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Abstract

In this work a new generalized model for communication networks is proposed,
based on banyan networks. These networks have been studied extensively in multi-
processing applications, and have recently been considered for application in ATM
networks [11]. Through the introduction of labelling and numbering schemes for
the nodes in the network, a construction algorithm is presented based on the no-
tion of a connection formula, which makes it possible to describe an enourmous
number of new networks. Some of the possible atractive topologies are discussed,
along with the distance and traffic properties. Generic routing algorithms are also
presented.

1 Introduction

Communication networks have been proposed since the early days of telephone systems,
as a way of minimizing connection costs and improving the quality of service. The par-
ticular arrangement used is known as its topology, and it defines many of its features,
like the delay in sending messages between nodes, the way messages are sent or commu-
nication links established, the type of control and routing algorithms that will be needed,
and others. In this work, we will be dealing with the class of networks called Multistage
Interconnection Networks, or MINs, of which many variations exist [3]. These networks
are characterized by the fact that nodes are laid out in stages, and connections exist
only between adjacent stages. A network can be represented by a graph, in which nodes
correspond to processing elements or to data-routing switches, and edges corresponds to
communication links connecting such components.

The emphasis in this work will be on the study of the distance properties of banyan
networks, justified by the fact that the delay observed in the transmission of messages
across an interconnection network is closely related to their distance properties. This is
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particularly useful when studying single-sided networks, because base-to-base distance
becomes quite important, and ithprovements in the distance properties are essential for
minimizing communication overhead. Also, the fault-tolerance properties of the network
may show some improvements, due to the existence of alternative routes. Other proper-
ties of the network may improve as well. while keeping the cost of the original network.
since the improvements are obtained by merely rearranging connections, not through the
addition of nodes or links.

The SK-banyan [1] is a unified model of banyan networks [4, 6, 7, 8], in which the con-
nections between adjacent levels have been SKewed in relation to SW-banyan networks.
This rearrangement of connections is illustrated in figure 1.

o

Figure 1: SW-banyan and SK-banyan.

In section 2, the definition of an SK-banyan is presented and a construction algorithm
is given, allowing for the definition of a large number of topologies, of which some will be
described there. In section 3, generic routing algorithms are presented, which have the
advantage of being topology-independent. In section 4, distance and traffic propert:es
are presented for some subclasses.

2. Definition of SK-banyans

In this section, the concept of SK-banyans is introduced. By allowing arbitrary, but
predictable, connections between nodes at two adjacent levels in a multistage network,
different topologies will emerge with distinctive properties. To formalize this procedure,
a construction algorithm is initially presented in its most general form, without regard for
connections between levels. Later, by using the concept of connection formulas and by
restricting its number in the sarane network, different subclasses of networks are proposed.

We start our analysis by reviewing the basic properties of an (s, f,[) regular banyan.
which were studied in detail in [10]. This graph is a Hasse diagram of a partial ordering
in which the following properties hold:

o banyan property: there is one and only one path from any base to any apex;

o [-level property: all base-to-apex paths are of the same length ;



576 SBRC 96

o regularity property: the indegree! of every node, except the bases, is f and the
outdegree of every node. except the apexes, is s.

A base is defined as a node of indegree 0 and an apezis defined as a node of outdegree
0. Two basic results can be proved for this graph. First, the number of nodes at each
level can be computed from the parameters of the graph. Second, the nodes can be
distinctively numbered within each level. from 0 up to n, — 1, the number of nodes
at level i. Nothing can be said though, about other properties of the graph as no
connection scheme between levels is defined for an (s, f,!) regular banyan. To allow
for the systematic definition of connections between nodes. we present first a labelling
scheme, and then a connection scheme.

2.1 Labelling scheme

The labelling scheme for the nodes will consist of a tuple <level, order> in which the
first number identifies the level in which this node is located, and the second number
identifies the order of the node within that level. Normally, as is the case for multistage
interconnection networks. the levels are numbered from 0 to [, and the nodes are num-
bered from 0 to n; — 1. Typically, the numbering of nodes is done with a number system
different from the decimal system to make it easier to specify routing algorithms.

Based on these considerations, we adopt the following labelling scheme for an (s, f,!)
regular banyan:

Level numbering;:

e vertex levels are numbered using a decimal base, from 0 to [/, and this number is
called the (vertex) level number,

o the top vertex level, called the apez level, is numbered ;
e the bottom vertex level, called the base level, is numbered 0;

o edge levels are numbered like vertex levels, with level : being the edge level between
vertex levels i + 1 and :.

Node numbering:

e at each level, including the apex and the base levels, nodes are numbered from 0
to n; — 1, where n; represents the number of nodes within that level; this number
is called the order number;

o each order number is a numeric string composed of two substrings, one of them
possibly empty, the rightmost substring in base f, and the leftmost substring in
base s: an order number for a node at level [ — i is represented, according to this
format, as a sequence of digits in the form:

I'To avoid unnecessary clutter, all graphs will be shown here without the arrows that define a directed
graph; it is assumed that all edges have arrows pointing upwards.
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where the indexes are defined within the range [0, — 1);

o each node in the graph is identified by a tuple <level number, order number>

This numbering scheme is shown in Figure 2.

A
<2, (01)2 >

< 1,(1)2(1)s >

< 0,(12)3 >

Figure 2: Level and node numbering schemes on an (s, f,!) regular banyan.

2.2 Connection scheme

The connection scheme to be used for SK-banyans will be defined in terms of a connection
formula, which specifies which nodes at a given level are connected to a particular node
at a higher level. This can also be written as a relation R between the two nodes, the
relation being that if two nodes a and b are related (aRb), then there is an arc between
these two nodes, the node at the upper level (a) being the final vertex, and the node at
the lower level (b) being the initial vertex. We will write the relation R as “—”, to mean
“is connected to”. Assuming the node numbering described before, we can describe the

connections as pairs of tuples in the form:

node < level,order number > — node < level — 1, order number >

Using the notation given previously for writing the node number as a composition of

two numbers in bases s and f, we can write the connection formula above as:
node < | -- Z ( . -d.'+gd,'+1d,'),(d,'_1d.'_2' . ')f > —
node << | —i—1,(-- 'di+2d:+1)a(d:'d:'-1d:'—z' )y >
where:

e [ — 1 - level number of the node at the upper level (0 <: <1 -1)
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e d, - digits in base s or f of the order number for a node at the upper level

e d, - gligits in base 5 or f of the order number for a node at the lower level

o d = F(d,)

2.3 Recursive definition

One way to define a graph is by giving a construction algorithm to obtain it. This method
will be used here because it leads naturally to a recursive definition, which allows the
construction of a graph of a large scale given subgraphs of smaller scale. We start with
a basic graph, which will correspond to a one-level network, and proceed to define a
recursive algorithm to obtain graphs of successively higher number of levels.

Algorithm 1

¢ Basic step: an (s, f,1) SK-banyan is K, ., the complete bipartite directed graph
with n and m vertices in each set, and for whichn =s and m = f.

¢ Recursion step: an (s, f,!) SK-banyan is constructed from an (s, f,1 —1) SK-
banyan by applying the follounng rules:

1. Multiplicity rule: generate s copies of an (s, f,!—1) SK-banyan, numbering
them from 0 to s — 1. Name these graphs the top graphs.

2. Numbering rule: renumber every node in copy i of the top graphs by at-
taching digit 1 (in base s) to its order number in the most significant position,
and by increasing its level number by one.

9. Null graph rule: generate a null graph of order f', and label every node with
a number from 0 up to f' —1 (in base f) and assign them the level number 0.
Name this graph the bottom graph.

4. Connection rule: connect every base node of the top graphs to f nodes of
the bottom graph, according to the connection formula defined for this level.

This algorithm is illustrated graphically in Figure 3. Not all connection formulas
preserve the banyan property, and it is clear from Algorithm 1 that the key to preserving
this property is the definition of the connections between the base nodes of the top graphs
and the nodes of the bottom graph. This is so because the only step in Algorithm 1

where a connection is specified is the connection rule, which is related only to the base
edge level.

2.4 Examples of connection formulas

We now examine some examples of connection formulas, and the graphs that results
from them. First, we make some observations. The set of f'~! base nodes of each one of
the s top graphs is called an upper cluster. The set of f'~' nodes of the bottom graph
whose node numbers have the same most significant digit is called a lower cluster. As
was defined before, and according to Algorithm 1, there are s upper clusters and f lower
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Figure 3: Illustration of the construction algorithm.

clusters at the levels that correspond to the top and bottom graphs, and as a consequence.

up to s x f bijections can be defined between them. This can be conveniently represented
as an s x f matrix in which entry [, ;] corresponds to the bijection between an upper
cluster from copy 7 to a lower cluster whose most significant digit is equal to j. Also,
because the cardinality of lower and upper clusters is given by f'~!, the bijections between
them will have to be defined hetween sets of varying cardinality, which will increase with
the number of levels. This implies that although we still are dealing with s X f matrices.
the cardinality of its elements will depend on the number of levels.

A second observation regards the relationship between connection formulas for dif-
ferent levels. If they are not related at all, we have a graph whose properties are not
readily obtainable, as the irregular connections between levels would be hard to model
analytically. On the other hand, if we impose some relationship between the connection
formulas for different levels, a regularity may arise from it that makes it possible to
study the graph with a tractable model. To avoid extending the subject, we restrict the
analysis here to graphs whose connection formulas are the same for all levels.

Besides following a common formula we will say that, if the bijections defined between
two levels are arbitrarily chosen and bear no relation to the ones defined between other
two levels, we have what will be called a non-uniform SK-banyan. Accordingly, if the
bijections at any level are chosen according to the same procedure, the graph will be
called a uniform SK-banyan. Again, to avoid extending the subject, we will restrict the
analysis here to only the uniform cases. As it will be seen, this already covers most of
the interconnection networks being studied currently, as well as a large number of cases
that have not been reported hefore.

Besides specifying the connection formula, we will also make use of a connection
formula diagram, which will serve as a visual aid to illustrate the action performed by
the connection formula on the digits of a node’s order number. In this diagram, the upper
part represents the digits of a node at an upper level, and the lower part represents the
digits of the nodes at the lower level to which it is connected. Thus, the upper part
represents just one node, whereas the lower part represents a range of f nodes. The
relation between the digits of the upper and lower level nodes will be represented by a
down arrow (“|”) to mean exactly the identity bijection, or by a thicker down arrow 1)
to mean any bijection, including the identity. Following, we give the connection formulas



580 SBRC 96

for two different networks: the SW-banyan and three subclasses of the SK-banyan.

SW-banyans

A construction definition for SW-banyans is usually given in terms of a connection
rule: there is an arc from a vertex at level i (0 < i < [) to a vertex at level 7 + 1 if and
only if their digit representation differs only at the :'* digit position. In our connection
formula notation, this would be equivalent to the d's and d''s being different only at digit
i. Formally, we can write it in the format shown in Figure 4. A (3.3) SW-banyan 1s
shown in Figure 3.

node < [ =i, (++digadis1di)s(di-1dizg-++)y > —
node < | —i — 1, (- *dizadis1)s(Jdi-1di=2" - ") s >
0<;j<f-10<:1<i-1

Connection formula diagram

diy [+ [ diga [ di [ dici | -+~ [ do
JusTyg oy [l -
[dia [~ [diga [ 5 [dica |-~ [ do]

Figure 4: Connection formula for SW-banyans.

u:u

Figure 5: A (3,3) SW-banyan.

Uniform, single-digit SK-banyans

An example of a connection formula for a uniform, single-digit SK-banyan is given
in Figure 6, along with its connection diagram. As can be seen, when compared to the
SW-banyan’s connection formula, the only difference is the bijection between digits di-y
and d,_,, which is exclusively the identity for SW-banyans, and can be any bijection for
SK.banvans. An examole of a (3.3) uniform. single-digit SK-banvan is given in figure 7.
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Uniform, multiple-digit SK-banyans

This subclass of SK-banyans is generated when a connection formula is used such that
two or more adjacent digits are submitted to bijections. The basic principle is to submit

d;_, is also used to compute all the

In the second case, the bijections to compute each of

()

d
these digits may be different, the one used for computing digit d; being itself dependent

case, the graph is called uniform, multiple-digit compound SK-banyan. In the first case,
upon computation of digit di,,. An example of the connection formula for the uniform,

the digits to the right of digit : to the same or different bijections. In the first case,
we call the resulting graph a uniform, multiple-digit simple SK-banyan. In the second

the bijection that is used to compute the value of

other digits from d;_, up to
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node < | — Ly (..'{fl+2dl+1dlli(dl—ldt—2' ")f > b
node < [ —1—1, (' - 'di+2dl+1]a(jd:_1d;_~2‘ ; ')f >

0<;j<f-10<:<1-1

Connection formula diagram

[y [ - [diga [di [dica [ --- [ do |
1 1 1 I=> 1= 1
(dis [ Jdin [T [diy ] - [dy]

Figure 8: Connection formula for uniform, multiple-digit compound SK-banyan.
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Figure 9: A (3,3) uniform, multiple-digit compound SK-banyan.
well as better distance properties for the base nodes. In (2], it was proven that CC-
banyans are one special case of uniform, multiple-digit compound SK-banyans, with a
given set of bijections. In this way, the study of this latter subclass can be applied to
CC-banyans, including the definition of non-rectangular CC-banyans.

Optimal SK-banyans

Different bijections used in the connection formula may lead to networks with widely
varying properties, namely, distance, traffic, and fault-tolerance properties. Both matrix
and group-theoretic formulations were defined in [2] to represent such bijections, allowing
for the use of a more synthetic expression for a network, and more importantly, allowing
the definition of criteria upon which one might determine whether a given network has
the “best” properties. In the case of distance and traffic properties, optimality criteria
were established that considered two specific constraints: first, that the graph would be
base-symmetric, meaning that all base nodes would have the same distance and traffic
properties, providing an isotropic view of the network; and second, that the distance
distribution of each base node would lead to the lowest average base-to-base distance, as
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specified by a lower bound defined there. Networks belonging to the subclass of uniform.
single-digit SK-banyans were found that satisfy both conditions, and for this reason were
called optimal SK-banyans. They are taken into consideration in the next section when
comparisons among the subclasses are discussed.

3 Routing algorithms

[n this section, a general set of routing algorithms for SK-banyans is presented for the
four cases:

¢ apex-to-apex routing
¢ apex-to-base routing
¢ base-to-apex routing

® base-to-base routing

They are presented here for two reasons. First, because they are based on the connec-
tion formulas, they are general enough to be used for any SK- banyan network, regardless
of its connection formula or bijection. If another routing algorithm has not yet been de-
fined for a given subclass, they can be used as an interim algorithm until a more efficient
one is found. Secondly, due to the recursive construction algorithm and the fact that
these are /- level networks, for all but the base-to-base case they are the most efficient
algorithms possible, and thus there is no need to specify other algorithms for these cases.

We assume for all cases that a routing tag is to be generated such that a source node
n, can send a message to a destination node ny by using this routing tag. Because these
nodes will be either at the apex or at the base, their level numbers will be dropped in
the following treatment. They are assumed to have the appropriate values depending on
the context. .

Before the routing algorithms are defined, we must define a labelling scheme for the
edges of a node, such that a correspondence can be established between them and the
digits in the routing tag. It should be observed that, in this case, edges will have different
labels depending on the adjacent nodes. That happens because messages are allowed to
move in both directions, from base to apex and the inverse, and also because the graphs
may not be rectangular.

Definition 1 For a node at vertez level i, an edge will be labelled as edge
J tf it connects this node to another node at level i +1 (i — 1) such that the
latter has digit j at position | —i—1 (I —1).

This is the same as to say that an edge adjacent to a node at level 7 will be labelled j
if it connects this node to a node at upper (or lower) cluster j. A simple diagram, shown
in Figure 10, illustrates this edge labelling scheme. As can be seen, the same edge may
have different labels.

Given this labelling scheme, which is defined for all nodes in the network, a routing
tag will be interpreted at each node according to the following rule:
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Figure 10: Edge labelling for SK-banyans.

Definition 2 At level i, a message will be transmatted along a given edge
according to the value of digit | — 1 — 1 of its routing tag.

For nodes at level [, digit 0 of the routing tag will define the route for a message
going basewards. By the same token, digit [ — 1 will define the route for nodes at level
0 for messages going apexwards.

3.1 Apex-to-apex routing

The routing is done in two steps. First, a tag is generated so that the message 1s sent to
any node at a level 1 given by:

1=l—d@.(0,b)‘—l

where dg(a, b) represents the digit distance between a e b.

Next, the routing algorithm for base-to-apex routing is applied from this intermediate
node to the destination node utilizing the least significant digits of the routing tag (from
digit 0 up to digit [ —i —1). It should be noted that in this case, because of the arbitrary
definition of the first part of the routing, f'~* different routing tags can be generated.
To avoid preference among the reflecting nodes, a “round-robin” or a random selection
with uniform distribution can be adopted to pick the reflecting node for every message.
This can also be used with some load balancing algorithm to alleviate congestion in
heavily loaded links. Figure 11 shows examples of the generation of tags for apex-to-
apex routing. In this and other similar tables that follow, the “-” indicates digits in the
routing tag that are not used. As mentioned, the baseward part is arbitrary, and in the
example the values shown were chosen arbitrarily. Also, if the digit distance between the
source and destination nodes is equal to I, that means that any base node can be used
as the reflecting node.

3.2 Apex-to-base routing

In this case, the routing depends on the connection formula defined for a given network
and on the bijections used. The basic principle is to build the routing tag backwards,
starting at digit [ — 1 and proceeding to digit 0. Digit [ — 1 is always given by the digit
| — 1 of na, regardless from where the message is coming from, because this is the edge
between levels 1 and 0 along which the message must traverse to reach it. The next digit
of the routing tag (I —2) can be computed applying the same principle if the node at level
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Figure 11: Examples of apex-to-apex routing in SK-banyans.

ified. Given the fact that the connection formulas

1mage its inverse can be computed by a

1 to which ny is connected can be ident

are bijections, then for every
bijection. Then, the image o

L w
M 2
by v
Lo
-
D -
o T
peslSl
T

g a
> g
7o, o
it

nq under the inverse bijection can be
ding digit in the routin

f

I -2 digit will be the correspon

g tag. This process can be applied

ue for the routin

val

successively to determine the final

g tag. The following algorithm

-banyan.

digit SK

illustrates these operations for a uniform. single-

begin

for k := 1 — 2 downto 0 do

b=y (bz'jectz'on[n_,w., tesr]) ™!

end;

jection defined

the last term represents the inverse of the bi

In the computation of ¢,
between the lower and upper

base routing are shown

1 ©
&4
A
&0
w 8
Or
0o
.m_f

B0
g =
at
X w0
€3 =]

cluster whose indexes are as given.
in Figure 12. The evaluation of the routi

examples is given as follows:

= 3(010),

source node: n,

(122)s

17

destination node: ny

t1 = ng, (bijection(n,,, t;]) =



SBRC 96

N
N7 A -
NS S o N 0

SRR SN RS LTS
S TISRSRONEIRKS

- S Nl S ", R
RSSO ITIRE 7 SAX SR

& o K FRUCNTONN I

ERNL N7l BERS

e S o
A T PSR N W SO

Routing tag
1125
0005
222,
2 (01)_'1 =1
2(e) ! =2

=1 _

nd
122, (17)
0125 (5)
110, (12) | 2115 (22)
(112);

nq, (bijection|0,1))
Ny (bijection[n,“tl])'l
ng, (bijection(1,1])”! =

(2221 10)3

Ny
0105 (3)
212, (23)

.-
—
p—
—
—

to
t

586

Figure 12: Examples of apex-to-base routing in uniform, single-digit SK- banyans.
because, as seen by a node at a lower level, the construction algorithm divides the upper

clusters into s disjoint subgraphs, each of which follows the conventional s-ary routing

This routing is the same regardless of the bijections or the connection formula. This is so
scheme. The routing tag is then given by the destination node’s order number itself:

3.3 Base-to-apex routing

=Ty
As mentioned before, in the case of apex-to-apex routing, the apexward part of the
routing tag will be equal to the [ —:—1 less significant digits of ¢ as given above. Figure 13

shows some examples of base-to-apex routing.

This case 1s the case for which the algorithm as given here may prove to be inefficient
in comparison with other algorithms. This is because, contrary to the relation between

3.4 Base-to-base routing
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Figure 13: Examples of base-to-apex routing in SK-banyans.

apex nodes, the relation between base nodes may not be recursively defined. Then,
to compute the routing tag in this case, there is no recourse other than compute the
intersection between the sets of both destination and source nodes at each level, starting
at level 1, until a non-empty intersection between them is found. A node from this
intersecting set can then be selected as the reflecting node for the message, with a base-
to-apex routing followed by an apex-to-base routing.

For the apexward movement, the routing tag can be computed easily, as in the case
of base-to-apex routing. The only difference is that only i digits will be used, which
determines how far up the message will go. For the baseward movement, the routing
tag can be computed using the apex-to-base routing algorithm, except that only ¢ digits
need be computed and that the source node number should be the intermediate node’s
number, instead of an apex node’s number. As an example of this routing scheme,
Figure 14 shows some cases of routing tags for a uniform, single-digit SK-banyan. As
in the case of apex-to-apex routing, if there is more than a reflecting node, one of them
is selected. Also, if the intersecting set is empty up to level { — 1, that means that any
apex node can be used as the reflecting node.

4 Average distance and traffic properties

In this section we compare the distance and traffic properties of some classes of SK-

Banyans.
Analytical expressions for the base-to-base average distance for SW-, CC-, and opti-
mal SK-banyans were derived in [2]. Table 1 shows these expressions. For f = 2, CC-
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Figure 14: Examples of base-to-base routing in uniform, single-digit SK- banyans.
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expressions for the link traffic density for base-to-base
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Table 1: Expressions for the base-to-base average distance.
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SW-banyan

|
CC-banyan | T = 2(f'- —2f*2 4 f-1)

Ti = 2(f*=1 = f*%)

Optimal
| SK-banyan

Tk = E(ft'—l _fk-l = f—l gl 1]

Table 2: Expressions for the link traffic density.
»

the expressions for the link traffic density, one immediate result is that, for the same
value of f and [, Tx is a monctonically decreasing function of k. This implies that
the busiest links are the ones at the lowest levels, and as such, none of these networks
will suffer from the traditional bottleneck that affects single- or multiple-tree networks.
Another interesting property, to be attributed to the existence of multiple- trees at the
top of every level and through which traffic is distributed evenly, as opposed to a single
tree network, is that the growth of traffic at the busiest link is a linear function of the
number of base nodes, i.e., T; = O(N). The best asymptotic behavior achieved by tree
networks is N'-*, for both Hypertree-I [5] and KYKLOS-II with H-II routing strategy [9].

It should be expected that optimal SK-banyans would fare better than both SW- and
CC-banyans, and that is indeed the case. Consider for instance the link traffic density
at the highest level in the network, T), and assume f > 2. For SW- and CC-banyans.
the expressions for Tk, k = I, yield values which are still dependent on I, whereas for
optimal SK-banyans, Ty reduces to T} = 2(1 — f~!), which is a constant independent of
the number of levels in the network.

Table 3 shows some values of the link traffic density computed for the three banyans.
for f = 2,4,8 and | = 6, along with the utilization factor of links at each level in relation
to the busiest link in the network. Optimal SK-banyans shows the lowest values for all
levels, and they decrease faster than the other banyans. Also, the utilization factor of
links at the apex level, as just explained, is just a fraction of the factors at the lower
levels, as well as negligible in comparison to the other banyans. This is specially useful
in the case of fault-tolerant designs, where the low utilization of links at high levels may
provide extra paths in case of faults at lower levels, allowing the traffic to be distributed
through these links with little degradation in the performance of the system.

4.1 Conclusions

From the results presented in the previous section, one can appreciate the wide variety
of topologies provided by SK-banyans. Besides SW- and CC-banyans, which have been
studied extensively, and have a very large range of applications, optimal SK-banyans
have superior properties that may be useful in many of these applications.

The formulation of multistage interconnection networks in terms of labelling and
connection schemes and a recursive construction algorithm allowed the definition of a
common model for both existing and new subclasses of banyan networks. The use of a
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=2 =2
SW | CC SK |
kT [ u (%) | Te | u(%) || Tk | u (%)
632 51| 1 2 1 2
5( 48| 76 33| 52(33| 52
4(/56| 89 49| 78] 49] 78
360 95)57| 90]57| 90
262 98|61] 97|61| 97
1][63| 100 63| 100 63| 100
=4 F=d
SW 7% SK
k Ti | u (%) 2 g (%) Tk u (%)
61536 | 751025 50| 2| <1
51920 | 94 1793 | 88| 1538 75
4( 2016 98 1985| 971922 94
32040 | 100 2033 | 99 [ 2018 | 99
2 | 2046 | 100 || 2045 | 100 | 2042 | 100
1 H 2048 | 100 | 2048 | 100 || 2048 | 100
s=8, =8
SW (83, SK
k T | u (%) Ty | u (%) T | u (%)
6 || 57344 | 88 | 49152 | 75 o =1
5 64512 | 98| 63488 | 97 | 57346 | 88
4] 65498 | 100 | 65280 | 100 || 64514 | 98
3 [ 65520 | 100 || 65504 | 100 | 65410 [ 100
2 [ 65534 | 100 || 65532 | 100 || 65522 | 100
165536 | 100 | 65536 | 100 || 65536 | 100

Table 3: Link traffic density for some classes of SK-banyans (fanout = 2, 4 e 8).
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connection formula to define the connections between adjacent levels introduced a large
number of topologies, besides the existing ones.

The expressions for distance and traffic properties of some of the subclasses have
been determined, and can be used as a basis for evaluation of potential applications in
communication networks. Further research is underway to characterize traffic properties
under dynamic conditions. with both packet and circuit switching.
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