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Resumo

Este artigo introduz o Ambiente de Gerenciamento de Qualidade de Servico (QoSME) que permite o
gerenciamento (ou seja, a negociagdo, o monitoramento, a adaptagdo e o controle), por parte de apli-
cagdes, da Qualidade de Servigo (()0S) oferecida pela rede. Aplicagdes em QoSME acessam protocolos
de transporte da rede via QoSockeis, uma nova extensdo do mecanismo de sockets que inclui ferramen-
tas para negociagdo de QoS por parte de aplicagdes. QoSockets mapeia restrigdes de QoS especifica-
das pelas aplicagdes em servigos (de QoS) especificos do ambiente de suporte e, consequentemente, en-
coberta a distancia entre a QoS especificada por aplicagées e aquela oferecida pela rede. QoSockets
esconde a heterogeneidade nas ‘interfaces a nivel de transporte e abaixo e facilita a portabilidade e
reuso, simplificando o desenvolvimento e manuten¢do de aplicagdes que requerem QoS. QoSockets
automatcamente monitora a QoS obtida e armazena em Bases de Informagdo de Gerenciamento (MIBs)
rastreamentos da QoS realmente obtida por cada aplicacdo. Quando hd violagdo de QoS, QoSME in-
voca mecanismos de tratamento de excegdes que executam processos definidos pelas aplicagées para
atuar sobre os eventos erroneos, promovendo adapiagdo costumizada por aplicagdo a QoS obtida.
Agentes de QoS MIBs do Simple Network Management Protocol (SNMP), embutidos em QoSME, inte-
gram gerenciamento de QoS a nivel da aplicagdo com sistemas tradicionais de gerenciamento de redes.
Eles provém acesso a QoS MIB para administradores de redes que monitoram ambos, as necessidades
de aplicagdes e @ QoS realmente obtida pela conexdo. Além do mais, os administradores podem adap-
tar a forma de éreuc:’ar seus recursos para melhor casar as necessidades das aplicagées com a QoS
realmente obtida.

Abstract

This paper introduces a novel Quality of Service Management Environment (QoSME) that enables ap-
plications to manage (i.e., negotiate, monitor, adapt, and control) QoS delivery by a network. QoSME
applications access network transport protocols via QoSockets, a new extension of the sockets mecha-
nism that includes capabilities for QoS negotiation by applications. QoSockets maps application speci-
fied QoS constraints into underlying environment specific QoS requests and bridges the gap between the
QoS requested by applications and the QoS supported by the underlying network. QoSockets shelters
heterogeneity at the transport level and below and eases their portability and reuse, simplifying the de-
velopment and maintenance of QoS demanding applications. QoSME automatically monitors QoS de-
livery and gathers into QoS Management Information Bases (MIBs) traces on QoS performance per
application. Upon QoS violations, QoSME signals application-provided exception handlers to act upon
faulty events. promoting application customized adaptation 1o QoS delivery. QoS MIB Simple Network
Management Protocol (SNMP) agents embedded in QoSME integrates application level QoS manage-
ment into standard network management frameworks. They provide QoS MIB access to network manag-
ers that monitor both application needs and end-end QoS delivery. Furthermore, managers adapt their
resource management to improve overall match betweer. end-end QoS delivery and application needs.

" This work was performed while the first author was pursuing her Ph.D. in Computer Science in the Distributed Comput-
ing and Communications (DCC) Lab at Columbia University.
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1 Introduction

End users are sensitive to the performance of multimedia communications. For example, ex-
cessive jitter in a voice stream results in illegible speech. Similarly, significant delays in deliver-
ing interactive video conference renders cumbersome interactions. Jitter, delay, and throughput
are but a few of the Quality of Service (QoS) metrics measuring the performance of communi-
cations. In general, distributed isochronous applications are sensitive to various QoS metrics.

It is therefore necessary to assure that the QoS expected by applications and the QoS deliv-
ered by the network match closely. This gives rise to the following challenges:

1. How should a network interact with applications to assure end-end QoS? Several an-
swers have been proposed. One possibility is for applications to request the network
explicitly the QoS that they desire and for the network to adapt to these requests. For
example, a connection-based application could specify at connection establishment time
the maximum traffic rate that it requires. The network will adapt its bandwidth alloca-
tion accordingly. At another extreme, the network would provide optional end-end
channels with assured QoS. The application will select the channel that best matches its
QoS needs. Another possibility is for the network to monitor the behavior of applica-
tions and adapt its delivery to their traffic patterns.

2. How should the network configure its resources to assure end-end QoS delivery? End-
end QoS delivery is the sum of traffic handling and resource allocation at intermediate
nodes. The network must thus map end-end QoS needs into respective configuration
and handling at intermediate nodes. This is complicated by the fact that end-end paths
may be stretched through multiple domains using heterogeneous intermediate nodes
components.

3. How can applications adapt 10 the actual QoS delivered by the nefggork? For applica-
tions to adapt, they must be able to monitor QoS delivery and to detect failures in
meeting their needs. They must be able to reconfigure their computations to adapt to
variations in the QoS delivery. They must support these functions independently of the
underlying transport and network mechanisms.

The first and second questions have been considered by various publications [braden95,
hyman93, lazar90, topolcic90]. These works have focused primarily on mechanisms at the
transport layer and below to support QoS delivery. In contrast, this paper introduces applica-
tions-layer technologies to address these challenges and focuses primarily on the third chal-
lenge.

This paper introduces a novel QoS Management Environment (QoSME) to support effec-
tive adaptation and control by applications of QoS delivery. QoSME enables applications to
monitor, analyze and adapt to the QoS delivery by the network. It also provides mechanisms
that permit applications to convey their QoS needs to their end-node system. This permits end-
node mechanisms to control the QoS delivered by the network to meet application needs.

QoSME also enables novel solutions to the first and second challenges discussed above.
The network can monitor both application needs and end-end QoS delivery. It cun use this data
to adapt its resource management to improve the overall match between end-end QoS delivery
and applications needs.
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QoSME fully automates QoS monitoring. The instrumentation to monitor QoS is generated
automatically as a side effect of application access to network transport via QoSockets, an ex-
tended socket mechanism provided by QoSME. QoSME monitors QoS constraints set by ap-
plications through QoSockets calls. It detects violations of these constraints and invokes auto-
matically respective handlers provided by applications. This enables applications to adapt to the
actual QoS delivered by the network.

QoSME integrates QoS management within standard network management frameworks.
The data collected by QoSME instrumentation is organized in QoS Management Information
Bases (MIBs) accessible via the Simple Network Management Protocol (SNMP)'. This permits
external managers to monitor end-end QoS delivery and adapt network resource allocation and
operations accordingly.

This paper is organized as follows. Section 2 discusses the QoSME architecture. Section 3
analyzes application interactions with network QoS delivery mechanisms. Section 4 addresses
QoS negotiation between peer applications. Section 5 discusses how applications can program
QoS metrics to be monitored. Section 6 addresses the structure of QoS MIBs and Section 7
discusses how applications can access them. Section 8 addresses performance issues associated
with QoS monitoring. Finally, Section 9 summarizes the main contributions of the architecture
presented. A formal definition for the specification and measurement of QoS metrics is ommit-
ted here due to space constraints and presented in reference [florissi95].

2 A Software Environment for Managing QoS Delivery

Figure 2.1 depicts the overall architecture of QoSME. The architecture proposed focus on
QoS management as part of the runtime system, simplifying QoS handling for application de-
velopers. The horizontal lines divide the architecture layers depicted. The superimposed
squares represent applications. The rectangles and the triangle represent functional modules.
The tree shaped boxes represent a database. The straight arrows represent interactions be-
tween modules. The dashed arrows represent database access and updates by functional mod-
ules. At the application layer, the Quality-of-service Assurance Language (QuAL) provides
abstractions for the negotiation of QoS constraints, specification of QoS violation handlers,
and access to QoS MIBs. The QuAL compiler is responsible for translating these abstractions
into calls to runtime components that allocate underlying system services and provide man-
agement of the QoS delivered. At the runtime layer, the QoS for Sockets (QoSockets) and the
OS interface mitigate the interactions between QuAL applications and the underlying system
components that deliver QoS demanding services. They provide a common OS and transport
layer Application Program Interface (API), sheltering heterogeneity at the underlying system.
For example, the same QoSockets interface is used for communication over TCP [comer91],
ST-II [topolcic90], ATM [deprycker93], or any other protocol offered by the underlying envi-
ronment. Similarly, the OS interface offers the same set of services independent of the underly-
ing OS. QoSockets and the OS interface monitor interactions between applications and the un-
derlying environment and update QoS MIBs with statistics on the QoS delivered to applica-
tions. A QoS SNMP agent embedded in QoSME runtime provides QoS MIB access to SNMP

' The reader is referred to [stallings93] and [rose93] for description of network management and the Simple Network
Management Protocol (SNMP) standards.
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managers, disclosing application QoS performance behavior to external management entities.

This paper focus on the main contributions inherent in the QoSME runtime components that
assure QoS delivery on communications: QoSockets, QoS MIBs, and QoS SNMP agents. The
design and novel features of QUAL and QoSME OS interface are discussed in [florissi94a, flo-
rissi94b] and omitted here due to space limitations. In a few words, QuAL consists of a lan-
guage layer on top of the API offered by QoSockets and the OS interface. QoSME applica-
tions interact with QoSME runtime either through QuAL abstractions or through QoSockets
and OS interface APIs directly. Even though the functionality offered by QoSME runtime is
the same for both access methods, the QuAL compiler provides application development sup-
port that cannot be offered by QoSME runtime components. For example, the QuAL compiler
can parse the specification of QoS constraints at compile time as opposed 10 runtime parsing
performed by QoSockets functions.

QoSME OS interface bridges the gap between the services offered by the underlying OS
and QoSME semantics for computing QoS. Consider, for example, QoSME running on top of
Solaris. In QoSME, application activities must be scheduled based on their deadlines. Since
Solaris does not provide this scheduling mechanism, QoSME OS interface mitigates interac-
tions between applications and Solaris so that activities are scheduled on a earliest deadline
basis.
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Figure 2.1: An Architecture to Manage Application Level QoS

QoSockets extends the sockets [stevens90] mechanism to include QoS negotiation, adapta-
tion, and management by applications. Similarly to sockets, QoSockets abstracts a distributed
system as a set of processes that exchange information through message passing. Messages are
received through input ports (inports for short) and sent through output ports (outports for
short). The term port is used when it is not necessary to distinguish an inport from an outport.
QoSockets offers abstractions for attaching QoS constraints to ports and for negotiating QoS
that simplify the development and maintenance of multimedia applications. QoSockets exposes
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application developers to a single set of QoS abstractions for QoS negotiation between peer
applications and between applications and the underlying environment. These abstractions are
independent of underlying system configuration. QoSockets functions map abstract QoS
specifications into runtime specific system calls.

QoSockets and the OS interface automate collection of application level QoS management
information. These modules spy the interactions between applications and the underlying envi-
ronment and reports to QoS MIBs statistics on the QoS delivered to applications. Examples of
statistics collected are the number of messages delivered to a particular application connection
and the average transmission delay of the messages delivered.

QoSockets applications adapt to QoS variations by assigning exception handlers to QoS
violation events. QoSockets automatically analyzes QoS delivery and calls exception handlers
when application defined violations are detected. A video application, for example, may use
QoS constraints to specify the maximum acceptable jitter and an exception handler to adjust
the playout time of frames when a violation occurs. Applications can further manage QoS by
accessing QoS MIB values. QoSockets also offers a set of operators that provide real time lc-
cal QoS MIB access to applications.

QoS MIBs and QoS SNMP agents provide the means to integrate application level Qo3
management into standard network management frameworks. Underlying system managers,
for example, interact with QoS SNMP agents to monitor and analyze the delivery of QoS to
applications, detect potential symptoms of QoS degradation, and control QoS violations.

3 How Should Applications Interact with QoS Delivery Mechanisms?

This section presents QoSockets, a software layer that mitigates interactions between appli-
cations and QoS-supportive networks. A QoS-supportive network [deprycker93] is a network
that assures delivery of QoS metrics, in contrast to non QoS-supportive networks [comer91]
that offer no QoS delivery guarantees. QoSockets extends sockets [stevens90] to support ap-
plication interactions with QoS delivery mechanisms. Sockets creates a unified mechanism that
permits applications and non QoS-supportive networks to vary greatly in design, but still be
able to communicate through a single API. QoSockets aims at extending this concept to the
domain of QoS supportive networks, by adding to sockets the ability to negotiate, adapt, and
control QoS delivery.

There are several ways in which QoS-supportive networks may assure QoS delivery. Some
approaches are discussed in what follows, while still others can emerge in the future.

Model 1. At one extreme, some networks [topolcic90, braden95] require that application
end nodes explicitly instruct them about their QoS delivery needs and these networks
configure end-end resources accordingly.

Model 2. At the other extreme, applications need not to negotiate QoS constraints. Net-
works [stevens90] monitor the execution of applications and adapt resource allocations
dynamucally, based on application behaviors. This approach is similar to OS memory
management systems in which the OS monitors application memory accesses and
adapts the allocation of physical memory pages accordingly. For example, TCP flow
control mechanism [comer91] adapts buffer allocation for a communication according
to application behavior.
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Model 3. In an intermediate approach, networks [deprycker93] are configured to provide
multiple virtual stacks and respective connectivities, each guaranteeing different QoS.
End node management mechanisms select the appropriate stack over which a commu-
nication stream should be routed. This design can be seen as an extension of the ATM
adaptation layer model [deprycker93] that offers four parameterized classes of services.
QoSockets aims at accommodating all of the QoS assurance models deployed by networks
through a single mechanism for QoS assurance. The decision of which approach to use for an
application or how to configure networks is beyond the scope of QoSockets and of this paper.
QoSockets delegates to designers of transports and networks the choice of how QoS will be
provided, and defers to application developers the selection of how QoS will be negotiated
with the underlying environment. This section discusses how QoSockets supports all these ap-
proaches and bridge the gap between the QoS assurance model selected by applications and
the model deployed by networks.

% Definition of a QoS Metric
typedef struct qos_metric |

int value /* Threshold for Qo8 metric %/

int window; /* How often the QoS metric must be measured */

int coercion; /* If the threshold in value can be coerced at binding time */
} qos_met_ty;

% Definition of Universal QoS Metrics in QoSockets

typedef struct qos
gos_met_ty loss; /* Loss cannot be higher than 10-loss.value */
gos_met_ty permit; /* A value higher than 0 in permt.value indicates that */

/* permutation is tolerated */
gos_met_ty average_delay: /* End-end delay measured in ms must be */
/* lower than average_delay.value */

qos_met_ty jitter; /* Jitter (inter-message arrival delay) measured in ms %/
/* must be lower than jitter.value */

qos_met_ty min_rate; /* Transmission rate measured in messages/s must be */
/* higher than min_rate.value */

qos_met_ty rale; /* Average transmission rate in messages/s must be */
/* lower than rare.value */

int size; /* Maximum message size */

int multiple; /* Port supports a maximum of multiple connections */

int combined; /* QoS metrics measure QoS on all multiple connections */

/* combined */
} qos_ty;

il

Definition 3.1: Specification of QoS Metrics in QUAL

In QoSockets, applications have the option to specify QoS metrics for a communication, as
proposed in Model 1. Definition 4.1 specifies the gos_ty data type that enables the declaration
of universal QoS metrics. Universal metrics are metrics that most applications need to negoti-
ate and are used by the QoSockets runtime to allocate communicating and processing re-
sources. For each metric, applications can specify a threshold value (field value), time intervals
over which the metric should be measured (field window), and if the threshold can be coerced
(field coercion) during binding time. QoSockets coercion mechanism will be discussed in Sec-
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tion 4. QoSockets applications specify QoS constraints on a per port basis by associating a
different gos_ty object with each port. For example, values 3 and 5 in the fields value and win-
dow of average_delay for a port p indicates that the average_delay QoS metric (formally de-
fined in [florissi95]) cannot assume a value higher than 3 over intervals of 5 s on communica-
tions over p. QoSockets runtime uses size, when specified, to optimize resource allocation.
Reference [florissi95] contains a detalied description of the functions supported by QoSockets
to allocate ports, bind them, establish connections, and communicate data. They are ommited
here due to space constraints.

QoSockets supports QoS negotiation on a multicast scenario. In QoSockets, ports support
a maximum of multiple concurrent connections at a time. A positive value in combined indi-
cates that the min_rate and rate QoS constraints refer to the rate of all the connections com-
bined. When combined is not specified, each one of the multiple connections supports the
min_rate and rate specified.

QoSockets applications can omit QoS specification for a communication, as proposed in
Model 2. A NULL value for a gos_ty object field indicates that the application chooses not to
specify that particular constraint and let up to the runtime to provide it. Thus, a NULL value
for all gos_ty object fields indicate that an application chose QoS assurance Model 2.

QoSockets runtime bridges the gap between the QoS assurance model chosen by applica-
tions and the model deployed by a network. At one extreme, the network might require explicit
specification of QoS constraints (Model 1) and applications might choose not to specify them
(Model 2). In this case, QoSockets runtime firstly estimates an initial set of QoS constraints
and request network services on behalf of applications. In addition, it automatically monitors
the execution of applications and dynamically re-negotiates QoS with the network aiming at
matching application behaviors with QoS delivery. Section 7 discusses how data collected
during monitoring permits clever network management algorithms to adjust QoS delivery ac-
cording to observed QoS metrics. At the other extreme, applications might choose Model |
and networks might follow Model 2. In this case, the QoSockets runtime lets networks dy-
namically adapt to application behavior.

QoSockets shelters from application developers heterogeneity at the transport layer ancl
below. QoSockets provides a single API for QoS specification that is independent of underly-
ing transport mechanism specifics. QoSockets runtime translates abstract QoS specifications
into transport specific service requests. Consider, for example, an application that chooses
Model 1. If the underlying environment uses ST-II (Model 1), QoSockets runtime must map
abstract QoS constraints in terms of rate and message size into specific ST-II buffer size pa-
rameters. If the underlying environment uses ATM adaptation layer (Model 3), QoSockets
runtime maps application constraints into a service request for the class that best approximates
application needs. Thus, it has significant advantages in relation to frameworks that are special-
ized for certain application domains [cohen81, cole81, keller93], and to approaches that ex-
pose programmers directly to transport layer and session layer service interfaces [topolcic90,
anderson90]. Thus, QoSockets hides from applications the complexity of the underlying net-
work services, including heterogeneity at the QoS assurance model.
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4 How Should Peer Applications Negotiate QoS?

This section discusses QoSockets approach to support QoS negotiation between peer appli-
cations. Existing transport and application level protocols greatly differ on their mechanisms
for this type of negotiation. In one paradigm [braden95, deprycker93, keller93], protocols
make no provision for QoS negotiation between peer applications. One of the peer applications
define QoS metrics for a communication and the other peer must comply with them. Applica-
tions must use out of band communications if they need to agree on the QoS of a connection
prior to its establishment. Another paradigm [vogel94] suggests that applications receiving
data publish a set of QoS classes that they can comply with and allow connecting applications
to select one of the classes offered. Heterogeneity of QoS negotiation mechanisms may make
code portability difficult because application code becomes tailored to meet the specifics of the
protocols used.

The binding mechanism in QoSockets integrates QoS negotiation between peer applications
into the sockets mechanism, while supporting existing negotiation paradigms. QoSockets ab-
stracts QoS negotiation protocols as traditional language level type checking mechanisms. QoS
constraints are part of the type of a port and QoS negotiation becomes part of assuring that the
type of a port is not violated when ports are bound. Refecence [florissi95] presents QoSockets
binding mechanism in greater detail.

% Definition of Jitter Threshold. For a rate of 30 frames/s, jitter should not exceed 1/30s.
define THOLD 1/30
% Definition of a QoS Metric function
double video_jitter{qos_ppp *profile)
[
double j = 0;
for (int i = 0; i < profile->size; ++i) [
/* Check if jitter exceeded threshold. Assume there is no permutation or loss. */
ifl((profile->signatures[i+1].ta - profile->signatures[i].ta) * 1000 )> THOLD)
++j;

YO Po sl b R I B~

_—
=]

11 /

12 return j;

13. }

14. main()

15 f

16.

17. /* Trigger monitoring of video_jitter for inport rp */
18. qos_monitor(video_jitter, 5, 1, rp);

19.

20, )

Example 4.1: Monitoring Application Customized QoS Metrics in QoSockets

QoSockets supports several designs for QoS negotiation between peer applications.
QoSockets binding mechanism guarantees that only ports with compatible QoS requirements
are connected. Two ports have compatible QoS measures if QoSockets can coarse all the QoS
requirements specified for the inport into the QoS requirements specified for the binding out-
port, or vice versa. For all constraints but min_rate, a coercion is possible when the QoSockets
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can upgrade a less restrictive constraint until it matches a more restrictive one. For instance,
QoSockets can upgrade an inport transmission delay of 4 ms into an outport transmission delay
of 3 ms. min_rate cannot be coerced when an outport cannot deliver the minimum rate re-
quired by an inport. For example, an outport whose min_rate is 10 messages/s cannot te
bound to an inport whose min_rate is 15 messages/s. Coercion of a QoS constraint is avoided
when the field coercion assumes a negative value. In this case, the respective QoS constraint of
an inport has to match exactly the constraint of a connecting outport, or they are not consicl-
ered to be compatible. If only one application chooses Model 1, QoSockets runtime assumes
the other side is able to comply with the constraints and allocates resources according to the
QoS specified by one end. Ports that do not specify QoS constraints automatically have com-
patible QoS type.

QoSockets mechanism also hides from application developers heterogeneity on connection
establishment protocols. Differences in QoS negotiation mechanisms employed by protocols
lead to differences in connection establishment models. Some protocols [deprycker93] employ
a synchronous model in which connection establishment requests block until the network and
peer applications confirm that the QoS requested can be delivered. Other proto-
cols [topolcic90] deploy an asynchronous model in which the underlying environment syn-
chronously notify applications when negotiation terminates. Refecence [florissi95] discusses
how QoSockets connection establishment protocol accommodates in a single protocol syn-
chronous and asynchronous models.

% Definition of a Message Identifier
typedef struct mi {

char *port_name; /* Name of the port that originated the message */

int index; /* Index of the message in stream based on sending time */
] qos_mi;

% Definition of a Performance Signature

typedef struct pps {
qos_mi mi; /* Message identifier */
double’ ts; /* Message sending time measured in ms */
double 1a; /* Message arriving time measured in ms */
double ts; /* Message processing time measured in ms */
int size; /* Message size measured in number of bytes */

| qos_pps:

% Definition of a Performance Profile

typedef struct ppp [
int size; /* Number of performance signatures in profile */
qos_pps* signatures(|;  /* Array of performance signatures */

| qos_ppp:

Definition 4.1: Type Definition of Performance Profile in QoSockets

? In QoSockets, variables that indicate time are of type double because they store values of the sysUpTime objec:
[stallings93] maintained by the local management system. This object measures the number of milliseconds since the
system was last initialized.
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5 Automating Monitoring of Application Customized Metrics

QoSockets enables applications to program the QoS metrics that must be observed on their
communications. Example 6.1 illustrates how an application receiving data can trigger monitor-
ing of customized QoS metrics on the communication s{ream for its inport rp. Lines are num-
bered to ease referencing the code. It is assumed that rp is receiving video frames and that the
application needs to know how many times the jitter was higher than a certain threshold. Lines
3 through 13 illustrate the definition of a QoS metric function in QoSockets. A QoS metric
function is any function that takes a performance profile vector as input and returns a value of
type float. The performance profile of a communication over a period of time  consists of the
performance signature of all messages communicated during r. A performance signature of a
message indicates its size and its sending, arriving, and processing times. Definition 6.1 shows
the type definition of a performance profile vector. The application calls gos_monitor (line 18)
to indicate that QoSockets must monitor the QoS metric video_jitter over time intervals of 5 s
on the communication stream arriving on rp. The number / passed as third argument indicates
that only one port is involved in the monitoring. QoSockets runtime automatically monitors the
communication on rp and creates a performance profile for it. In addition, it calls the function
video_jitter every time interval of S5s passing the performance profile for the last 5 s as argu-
ment to the function. The value returned by video_jitter is stored into QoS MIB entries. Sec-
tion 6 discusses the architecture of QoS MIBs and shows where these values are stored. Sec-
tion 7 illustrates how applications can retrieve QoS MIB values.

QoSockets enables the monitoring of QoS metrics that involve more than one communica-
tion stream. Consider, for example, a video conferencing application that must monitor how
synchronized the video and audio streams are. This application passes 2 as the third argument
to a gos_monitor call and the descriptors for the video and audio ports as forth and fifth argu-
ments, respectively. QoSockets runtime will generate a performance profile that captures
communication on both, the audio and the video ports. The application uses port_name in the
mi field to distinguish signatures of the video communication from signatures of the audio
communication, when necessary.

6 QoS MIB Architecture

A central challenge in the design of QoS MIBs is that they are programmable. QoSockets
application developers can dynamically customize the QoS metrics that must be collected in
QoS MIBs, as discussed in Section 5. This contrasts with current MIB designs where the in-
strumentation is rigidly determined at MIB design time and cannot be changed or adapted.
Programmable MIBs are needed since QoS metrics vary according to application semantics.

Another challenge is that QoSockets applications and SNMP managers might need to ac-
cess QoS MIB information simultaneously to manage QoS delivery. Thus, QoS MIB design
must include a mechanism to coordinate management activities between them. At on end, ap-
plications manage QoS to adapt and recover gracefully from QoS degradations. At the other
end, SNMP managers manage QoS to improve the performance of the underlying environment
and to reduce QoS violation occurrences. Both activities can occur concurrently as long as
they do not disturb eachother’s effects. To address this issue, QoS MIBs contain coordination
information, as discussed in the following subsections. When presenting a MIB object, the in-
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formation stored in a group is classified in the following categories:
® identification: used to describe a particular instance of an object
® configuration: used to identify how resources were allocated for the service being
monitored
» operational behavior statistics: used to analyze the actual performance delivered
® coordination: used to synchronize management actions between applications ard
SNMP managers '
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Figure 6.1: Overview of the Design of QoS MIBs

Figure 6.1 illustrates the overall QoS MIB structure that addresses the challenges above.
QoS MIB data belongs to one of the following groups:

e Programmable (qProg’, for short): consists of the table qProgTable which has one row
of type gProgEntry for each application-programmed QoS metric being currently
measured. Thus, entries are added to or removed from this group as applications trig-
ger or cancel monitoring of new QoS metrics for a communication.

e  Qutport (qOut): consists of the table qOutTable which has one row of type qOutEntry
for each QoSockets outport. Each entry indicates the value of the universal QoS met-
rics measured for an outport. Since, universal QoS metrics cannot be programmed,
there is no need to create entries dynamically to store these metrics. Only one entry is
created per outport, where each columnar object in the entry indicates the value of a
metric measured on the outport side of a communication.

e Inport (qIn): is the equivalent of qOut for QoSockets inports. A gln table extends a
qOut entry to include the value of the umiversal QoS metrics that are measured on the
inport side of a communication.

® Application (qApp for short): consists of the table gAppTable that contains one entry
of type qAppEntry for each QoSockets application. Each entry indicates general infor-
mation on the activities of an application. This group can be seen as an extension of the
Network Service Monitoring MIB [freed93] (NSM MIB) to include information about
application QoS.

* The name of QoS MIB objects starts with either gApp, qOut, gIn, or qProg depending on whether the object being
named belongs to the application group, outport group, inport group, or programmable group, respectively. The prefix q
indicates that they are related to QoS.
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The following sections discuss each of these groups in greater detail and give examples of
how their information can be used by applications and SNMP managers to manage QoS deliv-

ery.

Ohbject Svntax Deseription

01 [ qgProgMet DisplayString Name of the QoS metric programmed by an application. |

02 | gProgWindow INTEGER The size of the window over which the metric is meas- |
ured |

03 | gProgLstTime TimeStamp' Last time when the metric was measured |

04 | gProgVal INTEGER The value of the QoS metric last time it was measured |

05 | gProgInOut “in" | “‘out” If the metric is being measured on the inport or in the
outport side of the communication

06 | gProginAddr INTEGER Transport layer address of the inport of the communica- |
tion in which the metric is being measured i

07 | gProgOutAddr INTEGER Transport layer addresses of the outport of the commu-
nication in which the metric is being measured

Table 6.1: Example of Programmable Group Objects

6.1 The Programmable Group

The goal of this group is to store QoS metrics programmed by applications. Table 7.1 illus-
trates some of the objects in this group. It is important to notice that based on the group ob-
jects 6 and 7, for example, QoS managers can trace the communication over which the QoS
metric is being measured.

6.2 The Outport Group

Information in this group indicates the QoS requirements of outport connections, when
specified by applications, and the values of QoS metrics measured during a communication. In
addition, it includes information on connection problems and recovery performance. Identifica-
tion objects store the local and remote IP addresses of the communicating machines, identifi-
cation of the applications involved, and the transport layer port numbers of the connection. If a
connection is currently presenting problems, managers use such objects to identify the applica-
tions involved and properly notify them. Similarly, if an application terminates abruptly, man-
agers can look in the outport MIB for its connections and gracefully terminate them.

Table 7.2 shows some of the configuration objects present in the outport group. The qOut-
Loss, qOutPermut, qOutMinRate, gOutMaxRate, qOutPeak, qOutDelay, qOutJitter,
qOutRecTime, and qOutMsgSize objects indicate the QoS metrics specified by applications, in
case applications choose to specify them, or automatically assigned by QoSocekts runtime,
otherwise. Managers use such objects to analyze the allocation of services to connections.
Consider, for example, an application that receives radiology images and uses most of the
communication resources on a machine. If other applications are unable to open connections,
managers use qOutMaxRate, qOutPeak, and qOutMsgSize object instances to calculate how
buffering resources are currently distributed. Managers will then realize that the amount of

' TimeStamp values store the value of the sysUpTime object maintained by the local management system at the time when
the event being monitored last occurred. If the last occurrence of the event was prior to the last initialization of the local
system, than the respective TimeStamp object contains a zero value.
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bandwidth negotiated by the radiology application corresponds to a great percentage of the
resources the machine has available. A manager might then force the radiology application to
downgrade the QoS negotiated making possible for other applications to communicate concur-

rently.

01 | qOutProtocol OBIJECT IDENTI- | Identification of the protocol being used for this connection

|
| FIER |
1 02 | qOutLoss INTEGER Probabilistic message loss rate (10(-qOutLoss), |
103 | gOutPermut “ves” | “no” Indication of tolerance to permutation |
| 04 qOutMinRate INTEGER Minimum average number of messages per second
05 | gOutMaxRate INTEGER Maximum average number of messages per second |
qOutPeak INTEGER Maximum peak number of messages per second |
07 | gOutDelay INTEGER Maximum propagation delay
| 08 | gOutlitter INTEGER Maximum inter message delay
|09 | gOutRecTime INTEGER Maximum time tolerated for recovery
| 11 | gOutMsgSize INTEGER Maximum message size in number of bytes
' 12 | qOutManager OBIJECT. Entity currently controlling communication QoS violations
IDENTIFIER

Table 6.2: Example of Configuration Outport Group Objects

The qOutManager object indicates which entity is responsible for controlling communica-
tion QoS violations, enabling synchronization between application and SNMP management
activities. Consider, for example, the case where an application sending video messages is ex-
periencing a loss rate higher than expected. The video images being transmitted are of very
high density and the intermediate nodes in the transmission path drop messages when there is
not enough buffering space. In such case, the application may choose to reduce the loss rate by
transmitting lower density images. (OutManager will indicate that the application is controlling
the loss rate violation, inhibiting other managers from initiating any control action such as
finding alternative paths for the communication.

Object Description
01 | gOutCnnFail Counter32 Total number of connection failures
02 | qOutAccRecTime INTEGER Total amount of time spent in recovering
03 | qOutActTime TimeStamp Time when the traffic became active
04 | qOutMsgSent Counter32 Total number of messages sent
05 | gOutVolume Counter32 { Total volume of data sent in kilobytes i

Table 6.3: Example of Operational Behavior Statistics Outport Group Objects

Table 7.3 illustrates operational behavior outport group objects. Objects such as
qOutActTime, qOutMsgSent, and qOutVolume are used by domain managers to analyze how
much of the resources allocated to an application are actually being used. A manager might
force an application to reduce a cornmunication allocation for a 30 frame/s video transmission
to a 15 frame/s allocation, if the application has not sent more than 15 frames/s over a certain
period of time. By detecting under-utilization, managers can re-distribute resources more effi-
ciently.
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6.3 The Inport Group

Table 7.4 illustrates some of for inport communications that enable the analysis of the
transport level QoS actually delivered to an application. Thus, managers can directly compare
the QoS being delivered with the QoS requested to service providers and trace the source of
service degradations. For example, the display of video frames at a rate higher than human eyes
can perceive (e.g., a display rate higher than 30 frames/s) may have been caused by violations
on the maximum transmission and inter message delay. Such unexpected delays cause mes-
sages to arrive late and force the application processing them to consume messages in a rate
higher thah it should. The mean transmission delay of messages that arrive in sequence can be
calculated by dividing gInAccDelay by gInMsgCounter. Similarly, the mean jitter can be calcu-
lated by dividing gInAcclitter by qInMsgCounter. At the same time, applications use such ob-
jects to adjust their performance according to the services provided, as discussed in Section 1.
SNMP managers can also analyze the bandwidth distribution among connections by using in-
port group objects. The mean bandwidth usage for messages in sequence can be calculated by
dividing qInMsgVolume by the difference between gInLstMsg and gInActTime. Domain man-
agers can then conirol the distribution of resources based on such statistics.

6.4 The Aﬁpllca’tion Group

The goal of this group is to store operational behavior statistics on the response of the pro-
tocol stack to QoS demanding connection establishment requests. Table 5.1 illustrates some of
the objects in the application group.

Managers use application group objects to detect cases where application performance deg-
radation is caused by poor transport layer resource allocation mechanisms. Consider, for ex-
ample, an application that samples an audio device, detects silence periods, and transmits non
silence samples. If such application is not scheduled during non silence periods, it will fail to
capture pieces of the speech. Speech data will also be lost if the connection is lost and the ap-
plication ha$ subsequent connection establishments rejected. A manager uses gAppLstCnnFail
to detect if connections were rejected recently. If that is not the case, the manager might de-
cide to change the OS scheduling algorithm enabling the application to sample the device more
often. If contiections cannot be established, the manager might decide to re-distribute commu-
nication resources.

- oA

01 |qgInActTime !!!meStam;: Time when the traffic became active, i.e., the first message was

. received

02 | qlaLstMsg TimeStamp Time when the last message was received

03 | qinMsgCounter _ | Counter32 Total number of messages that arrived in sequence
04 |4 Volume | Counter32 Total volume of data received in kilobytes |

05 | qinAccDelay Counter32 Total sum of the propagation delay of all messages that arrived in |
sequence .
06 | glnAcclitter Counter32 Total sum of the inter message delay between any two consecutive |

messages that arrived in sequence '

Table 6.4: Example of Operational Behavior Statistics Objects for Messages that Arrived in
Sequence
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Ohject Syntax Description
01 qAppLstCnnFail TimeStamp Time when the last connection to a QoS demanding in-
port was rejected
02 | qAppManager DisplayString Entity currently managing QoS violations

Table 6.5: Example of Application Group Objects

The application group includes control configuration objects to coordinate managemer:t
between applications and SNMP managers. For example, gAppManager indicates when a do-
main manager is changing the OS scheduling algorithm to allocate more processing resources
to an application. An entity can only control a violation if another entity is not already doing
s0. Such constraint avoids chaotic situations where several entities are trying to solve the same
problem without interacting.

1. main()

2./

I

4. /* Retrieve the number of messages received on rp */

5. msgRecv =

6. gos_snmp_get(ginAccMsgRecv.1234.128.59.25.32.4321.128.59.25.26);
740 e

8.

Example 6.1: Real Time QoS MIB Access Using SNMP Conventions

7 How Should Applications Access QoS MIB Values?

QoSockets design identifies three major challenges in supporting QoS MIB access by appli-
cations. The following sections discusses each one of the challenges and explain how
QoSockets addresses them.

7.1 How Can Applications Access QoS MIB Data in Real Time?

Applications need to adapt to QoS delivery in real time. Thus, QoS MIB access to monitor
and control QoS must be performed efficiently. In the SNMP framework, SNMP agents miti-
gate application accesses to MIB data. Once an application sends a request to an SNMP agent,
there are no guarantees on when the request will be served. Thus, real time access is prohibi-
tive in this scenario.

In order to provide real time QoS MIB access, QoSockets includes functions that enable
applications to access the QoS MIB instrumentation directly, by passing SNMP agents. From
the application point of view, these functions have the same semantics as SNMP get [rose93,
stallings93] operations. However, these function offer real time response since they do no:
contend for a SNMP agent. Example 8.1 illustrates the use of the QoSockets functior
qos_snmp_get to retrieve the number of messages that arrived for inport rp from a given out-
port. gInAccMsgRecv is the name of the QoS MIB object that stores this type of information
According to the design of QoS MIB and SNMP standards, the instance of glnAccMsgRecv
that stores information on rp is identified by the transport layer port address of rp (1234 in the
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example), by the internet address of the machine where rp’s application is running
(128.59.2532), by the transport layer port address of the outport connected to 7p (4321), and
the internet address where the application communicating with rp is running (12859.2526).
How applications find out the information needed to identify an object instance is outside the
scope of this example. The example only illustrates that SNMP conventions can be used to ac-
cess QoS MIB data in real time. The next section illustrates how QoSockets port descriptors,
such as rp itself, can be used to identify QoS MIB instances. Thus, one possible way of finding
out the transport layer address associated with a QoSockets port, for instance, would be to use
the operators described below.

7.2 Which QoS MIB Objects Store Information on a QoSockets Port?

There is gap between QoSockets abstractions and the abstractions that must be used in
SNMP to identify QoS MIB objects associated with QoSockets entities. In QoSockets, a port
descriptor identifies a communication stream. In SNMP, however, lower level information,
such as transport layer addresses, are used to identify QoS MIB objects associated with a
QoSockets port. This gap makes it very difficult for applications to identify the objects that
store information on a QoSockets port. For example, applications might need to find out the
transport address of a port only to locate the QoS MIB objects associated with it.

h

/* Retrieve the sum in ms of transmission delays of all messages that arrived for rp */
accDelay =
qos_inpori_get(rp, ginAccDelay);

Go N O b &t~

—

Example 7.2: Efficient QoS MIB Access Using QoSockets Abstractions

QoSockets offers a set of functions that automatically locate the QoS MIB entries associ-
ated with QoSockets ports. Example 8.2 illustrates the use of gos_inport_get to retrieve the
sum in milliseconds of the transmission delay of all messages that arrived for rp. glnAccDelay
identifies the object that stores this type of information. QoSockets runtime uses 7p (0 auto-
matically locate the instance of ginAccDelay associated with it and to retrieve its value. Simi-
larly, QoSockets function gos_outport_get automatically locates QoS MIB objects associated
with outports.

7.3 How Can Applications Be Notified of QoS Violations?

In order to detect QoS violations, applications monitor QoS delivery by constantly access-
ing QoS MIB data. This approach can highly disturb the execution flow of applications, spe-
cially if QoS violations are infrequent and traffic increases. Application code must be designed
to periodically interrupt the flow of execution and jump into QoS monitoring mode. This con-
text switching increases code complexity and might affect performance.

QoSockets supports automatic QoS violation monitoring. Applications inform QoSockets
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runtime which conditions identify a QoS violation and the runtime performs the monitoring.
Only when a violation is detected, the runtime notifies applications and the execution flow is
interrupted to treat the abnormal event. QoSockets runtime notifies violations by sending noti-
fication messages to application defined ports. Example 8.3 illustrates the use of the function
qos_violation_monitor to trigger handling violations of the QoS metric video_jirter defined in
Example 6.1. As a result of the call, QoSockets runtime will automatically create a perform-
ance profile for inport rp, will call the QoS metric function sync every interval of Ss, and send
a notification message to inport handler every time sync returns a value lower than 2 or higher
than 4.

main()
{

/* Trigger signaling of violations of the QoS metric sync measured for rp. */
/* QoS metric sync must be measured every interval of 5s. */

/* Notification messages must be sent to inport handler whenever */

/* sync evaluates to a value lower than 2 or higher than 4 */
qos_violation_monitor(rp, handler, sync, 5, 2, 4);

MO ND AW~

=
-—

Example 7.3: QoS Violation Signaling in QoSockets

8 Challenges in Instrumenting QoS MIB

QoSockets architecture for monitoring and collecting information on QoS delivery aimed at
fulfilling the following criterias:

e Monitoring and collection should incur minimal runtime overhead to preserve real time
properties of QoS demanding activities. Data collection and access should not disturb
the normal execution flow of applications. This aims at preserving the same behavicr
for an application, regardless of the underlying system architecture and of whether Qo3
is monitored or not.

® The information collected should be available concurrently to the application being
monitored and to other applications involved in managing QoS delivery.

QoSockets adopted a shared memory based design that fulfills the criterias described
above, as illustrated in Figure 8.1. The super imposed squares represent threads of execution
of QoSockets applications. The cubes represent portions of shared memory, one for each QoS
MIB group. The rectangular name tags indicate the QoS MIB group stored in a shared mem-
ory fragment, where the names qApp, qIn and qOut identify, respectively, the application, the
inport, and the outport groups. The programmable group is omitted for simplicity, since data
collection in this group is similar to the methods described for the inport and outport groups.
Inside a thread of execution, the rounded rectangles represent classes of activities a thread can
execute, such as initialization activities. The curved arrows indicate the execution flow of a
thread shifting from one class of activities to another. The straight narrow arrows indicate the
actions that a certain class of activities executes on the shared memory blocks.
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Figure 8.1: QoSockets Shared Memory Design for QoS MIB Data Collection

Memory allocation design in QoSockets is based on a general characterization of the exe-
cution flow of real time multimedia applications. The general characterization used classifies
activities of such applications in three main groups:

e Initialization: includes start up activities, such as processing of initial arguments passed

to applications.

e Negotiation: includes allocation of resources for engaging real time activities, such as
establishment of QoS demanding connections and allocation of processing resources
with the underlying Operating System (OS).

e Real time loop: involves the actual real time processing and transmission of data, such
as sampling and sending of video frames.

Real time applications execute the real time loop until a task is completed or new QoS con-
straints are desired. In the later case, applications return to the negotiation phase, request new
QoS, and engage the real time loop again.

To preserve real time properties of QoS activities, blocking operations are only performed
when applications are out of the real time loop, either in the initialization or in the negotiation
phase. The only blocking activity performed for QoS monitoring is the allocation of entries in
the shared memory space that does not occur in the real time loop phase. Allocation of mem-
ory is blocking because an inter process synchronization mechanism must be used to coordi-
nate entry allocation among QoSockets applications. Inter process synchronization can cause
unpredictable delays and therefore would interfere in the execution flow of real time loops.

In QoSockets, QoS MIB updates do not affect the execution flow of real time acuvities.
Shared memory updates do not require any synchronization among applications or between
applications and QoS MIB SNMP agents. This is because QoS MIBs have no objects that can
be written by more than one entity. Each application updates only specific fields of its own
QoS MIB entries and these fields that can only be read by others. Similarly, QoS MIB SNMP
agents have permission to write only in objects that cannot be written by applications.
QoSockets allows, however, objects to be read or written concurrently. Thus, QoS MIB up-
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dates in QoSockets have bounded computational cost, that is, the cost of a write operation in a
shared memory position.

In QoSockets, QoS MIB data can be accessed concurrently by the QoSockets applications
running on a system as well as by QoS SNMP agents that provide QoS MIB access to external
managers. This is because QoS MIB data is stored in shared memory areas that are inherently
accessible by all applications running on a system. However, shared memories are not robust o
system failures. It is the responsibility of the QoS MIB SNMP agent to make backups of QcS
MIB data and to garbage collect entries.

The QoSockets design for QoS MIB data collection is particularly suitable for multi-
processor architectures. In such architectures, shared memory blocks are also visible to the
applications running in all processors. Because QoS MIB updates do not require synchroniza-
tion mechanisms, applications can execute in real time simultaneously in distinct processors
without interfering with each other for QoS monitoring. In addition, a processor can be dedi-
cated only for the QoS MIB SNMP agent, in case the traffic of SNMP requests is very high.

9 Conclusions

This paper presents a software development environment for managing the Quality of
Service (QoS) delivered to applications: QoS Management Environment (QoSME). In
QoSME, applications interact with the underlying environment through QoSockets, an exten-
sion of the sockets mechanism that allows applications to negotiate, adapt, and control QoS
delivery. QoSME automatically monitors QoS delivery and stores information collected during
monitoring into QoS Management Information Basis (QoS MIBs). A Simple Network Man-
agement Protocol (SNMP) agent embedded in QoSME provides QoS MIB access to SNMP
managers and applications. QoSME applications can also access QoS MIB through QoSockeis
functions.

QoSockets provides a uniform Application Program Interface (API) to support interactions
between applications and the network QoS assurance mechanisms. QoSdckets supports several
QoS negotiation models, ranging from explicit negotiation designs to fully automated ones. In
the explicit negotiation model, applications inform the network about their QoS constraints. In
the fully automated model, applications specify no QoS constraints while the network dynami-
cally monitors application execution and adjust QoS delivery to match application behavicr
patterns.

QoS MIB instrumentation is completely automated. QoSockets runtime monitors QoS de-
livery and collects into QoS MIBs QoS metrics on communications. Applications can custom-
ize the QoS metrics measured dynamically. During execution, applications can define new
metrics that must be monitored and instruct the runtime to monitor them. Applications can also
define QoS violations and request QoSME to automatically signal when a violation occurs.

QoSME enables networks to monitor application needs and to incorporate this monitoring
data into their resource management mechanism to support end-end QoS delivery. QoS MIB
discloses to network resource managers information on the QoS needed by and delivered to
applications. Thus, underlying system managers can adjust their resource allocation mechanism
to best accommodate application needs.
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A first prototype of the architecture proposed has been developed and released’ by the DCC
Lab. The first prototype runs on SunOS 4.3 and Solaris and supports communication on top of
ATM, ST-II, TCP, UDP, and Unix local protocols.
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