computing, 7(3):149-174, 1994.

M. Spezialetti and J. P. Kearns. A general approach to recognizing event occurrences in
distributed computations. In Proceedings of the 8th International Conference on Distributed
Computing Systems, pages 300-307. San Jose, CA, USA. 13-17 June 1988.

S. Venkatesan and Brahma Dathan. Testing and debugging distributed programs using
global predicates. [EEE Transactions on Software Engineering, 21(2):163-177, February
1995.

Brian Waldecker and Vijay K. Garg. Detection of strong predicates in distributed programs.
In Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing, pages
692-699, Dallas, Texas, USA. 2-5 December 1991.

o

