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Resumo

Em teste de conformidade de protocolos, existe uma classe importante de erros chamada
“perda de coordenagao™ que ¢ dificil de ser prevista ja que sua origem € externa ao ambiente
que executa o teste e a implementagao que esta sendo testada.

Neste trabalho nés usamos “auto-estabiliza¢ao” como um principio para tratar deste prob-
lema o que permitira obter implementagoes de protocolos mais confiaveis. Nos apresentamos
um novo algoritmo para projetar protocolos auto-estabilizantes, seguido de um exemplo e
de duas novas relagoes de conformidade que consideram ambientes que podem exibir erros
referentes a perda de coordenagao.

Abstract

In protocol conformance testing, there is an important class of errors, namely coordination
loss that cannot be anticipated because some source of error is eriernal to both the tester
and the implementation under test (IUT). Furthermore, it is not possible to simulate their
occurrence exhaustively in the test environment, Therefore they are very difficult to catch

in the testing phase.

In this paper we propose using self-stabilization as a design principle to overcome this
testing problem. This will improve the reliability of protocol implementations derived from
self-stabilizing protocol specifications. We present a novel algorithm and the corresponding
design principles to design self-stabilizing protocols, give an example of a self-stabilizing
protocol, and define two new relations based on an environment that exhibits coordination
loss.

1 Introduction

The ultimate goal of OS] is to allow the interconnection of different systems that follow the same
set of standards. In a real open system it is common to have the same set of protocols imple-
mented on different architectures and environments by different people. These implementations
must be tested for conformance to the specifications.

Conformance testing is one of the basic activities in the protocol development process. The
conformance testing and methodology framework (CTMF') [14] identifies two types of confor-
mance requirements: static and dynamic. Static requirements are related to functions require-
ments. Dynamic requirements refer to the dvnamic behavior of the system. There is also a
protocol implementation conformance statement (PICS) produced by the implementor describ-
ing the functions and options present in the implementation. and the protocol implementation
extra information for testing (PIXIT) that provides specific information for testing purposes.
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According to this framework, an implementation -conforms to its specification if it satisfies
both the static and dynamic conformance requirements, and is consonant with its PICS. This
should be demonstrated through one of the four test methods defined in the CTMF.

Note that if a protocol specification § contains an error and an implementation I faithfully
implements S then I conforms to §. Of course. if the error is identified in one of the pro-
tocol development phases, i.e., specification, implementation, testing, or even after that. the
specification must be revised and all changes made in 5 should be reflected in I accordingly.

In practice, when [ is derived from § it is

assumed that the specification is correct. The Design e

fundamental point in this statement is the mean-

ing of correctness. The specification may be only Check Change design
: i Properties

correct with respect to a specific property such +

as the absence of deadlock although there are Verificat;

other protocol properties that should be checked. crthcation Not OK

Due to the complexity of protocol testing there
are limitations in this process and different solu- OK
tions have been proposed. For instance, some al-
ternatives to exhaustive reachability analysis —

A |

the technique used in most automated validation Design " Imt[;}ﬁg]: i
systems — are based on search heuristics. hash- correct ¥ Test
ing techniques, and reduction methods. For an according s 8
overview of validation methods, their limitations to sor?_e gﬁsctr:ﬁﬁt
and alternatives see for instance {12, 13]. properties » Test cases

In Figure 1 we show a partial view of the pro-

tocol development process. It is clear that in the
protocol development process as is in software in
general, verification and testing are complemen-
tary and mutually supportive techniques.
Different types of protocol testing have been proposed: diagnostic, conformance (C). inter-
operability (I), performance (P), and robustness (R). Each one has different testing goals (or
objectives) and this is represented in Figure 2.
Basically, Figure 2 shows that when perform-
ing interoperability, performance, or robustness
testing, the IUT should conform to the specifi-
cation and also to specific testing goals defined
by each type of testing. Diagnostic testing is not

Figure 1: Partial view of the protocol devel-
opment process.

shown in the figure because it is often done in- '
house and is the first type of testing performed.
In particular, robustness testing can also be con- ' '

sidered when performing interoperability or per-
formance testing.

According to the conformance testing Testing Goals
methodology and framework [14] a pass verdict
should be assigned to a test case if a given event pigyre 2: The different types of protocol test-
e is valid for the current IUT state s. By valid ing and their goals.
we mean that e satisfies all testing requirements
as defined in the specification. Unfortunately,
there is an important class of errors, namely coordination loss! [9, 13, 17, 19, 21] that cannot be

'Some errors that may cause coordination loss are inconsistent initialization, process failure and recovery, and
memory crash. These errors are explained in more detail in Section 2.
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anticipated because some source of error is erternal to both the tester and the implementation
under test (IUT). Furthermore, it is not possible to simulate their occurrence exhaustively in the
test environment. Therefore they are very difficult to catch in the testing phase. In this paper
we assume that a message with an invalid checksum can be detected by a lower level protocol.

This is to be expected since the goal of conformance testing is not to catch this type of error.
In fact coordination loss is a kind of problem that should be checked in robustness testing. In
other words, there is a relationship between the faults remaining undetected and the type of
protocol testing used.

In this case, protocol verification techniques are also not helpful. There is no proceduare
to check for errors caused by coordination loss since the fault model to be used during the
verification process is not known in advance because we cannot precisely identify the possible
consequences of coordination loss to the protocol.

Furthermore, most protocol specifications do not deal with all types of errors that may arise
from coordination loss. Therefore, this class of errors should be addressed in the design phase.

These facts have some important consequences. Conformance testing is not enough from
the point of view of reliability. In fact. only recently have people started to pay more attent.on
$o interoperability and performance testing. Ideally, all protocol implementations should be in
conformity with their specifications, interoperate in an open system, have adequate performance
characteristics, and be reliable.

In this paper we propose using self-stabilization as a design principle to overcome this test-
ing problem. This will improve the reliability of protocol implementations derived from self-
stabilizing protocol specifications. We present a novel algorithm and the corresponding design
principles to design self-stabilizing protocols, give an example of a self-stabilizing protocol, and
define two new relations based on an environment that exhibits coordination loss. The paper is
organized as follows. Section 2 presents a brief overview of self-stabilization. Section 3 describes
the formal model used in this paper. Section 4 presents a set of design principles to design
self-stabilizing protocols. Section 5 gives an example of a protocol that is not self-stabilizing
and its self-stabilizing version using the design principles described earlier. Section 6 presents a
new conformance relation based on the external behavior. Section 7 discusses the related work.
Finally, Section 8 presents the conclusions for this paper.

2 An overview of self-stabilization

In 1974 Dijkstra introduced the concept of self-stabilization [5]. Informally, a distributed system
is called self-stabilizing iff it will converge automatically to a safe state in a finite number of
steps regardless of the initial state. Of course the meaning of safe and unsafe? states depend on
the specification of the system.

Self-stabilization makes the initialization of the system irrelevant. Therefore, if we are con-
cerned about fault-tolerant issues, the property of self-stabilization guarantees the system to
recover from an unsafe state caused by some perturbations to its normal operation. Some ty pi-
cal situations that might cause a coordination loss in a distributed system are:

e Inconsistent initialization—individual processes may be started up in states that are in-

consistent with one another.

o Transmission errors—messages sent by a sender process may be lost, corrupted, reordered
or delivered much later. In this situation the sender’s state is no longer consistent with
that of the receiver.

¢ Reconfiguration errors—systems may be reconfigured on-the-fly (e.g., addition or deletion
of processes, nodes and links) and the new configuration may present an inconsistent view
among the processes.

?Also called legal or legitimate, and illegal or illegitimate states respectively.
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¢ Mode change—it is common to allow a system to operate in different modes depending
on different factors such as number of users and load. Due to the distributed nature of
the system, the processes may execute in different modes for some time. Eventually, all
processes should converge to the same mode. If this is not the case, the state of the system
has become unsafe.

¢ Software failure—if a piece of software (e.g., process or application) becomes temporarily
unavailable, its local state may become inconsistent with that of the others when it resumes
normal operation.

¢ Hardware failure—the same situation may happen to a piece of hardware such as memory
OF Processor.

Self-stabilization is one of the principles of well-formed protocols. The property of self-
stabilization provides a built-in safeguard against events that might corrupt the data. In practice.
these events are very difficult to catch in the conformance testing process. The interested reader
is referred to [20] for a survey on self-stabilization.

3 Formal model

In this section we present the communicating extended finite state machine (CEFSM) model
used in describing both the communication protocols and the definition of self-stabilization.
First we present the nomenclature for identifiers that will be used in this paper.

Nomenclature 1 (Identifiers) Identifiers can have a subscript and/or a superscript both of
which are used to indicate an element in a set. Let OF represent an identifier. The subscript
i refers to the i-th element of O. For example, process P;. The superscript refers to the z-th
element of O; in the case O, is also a set.

Definition 2 (Communicating extended finite state machines) A communicating ex-
tended finite state machine is a labeled directed graph where vertices represent states and edges
represent transitions. A designated vertex represents the initial state of the machine. Transi-
tions are labeled with the pair %%%. An event is the sending of a message, the reception of a
message, or an internal event not related to a channel (e.g., a timeout or a service request from a
service user). Messages should be defined in a finite set ¥ of message types. The communication
between machines is asynchronous. The communicating channels between each pair of machines
are not perfect so that messages can be reordered, corrupted or lost. The channels are assumed
to have infinite capacity?
Formally, a communicating extended finite state machine P; (i = 1...r) is a five-tuple

f)i =, (Sh Ei!ai*’\h S?)‘

where

e S5, is the set of local states of machine P;.

o X, is the set of message types that machine P, can exchange with other machines. This
is represented by the sets {I; ;} and {X;,}, respectively. Therefore, I, = {X,;} U {¥,,}.
The set {X,,} is empty, i.e.. machine P, cannot send or receive messages from itselfl.

e 6; is the transition function and is defined as §,: S; x &, — S;.

e A is the output function and is defined as A\;: 5; x ¥, — ¥,.

o s is the initial state of machine P,.

*In practice, we can model an infinite buffer using a finite buffer by discarding new incoming messages when
the buffer is full.
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In the labeled directed graph that represents a CEFSM, a message preceded by a + sign
means that it was received, and a message preceded by a — sign indicates that it was sent. =

Let P be a protocol specification comprised of processes Py, P, ..., P,. Each process is mod-
eled as a CEFSM and they are interconnected by a set of communicating channels Cy,C,, ..., C,.
Each process P; (i = 1...r) has a finite set of variables V', V?2,..., VX, In this model, the con-
cept of a global state plays a fundamental role in the correctness of a communication protocol.

Definition 3 (Global state) The global state of prbtocol P is defined by the contents of sach
variable in each process, and the contents of each channel in the protocol. This can be expressed
as:

S=(V o oy V) x (V.. VPR) X x (V2. V) x Cy xCa X ... x C) B

On the other hand, the correctness of a protocol is expressed in terms of the global predicates.

Definition 4 (Global predicate) A global predicate represents certain system properties that
should hold in all possible protocol computations. The global predicate! is defined in terms of
global states. .

Since there is no shared memory in the system where protocol P is running, the local variables
of P, are only updated by commands present in the protocol implementation of P;. Furthermore,
a send command in F; (send (m) to P;) appends message (m) to the tail of the messages in
channel C}j, and a receive command (rev (m) from j) removes the head message (m) from the
messages in channel C};.

Definition 5 (Protocol computation) A protocol computation is a sequence of global states.
This can be expressed as:

C.F' :‘sl}m’slw”s‘sh--- L

Since protocols are reactive systems, the computation sequence Cp is, in general, infinite, In
the case Cp is finite it means that no event/action is enabled in the last state, i.e., all processes
are idle.

A property of a protocol is defined using global predicates ( Ry, Rs,...) that involve global
states. Two properties are particularly important for protocols:

e safety properties—defined by closed predicates, and

e progress properties—defined by a convergence relation over closed predicates.

Definition 6 (Closed predicate) A predicate R is called closed iff a state s and all other
states thereafter that appear in Cp satisfy R. In this case, s* and each subsequent state in Cp
is called an R-state. If R and S are two closed predicates of protocol P then R converges to
S iff for each possible protocol computation Cp that starts in an R-state there is a succeeding
§-state. This is illustrated in Figures 3-(a) and 3-(b) respectively. "

Note that in a protocol computation Cp each state is a true-state and no protocol state is a
false-state. Therefore, both true and false are closed predicates in all protocols. This leads to
the definition of self-stabilization.

Definition 7 (Self-stabilizing protocol) A protocol P is said to be self-stabilizing iff given
any closed predicate R, true converges to R. "

As mentioned in the definition of global predicate. R should represent a correct behavior of P
in all possible protocol computations.

“In the remaining of this paper, the term predicate and global predicate will be used interchangeably.
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4 Design of self-stabilizing protocbls

In this section we pres-

ent a set of novel design _/—\
principles to incorporate ‘@40
self-stabilization into a pro- U

tocol specification. These

design principles seem to be R holds R holds R holds

general enough to apply to

a large class of communica- (a) Closed predicate.

tion protocols as we will see

in Section 5. To the best

of our knowledge there is no ves m /—\

work reported in the litera- \./ U

ture that transforms a given R holds
non self-stabilizing protocol R holds R holds 5 holds

into a self-stabilizing pro-
tocol in a systematic way.
See, for instance, the survey
presented by Schneider [20] Figure 3: Example of closed predicates.

and the related work in Sec-

tion 7. The main contribution of this paper is to present a set of design principles to create
self-stabilizing protocols in a systematic way.

The design of self-stabilizing protocols can be divided into two steps: (i) definition of some
elements related to the protocol specification, and (ii) application of the algorithm to introduce
the self-stabilizing features into the protocol specification. As we will see, these steps define a
logical sequence of activities that will end with the stabilization proof of the communication
protocol.

In the following each step is discussed in detail.

(b) Convergence relation,

4.1 Elements related to the protocol specification

The elements discussed in this section will be used in Section 4,2 when introducing the self-
stabilizing features into the communication protocol.

4.1.1 Formal model

Each protocol entity should be defined by a communicating extended finite state machine model
where the basic elements are states, messages, transitions between states according to some
rules defined in the protocol, and the initial state. In particular, the set of messages should be
divided into two sub-sets: one contains the messages that can be sent and the other contains
the messages that can be received. The communicating channels should also be specified.

The self-stabilizing “features” will be added to the CEFSM model as explained in Section 4.2.
In the case of the example given in Section 5 we will present the code for the protocol that
corresponds to the CEFSM model so it is possible to have a more concrete idea of how the
self-stabilizing features are introduced in an implementation.

4.1.2 Type of communication among entities

Basically, peer entities can communicate one-to-one, one-to-many, many-to-one, and many-to-
many. The latter three cases are called group communication. Furthermore, each entity may
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or may not be autonomous in initiating a communication. A non-autonomous entity can only
initiate a communication in response to a message received.
The type of communication among the peer entities should be specified.

4.1.3 Timeout actions

Identify, if any, the timeout actions present in all states indicating the message associated w th
the timeout.

4.2 Algorithm to introduce the self-stabilizing features into the protocol spec-
ification

In the algorithm below we use the concepts of phases and paths. Typically a protocol behavior
can be partitioned into a number of distinct phases. each one responsible for a specific task.
Examples of phases include connection establishment, transfer of data, and orderly termination
of the connection. Furthermore, each protocol phase has a set of messages and associated ru es
for interpreting them. In general, there is only one initial state associated with each protocol
phase. Once that initial state is reached, it is assumed that the function performed by the
previous phase is completed and the protocol is ready to execute a new function. Of course, this
is not valid for the very first phase of a protocol when it starts execution.

It is common to have in each phase two or more distinct paths that reflect the possible
outcomes when the phase is executed. A path is defined by the sequence of states traversed in
a phase. Some of the paths may return to the initial state of that phase, others may go to the
beginning of other phases. In Figure 4-(a) a CEFSM with three states that represent part of a
protocol is shown. Suppose there are two phases @ and 3 with initial states A and C, respectivey.
The paths in this automaton are A-B-A, A-B-C, and C-A as shown by solid lines in Figure 4-(b).
The first path stays in phase «, the second moves from phase @ to 3, and the third moves frcm
phase 3 to a.

(a) Partial CEFSM of a protocol.

(b) Distinct paths (shown by solid lines).

Figure 4: Example of different paths in a phase.

The algorithm to introduce the self-stabilizing features into the communication protocol s
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presented in Figure 5. Recall from Definition 2 that the CEFSM is a labeled directed graph
where vertices and edges represent states and transitions respectively. The algorithm uses the
concept of an intermediate vertex, i.e., a vertex in a path except the initial and the last ones.
The algorithm is divided in three parts:
o Lines 2-6: generates all paths in the CEFSM (set Paths) and identifies the last transition

in each path (set LTP).

e Lines 7-9: introduces the lock-step mode principle as explained in Section 4.2.1.
e Lines 10-17: introduces timeout actions in each path as explained in Section 4.2.2.

Begin of algorithm to introduce self-stabilizing features —

f
Input:

¢ Directed graph G = (V, E) representing the CEFSM. The set V represents the vertices and
the set E the transitions that have the form E‘-’gi—::%,
e Set IS = {vy,va,...,up} of vertices that represent the initial state of each phase in the

protocol.

e Matrix T = [1..|V], 1..|Zsutpus|] indicates whether a given vertex has a timeout action
associated with the reception of a particular message. The set £,yput represents the set of
messages that the machine can send to other machines. The entry T[i, j] is true if vertex
v; has a timeout action associated with message m; € Zoyrpyr. Otherwise it is false.

Output: e Directed graph representing the CEFSM with the self-stabilizing features.

(1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

Paths — {}; LTP — {};

foreach vertex v; € IS do
Find all paths 7; = v;, vi41, .... 1y in the graph G that start with v; and finish with v;, where
v € IS, such that the only two vertices in the path that are in IS are v; and v;.

/* The path m; can be expressed as a sequence of vertices and edges. Re-writing m; in terms

of states and transitions we have: ; : ;
_ . cventy  eveniiiy event;_y A
Ti = Vi Qefion; "+ acliongy, ° aclioni_ i /
Paths — Paths U T; ;

LTP — [TPU Smi=L
od;
foreach pair ::te:];:: € LTP do
Generate a new identifier that will be used in all messages in the next path, The generation
of the new id should be done as part of the action executed in this transition.
od;
foreach path m; € Paths do
foreach intermediate vertex v € n; do
if T[entry associated with v and the output message m that led to v] = false

then Add a timeout transition to v associated with the message m.

T[v, m] — true;
fi;
od;
od;
End of algorithm to introduce self-stabilizing features __J

Figure 5: Algorithm to introduce self-stabilization features into a CEFSM.
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4.2.1 Lock-step mode principle

At each moment in time a process is executing one of the paths in the associated CEFSM.
As discussed above, each path represents a possible outcome in the current phase. In order
to guarantee coordination among the peer entities, the processes should work in lock-step. In-
tuitively, this means that the computations among the peer entities should progress together.
path-by-path. In fact, this would happen if there were no errors at all in the environment and
the protocol is designed with some “nice” properties (e.g., safety and liveness).

To guarantee that the protocol will work in lock-step, each path executed along a computation
has associated with it a unique identifier that is monotonically increasing. In this way, each new
path executed in each phase by a process can be differentiated from the previous one. The lock-
step mode is effectly achieved when all messages exchanged among the peer entities for each
path carry the path’s identifier. With this mechanism each process knows whether the message
is valid for that path or not. If it is not it should be discarded since it does not belong to the
current path but to another one that does not exist anymore.

This is an important aspect of our self-stabilization technique. Note that the identifier can
be implemented using a timestamp mechanism [16]. This guarantees that the identifiers are
monotonically increasing.

The next question is where and when to assign a new identifier for a path. Note that each
path m; € Paths can be represented by the following sequence of vertices (states) and edges
(transitions):

event; event; event;_,
o= Y x Dig] mm——— [ — 1
action, action; 4, action;_,

The final state (i.e., vertex) will be the initial state of the current or another phase. Therefore.
the right time and place to create a new identifier is when the final state of a phase is reached, i.e..

in the transition that leads to v;. This transition is labeled with the pair %::::T_l:' Therefore.

a new identifier should be generated as part of the action action;_; executed in this transition.
There is also another important aspect related to the generation of identifiers. In Section 4.1,2
we classified processes as autonomous or non-autonomous with respect to the communication
among entities. Non-autonomous processes cannot initiate a communication with a peer entity
and therefore play a “minor” role in self-stabilization. Typically, their self-stabilization version
is obtained by copying the message identifier in a request message to the response message.
Autonomous processes are responsible for implementing the lock-step execution mode.

4.2.2 Timeout actions

Note that the lock-step execution rnode by itself is not sufficient to guarantee self-stabilization.
Recall from Section 2 that a self-stabilizing protocol will converge automatically to a safe state
in a finite number of steps. Therefore, we need a mechanism to guarantee the convergence of the
protocol to a safe state. The lock-step principle guarantees that only valid messages are accepted
and processed by the protocol. But it does not guarantee that the protocol moves along a given
path when it is in an unsafe state. The following theorem guarantees the progress of a protocol
execution and thus its convergence to a safe state.

Let sx be an intermediate state in a path and message m the action associated with the
transition from state sx_; to sy, i.e., Sg_; —— s.

Theorem 8 An intermediate state s; in a path should have a timeout action associated with
the output message m that led to that state.

Proof (Contradiction). Suppose that an intermediate state s; in an autonomous process
P does not have a timeout action associated with message m sent to the peer process Q. If
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process Q is in a state that will not send any reply message then process P can stay in state s;
forever, and thus s; becomes an unsafe state. Therefore timeout actions should be added for all

intermediate states si in a path. o

This theorem is based on two assumptions. First. each transition to an intermediate state

has the form _w,;:‘t' . i.e.. an intermediate state is reached by sending a message. Second.
|

once a new phase is reached the function performed by the previous phase has been completed
and the protocol is ready to execute a new function. This is the reason for not including timeout
actions in the initial states of each phase. Let us examine this theorem if the assumptions are
removed.

If we lift the first assumption given above then an intermediate state s can be reached after
executing a transition not involving an action related to the communication channel. There are
only two possible events that can make the machine move from state s to another state: either
an event related to the communication channel or a local event such as a request from the service
user. In both cases we must have a timeout action associated with this event. Otherwise we
have the same situation described in the proof of Theorem &.

If we lift the second assumption above it means that there are overlapping phases in the
communication protocol with common intermediate states. This is not a desirable characteristic
in the protocol design since two distinct functions are mixed together. In practice, protocols are
not designed with overlapping phases. If they do exist then Theorem 38 is still valid and must
also be applied to a state that is at the same time the end state of a phase and an intermediate
state of another phase.

Note that if we keep the second assumption the following theorem holds.

Theorem 9 Every initial state of a phase is a safe state.

Proof (Induction). Let set IS = {sy,52,....5,} be the states that represent the initial state of
each phase in the protocol. State s; is the initial state of the protocol when it starts to execute.
Let Cp = 81y+.+y8iy++.3y8jy.--, Sk, ... represent the states in a protocol computation of process
P where only the states in set [S are shown. Clearly, s, is a safe state. Let us assume that state
s; is a safe state and the next state that appears in the computation from the set IS is sg. If
no perturbation occurs in the system between states s; and sk, then state s is also a safe state
according to the assumptions. If a perturbation occurs then the computation will progress until
state sx is eventually reached. This is guaranteed by the timeout actions. Furthermore, only
valid messages will be accepted and processed by P because of the lock-step execution mode.
Therefore, state s; is also a safe state. 0O

A final remark about timeout actions is that they do not apply to non-autonomous processes
since they cannot initiate a communication.

4.2.3 Complexity of the algorithm

As mentioned earlier, the algorithm has three sequential parts. The first part (lines 2-6) gener-
ates all the paths in the graph. This can be done using a breadth-first search algorithm which
can be carried out in time O(v + e). The second part (lines 7-9) introduces the lock-step mode
principle in each transition of the set LTP. This is clearly bounded by O(v + e) which is the
time required to find all the paths. The third part (lines 10-17) introduces the timeout actions
along each path. Line 10 is bounded by O(v+¢), line 11 by O(e) and lines 12 to 14 are executed
in constant time. Thus lines 10 to 17 are bounded by O(v + €) x O(e) which gives O(ve + e?).
Therefore, the three parts together are bounded by a quadratic function.

If we execute the part associated with the timeout actions when we are generating each path
(the first part) we can avoid the cost incurred by the third part and thus the algorithm can be
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carried out in time O(v + e). The algorithm was presented in three parts for didactical purposes
but in a real implementation an optimization like this should be used.

5 Self-stabilization: An example

In this section we present a simple protocol for connection management (CM). This protocol is
comprised of the connection and disconnection phases. We use this protocol as an example in
this paper because it is present in all connection-oriented protocols and has been widely used.
Some of the protocols that use this kind of connection management are the protocols defined for
the OSI stack such as the data link, network, transport and session layers, TCP, and protocols
for high speed networks such as XTP [21] and NETBLT [4].

5.1 Description of the connection management protocol

In the connection management protocol both the connection and disconnection phases use a
confirmed service. The communicating finite state machines for both processes are shown in
Figure 6.

./—F—““" \
/ \
[ Idle |
user regt'd con # \ /
-<CON.req> .~ »
e +<DISC coaf>
+<DISC.ind> :

v \\_//____“‘\ e .

N 4 \
Wait_For_) [ Wait _Fu_"1 timeout [ Idle K
Con /| timeout \ Dise / -<DISC.req> k IS

STRC ro: \ i / CON.ind>

—<DISC. SN— +<CON.ind> 4 : . #<CON.iad>

v\_ i j e ~<CON.resp> ) W S W -<DISC.req>

m.w\'\_ o mn - __ - -3

RN e N /_,f -<DISC.req> _#__ _+<DISC.ind> +<DISC.conf>" /\\
¥4 e < -<DISC.resp> % R
Data_ ) ﬁ Data_ "I | Wait_For |
Transfer _ Transfer / \ Disc /

(a) Sender process. (b) Receiver process.

Figure 6: Connection management protocol-CEFSM model.

The code for processes Sender, and Receiver, are given in Figures 7 and 8 respectively.

5.2 Elements related to the protocol specification

In the following we present the elements related to the protocol specification that will be used
in the self-stabilizing version of the protocol as discussed in Section 4.1.

5.2.1 Formal model

In the following we identify the set of states and messages valid for both Sender, and Receiver,,
and their communicating channels.
Let S, indicate the state of Sender, based on the status of its communicating channel. The
states are:
¢ IDLE: the channel is idle and available for use. No connection is established between
Sender, and Recetver,.
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Begin of Sender, (original version) —

[ (1) process Sender, =
(2) do forever

(3) (S, = IDLE A user requests conneclion) r—
(4) send (CON.reg) to r;

(5) Ss = WAIT_FOR_CON;

(6) (S, = DATA_TRANSFER A data transfer 1s over) —
(7) send (DISC.req) to r:

(8) S, — WAIT_FOR.DISC;

(9) (rev (m) € £, , from r) —

(10) do M, case

(11) (CON.conf): S, ~ DATA_TRANSFER;
(12) (DISC.ind): send (DISC.resp) to r:
(13) S, ~— IDLE;

(14) (DISC.conf): S, — IDLE;

(1) od;

(16) (timeout(S, = WAIT_FOR_.CON V WAIT_FOR_DISC)) r—
(17) if S, = WAIT_FOR_cON then

(18) send (DISC.req) to r:

(19) Ss — WAIT_FOR_DISC:

(20) else if S, = WAIT_FOR.DISC then

(21) send (DISC.req) to r;

(22) fi;

(23) fi;

(24) od;

' End of Sender, (original version) __J

Figure 7: Code for Sender, (original version).

Begin of Receiver, (original version)
. T
(1) process Receiver, =

(2) do forever

(3) (rev (m) € I, , from s5) —

(4) do M, case

(5) (CON.ind): send (CON.resp) to s;

(6) Sy = DATA_TRANSFER:
v

(7) send (DISC.req) to s;

(8) S, ~— WAIT_FOR_DISC:

(9) (DISC.conf): S, ~— IDLE;

(10) (DISC.ind): send (DISC.resp) to s;

(11) Ss ~— IDLE;

(12) od;

(13) od;

L End of Receiver, (original version) __|

Figure 8: Code for Receiver, (original version).

® WAIT_FOR_CON: Sender, sent a (CON.reg) (connection request) to Recetver, and is wait-
ing for a response.

® WAIT_FOR_DISC: Recewer, sent a (DISC.req) (disconnection request) to Recetver, and is
waiting for a response.

e DATA_TRANSFER: a connection between Sender, and Receiver, is established and they can
start transferring data.
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The set of valid messages for Sender, is ¥, = {{CON.req), (CON.conf), (DISC req),
(DISC.ind), (DISC.conf)}. Let T, , indicate the set of valid messages that Sender, can re-
ceive from KReceiver,:

e (CON.conf): receiver accepted the request made by the sender.

e (DISC.ind): receiver rejected the request made by the sender.

o (DISC.conf): receiver acknowledged the disconnection request made by the sender.

The set of valid messages that Sender, can send to Receiver, is explained in the receiver
part since the protocol CM uses a confirmed service.

Let S, indicate the state of Receiver,. The states are:

e IDLE: the channel is idle and available for use. No connection is established between
Sender, and Receiver,.

® WAIT_FOR.DISC: Receiver, sent a (DISC.req) (disconnection request) to Sender, and is
waiting for a response.

® DATA_TRANSFER: a connection between Sender, and Receiver, is established and they can
start transferring data.

5 1 b : ; . :
Note that WAIT_FOR_CON is not a valid state for Receiver. since upon receipt of a (CON.ind)
the receiver goes to either the WAIT_FOR_ DISC or DATA_TRANSFER state.

The set of valid messages for Receiver, is T, = {(CON.ind), (CON.resp), (DISC.req),
(DISC.ind), (DISC.resp), (DISC.conf)}. Let 2, . indicate the set of valid messages that Re-
cetver, can receive from Sender,:

¢ (CON.ind): sender requested a connection establishment.

¢ (DISC.conf): receiver rejected the sender’s request for a connection establishment and

sent a (DISC.req) to Sender,.

¢ (DISC.ind): the sender wants to disconnect.

Let C, indicate the set of messages sent from the sender to the receiver. Similarly, let C,,
indicate the set of messages sent from the receiver to the sender.

5.2.2 Type of communication among entities

Process Sender, is autonomous in initiating a communication with Receiver, whereas the other
way around is not possible. Receiver, only reacts to requests sent by Sender,.

5.2.3 Timeout actions

Process Sender, has timeout actions in the following states:
® WAIT_FOR_CON: associated with a response to the message (CON.req).
In this case Sender, can receive either a (CON.conf) or a (DISC.ind).
® WAIT_FOR.DISC: associated with message (DISC.req).
In this case Sender, can only receive a (DISC.conf).

Process Receiver, does not have any timeout actions since it is not autonomous.

5.3 Applying the algorithm to introduce the self-stabilizing features into the
protocol specification

The three parts of the algorithm shown in Figure 5 are given below.
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Figure 9: Distinct paths in the connection management protocol.

5.3.1 Phases and paths

Since process Receiver, may only react to messages sent by Sender,, this element is relevant to
Sender, only.

The CM protocol as shown in Figure 6 is comprised of the connection and disconnection
phases and they are treated together in the"CEFSM model. The connection phase starts in the
state IDLE, and the disconnection phase in DATA_TRANSFER. Therefore. the set of initial states
can be defined as IS = {IDLE. DATA_TRANSFER}. Note that the state DATA_TRANSFER is the
initial state for the data transfer phase which is not shown in the figure.

In the case of connection establishment there are three possible outcomes: successful con-
nection, connection rejection, and unsuccessful connection. These possibilities together with the
disconnection case define four distinct paths in the graph that represents the CM protocol:

1. Successful connection (Figure 9-(a))— Recetver, accepted a connection request and both
entities are ready to start transmitting data.

2. Rejection (Figure 9-(b))— Receiver, rejected a connection request.

3. Unsuccessful connection (Figure 9-(c))—Sender, was not able to establish a connection
with Receiver,.

4. Disconnection (Figure 9-(d))—there was no more data to be transferred to Receiver, and
Sender, disconnected.

The set LTP (last transition of the path) contains three transitions:

I ﬂM for the successful connection path.

+(DISC.ind o
2. :émaﬁ)? for the rejection path.

DISC.con A - ;
3. L(____E_,_O_ for the unsuccessful connection and disconnection paths.

5.3.2 Lock-step mode

The lock-step mode will be introduced in process Sender, since it alone can initiate a commu-
nication. The variable N, contains the identifier to be associated with each new path. i.e.. N, is
responsible for implementing the timestamp mechanism. The following lines were added to the
code of Sender, as shown in Figure 10:

e (10)-(13): to discard any message that does not belong to the current path.
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® (17): lock-step mode for the successful connection case.
¢ (22): lock-step mode for the connection rejection case.
® (26): lock-step mode for the unsuccessful connection and disconnection cases.

All send and rev commands in both Sender, and Receiver, have a new variable that contains
the path id as shown in Figures 10 and 11, respectively. Note that at any moment in time. a
valid message in the channel has an id N. where N, =1 < N < N,. The messages have the
id N = N, when Sender, is in any state in a path except the last one. When the last state is
reached. N, is incremented and we have V = V, — 1.

At any moment in time, Sender, is executing only one the following actions (given by the
line numbers):

e K ConAction> (3)-(5): user requested a connection.

e KDiscAction> (6)—(8): user requested a disconnection.

o < RespAction> (9)-(28): Sender, received a response.

o <TimeAction> (29)-(36): a timeout occured.

On the other hand, Receiver, has just one action to execute:
o < ReplyAction> (3)-(12): Receiver, received a request and should reply to it.

These actions are marked along the line numbers in the code.
Figure 12 shows the self-stabilizing version of the communicating extended finite state ma-
chines for both processes.

5.3.3 Timeout actions
The four paths shown in Figure 9 with their respective states are:

1. Successful connection: | — WFC — DT.
2. Connection rejection: [ — WF(C — 1.
3. Unsuccessful connection: [ -~ WFC — WFD — L

4. Disconnection: DT — WFD — L

All four paths have intermediate states and therefore for each one of them we need to check
whether it has a timeout action associated with the message that led to that state. The first
three paths have the intermediate state WFC (wait for connection) which has a timeout action
associated with (CON.reg). This is the message that led the machine to the state WFC in the
three cases. Therefore, we do not need to add any new timeout action. The last two paths above
have the intermediate state WFD (wait for disconnection) which has a timeout action associated
with (DISC.req). This is the message that led the machine to the state WFD in both cases.
Therefore no timeout action is needed here as well.

5.4 Applying a proof technique to verify the self-stabilization

Gouda and Mutari [9] present a proof technique called convergence stair to show whether a
protocol is self-stabilizing for some closed predicate R. The input to the proof technique is
the self-stabilizing version Pss of the original protocol P. Therefore, the main problem is to
come up with a self-stabilizing version Psg of P such that in the presence of perturbations the
system will converge to a safe state in a finite number of steps where R holds again. This can be
accomplished by applying the design principles presented in Section 4. Due to space limitations
we will not present how the the proof technique described in [9] can be applied to show that the
self-stabilizing version of the connection management protocol is correct indeed.



568 SBRC 96

r Begin of Sender, (self-stabilizing version) —
(1) process Sender, =
(2) do forever

-(3) (S, = IDLE A user requests connection) —

(4) send (C'ON.req,N,) to 7,

L(5) S, — WAIT_FOR_CON;

(6) (S, = DATA_TRANSFER A data transfer is over) —
(7) send (DISC.req,N,) to r;

L(B) S, +— WAIT _FOR_DISC;

-(9) (rev (m € &, ,, N) from r) —

(10) if N # N, then

(11) discard message;

(12) continue; /* goes lo nect iteration */
(13) ti

(14) do M. case

(15) (CON.conf): if S, = WAIT_FOR_CON then
(16) $, — DATATRANSFER;
(17) Ny, — Ny + 1t

(18) fi:

(19) (DISC.ind): if Sy = WAIT_FOR_CON then
(20) send (DISC.resp, N,) to 1
(21) Ss + IDLE;

(22) N, — N, + 1

(23) fi:

(24) (DISC.conf): if §, = WAIT FOR_DISC then
(25) Sy — IDLE:

(26) ' N, — N, + 1;

(27) fi:

[ (28) od;

-(29) (timeout(S, = WAIT_FOR_CON V WAIT FOR_DISC)) —
(30) if §, = WAIT_FOR_CON then

(31) send (DISC.req,N,) to r;

(32) S, +— WAIT_FOR_DISC;

(33) else if §, = WAIT _FOR_DISC then

(34) send (DISC.req, N,) to r:

(35) fi:

L(36) fi;

(37) od:

L End of Sender, (self-stabilizing version) |

Figure 10: Code for Sender, (self-stabilizing version).

5.5 Some remarks on the self-stabilizing version

In the solution presented, the variable VN, is unbounded. There are two possible solutions to
this problem. One may consider that a large variable with 48 or 64 bits is unbounded for
practical purposes, or one may use an aperiodic sequence (e.g., a random sequence that is easy
to generate) so each path starts with a different sequence number. The latter alternative is called
pseudo-stabilization [2]. In practice. these solutions satisfy the needs of most applications.

One particular point related to this protocol is that process Sender, plays an active role in
the self-stabilization process. Receiver, plays a passive role since it only responds to Sender.
Finally, the following theorem is easily proven.

Theorem 10 The number of rounds (in this case receive messages in Sender,) necessary to
bring the protocol CM to a safe state when there are m messages in the system is bounded by
O(m). a
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Begin of Recewver, (self-stabilizing version) —

(1) process Recetver, =
(2) do forever

r(3) (rev (me X, ,,.V) from s) —

(4) do M, case

(5) (CON.ind): send (CON.resp,N) to s:

(6) S, +— DATA_TRANSFER:
v

(7) send (DISC.req,N) to s:

(8) S, ~— WAIT_FOR_DISC:

(9) (DISC.conf): 5§, — IDLE;

(10) (DISC.ind): send (DISC.resp,N) to s;

(11) S¢ « IDLE;

(12) od;

(13) od;

L End of Receiver, (self-stabilizing version) __J

Figure 11: Code for Receiver, (self-stabilizing version).

\
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(a) Sender process. (b) Receiver process.

Figure 12: Self-stabilizing version—-CEFSM model.

6 A new conformance relation based on the external behavior

This section is related to the theory of testing and is motivated by the design principles described
in Section 4.

In order to improve the confidence in the implementation under test, it is necessary to define
a formal notion of conformance that relates descriptions at different levels of abstraction. In
particular, we are interested in two descriptions: specification and implementation. Informally,
conformance can be defined as follows:

Definition 11 (Conformance relation) Protocol description P; conforms to protocol de-
scription P, (expressed as Py conf P;) iff for all possible environments E in which P, and
P, can run, all behaviors of P; in E observed at the external interaction points® are possible

*In the OSI context, interaction points (IPs) represent service access points, and points of control and
ohservation.
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when P; is run in the same environment.

From the point of view of protocol engineering, this is a strong definition which is difficult to
realize. It is not practical because the set of possible environments can be very large and hard
to be anticipated.

Despite this, several conformance relations that are environment-independent have been
proposed in the literature. Some of them are:

Observational equivalence between CCS processes [18].

o Correctness between a concurrent program and a formula of temporal logic [10].
e The satisfy-relation between a CSP process and a formula of trace logic [11].

e The conf-relation and testing equivalence between Lotos processes [1]

As pointed out by Gotzhein (8], these relations do not necessarily imply conformance as
given in Definition 11. Gotzhein describes some problems that arise when different semantics
for interaction points are considered in an environment-independent relation.

If we consider an environment that may cause coordination loss and the specification is not
designed to handle coordination loss, then the relations above do not help either. Therefore, if
the environment is known in advance, a more specific conformance relation can be given. Since
coordination loss is a common problem in practice [9, 13, 17, 19, 21], it is quite reasonable to
take it into consideration in defining conformance relations. This leads to the following theorem.

Let Snss and Inss be a non self-stabilizing protocol specification and its conforming im-
plementation, respectively. Let Sss and Iss be the corresponding self-stabilization versions,
respectively. Let Ecr be an environment that exhibits coordination loss.

Theorem 12 Given the coordination loss fault model, Inss is a faulty implementation with
respect to environment Ecp and Iss is not.

Proof (By contradiction). Suppose [ysg is not a faulty implementation with respect to
environment Ecz. This implies that if an error occurs due to coordination loss, Ings will
converge from an unsafe state to a safe state in a finite number of steps. But this is not possible
because Insg is not self-stabilizing. That contradicts our hypothesis that /nyss is not a faulty
implementation. a

Figure 13 shows the relationships among the

. . . . .PV&S ---------- PSS

four versions of specifications and implementa- % i} -
tions. ~ -~
Despite the fact that Iyss conf Syss, we can o i
see that Inss —~conf Sgs and Iss ~conf Snss. o ~

Note that Theorem 12 does not say anything Ipggted ~= s Iss
directly about the specifications. But since the
implementations conform to their specifications, Notation:
it means that the specification must not accept - - o doesnotconform
a faulty behavior related to coordination loss. conforms

3 i b,

This leads us to the following conformance
definition that takes into consideration an envi- Figure 13: Relationships among Syss, Inss.
ronment that may cause coordination loss: Sss, and Iss.

Definition 13 (Conformance relation confrz) Protocol description Py conforms to proto-
col description P; iff for all possible environments that may cause coordination loss (EcL), all
behaviors of P, in Ecy, observed at the external interaction points are possible when P, is placed
in the same environment. Furthermore, any error caused by coordination loss is not valid for
P;. This is expressed as P, confoy, Ps.
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The testing problem discussed in Section 1 prompts us to compare the testability of a pro-
tocol specification § after embedding its implementation / in environment Ecp, and testing /
directly. Intuitively, testing through an environment degrades testability. This is another way of
interpreting Theorem 12. Therefore nothing can be said about the capacity of the testing process
in detecting faulty implementations in an arbitrary environment. This is strongly dependent on
S and its implementation [/, and on the environment £ used for testing.

A natural way of comparing the testability of two implementations in this context is through
the relation “more testable”™ with respect to environment E-y. This is given in the following
definition where Iy and [, are implementations of a protocol specification S. Note that Ecp
defines a fault model.

Definition 14 (More testable relation) An implementation [; is more testable than imple-
mentation /; for environment Ecp (expressed as Iy Cg,., I2) if [; does not contain any errors
that /; may have with respect to environment Ecp (i.e., the errors that Ecy may cause). 3

Clearly, we have Iss Cg., Inss for Theorem 12 since all errors found in Inss due to
coordination loss will not be present in /ss and therefore /ss is more testable than Ings. In
practice, this relation can be verified if test cases are generated to test all the errors caused by
coordination loss, and the tester program is capable of leading the IUT to a state where these
errors can be detected. This is difficult to achieve in a conformance testing environment as
explained in Section 1. Therefore this relation can be re-phrased as follows: implementation I,
is more reliable than implementation I, with respect to the errors caused by coordination loss
if I does not contain any errors that I; may have with respect to this fault model.

7 Related work

Gotzhein (8] defines a “compatibility relation” between external interaction points in a system.
This relation is used to overcome the problem of defining conformance for an unknown environ-
ment. Gotzhein defines several properties that interaction points can have. One of the properties
defined prevents duplication, corruption. and creation of interactions (messages). This property
can be guaranteed for an interaction point. Unfortunately it cannot be extended to cover differ-
ent environments where a protocol may be executed. Therefore the problem still remains.

Drira et al. [6, 7] propose a method for analyzing the testability of an implementation I with
respect to the verdict of the test execution when I is tested through an environment. They
assume that a correct verdict can be assigned to the implementation when I is tested directly
when performing conformance testing. Although, they point out that for robustness testing the
problem remains. This problem is solved if we apply the design principles described in this
paper.

There are at least two specifications of protocols for high speed networks that try to cir-
cumvent the problem of coordination less by using specific mechanisms. Delta-t [22] uses a
time mechanism to guarantee that the lifetime of each packet is bounded and strictly enforced.
Sabnani and Netravali [19] propose a transport protocol where protocol entities exchange the
full local state periodically independent of changes in the states of the cooperating entities.

Katz and Perry [15] propose a mechanism to create a self-stabilization extension of a dis-
tributed program P. The idea is to superimpose onto P a self-stabilizing global monitor that
repeatedly performs the following three steps: (i) take snapshots of the global state, (ii) ver-
ify whether the snapshots indicate an unsafe global state, and (iii) reset the variables of each
process to a safe state when a problem is detected. Of course, each one of these steps “must
function correctly no matter what the initial state” is. Note that in this method, the proof of
self-stabilization of the system is given by the correctness of the algorithms that implement the
method, i.e., the proof is implicit. The processes that execute P have to be modified to send
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snapshot messages to, and receive reset messages from the global monitor. Our method does
not use a global monitor and the modifications introduced into the specification are used to
guarantee self-stabilization.

8 Conclusions

In this paper, we have proposed a mechanism for tackling an important class of faults. namely
coordination loss, that are very difficult to catch in the testing process. We presented a set of
design principles for designing self-stabilizing protocols, and applied these principles to a real
protocol.

Note that the design principles proposed in this paper and design for testability in the
hardware domain share some of the same fundamentals but with different goals. DFT in the
hardware domain considers one or more fault models when designing an integrated circuit.
The idea is to generate test cases according to these fault models, and then check whether the
behavior of the manufactured IC follows the behavior assumed by the fault models [3]. Similarly,
we consider the coordination loss fault model in the design process in order to avoid errors related
to this fault model.

We showed that conformance relations that are environment independent are too generic to
deal with errors caused by the environment such as coordination loss. We presented a more
realistic conformance relation based on external behavior and a “more testable” relation that
reflects the reliability of protocol implementations. An interesting direction that we could follow
from here is to define other conformance relations based on other fault models, and incorporate
them into the design as well.

In designing protocols that are self-stabilizing, we are shifting the task of catching errors due
to coordination loss from the testing phase to the design phase where we have a better way of
handling this problem. Furthermore, the design principles we have proposed comprise of analysis
and synthesis techniques.

The proposed method of converting a protocol to be self-stabilizing does not present any
problem in terms of time or space. The self-stabilizing version should have the same complexity
as the original protocol in processing each event. The complexity (or overhead) for a protocol
to converge to a safe state depends on the protocol itself. For the protocol studied in this paper,
Theorem 10 shows that the complexity is @(m), where m is the number of messages in the
system.
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