142 Simpésio Brasileiro de Redes de Computadores

133

Distributed Object-Based Continuous Media

Applications*

Carlos A. G. Ferraz

Departamento de Informatica
Universidade Federal de Pernambuco
Caixa Postal 7851

90732-970 Recife, PE, Brazil
F-mail: cagf@di.ufpe.br

Resumo

Este artigo descreve uma abordagem para o desenvolvimento de aplicacoes de
midias continuas baseadas em objetos e distribuidas, considerando o suporte a
midias continuas e reuso de software. A abordagem é baseada no modelo ODP, que
é baseado em objetos. Os pontos de maior interesse envolvidos no projeto e con-
strugao de aplicagoes de midias continuas distribuidas sio a modelagem de midias
continuas, o controle de taxas e a transmissao de midias deste tipo. O modelo de
estruturacao das aplicagoes é discutido, e alguns resultados do desempenho de uma
aplicagao desenvolvida usando a abordagem proposta sio apresentados, mostrando
que o modelo é adequado.

Abstract

This article describes an approach for the development of distributed object-
based continuous media applications, considering support for continuous media and
software reuse. The approach is based on the model for open distributed processing
(ODP), which is object-based. The major issues involved in the design and construc-
tion of distributed continuous media applications are the modelling of continuous
media, rate control and continuous media transmission. The model for structur-
ing the applications is discussed, and some performance results of an application
developed using the proposed approach are presented, showing the adequacy of it.

Introduction

Ferrari et al [T] define continuous media as

“... to mean digital data that is generated/consumed isochronously at some
granularity (e.g., motion video displayed at 30 frames per second).”

*This work was financially supported by CAPES, Brazil. Grant no. 2577/91-8.

434 SBRC 96

The term ‘continuous media’ is particularly associated with video and audio.

This article discusses the development of distributed continuous media applications
based on objects, including the support for continuous media and software reuse. The
motivation is that the use of continuos media in various applications (e.g. teleconferencing)
has increased at a high rate, and methodologies and technologies need to be developed
for the construction and support of such applications, which are usually distributed.

According to Steinmetz in [23],

“a multimedia system is characterized by the integrated computer-controlled
generation, manipulation, presentation, storage, and communication of inde-
pendent discrete and continuous media.”

The nature of multimedia applications implies that several data streams have to be han-
dled in parallel [21].

A distributed approach to building continuous-media applications is important to deal
with aspects such as

e storage of information: the large quantities of data involved in audio or video appli-
cations demand efficient use of storage resources, often distributed across networks.
Thus, applications need to be capable of using data which are physically distributed:

e performance: the complex and possibly concurrent activities existing in the applica-
tions require a great deal of processing power which can be more efficiently achieved
through distributed processing, using multiple processors distributed over networks:

o multiple use: different users may share applications, possibly working collaborative-
ly, and applications may share services. Thus, applications should be structured to
use modules designed for general purposes or multiple use.

Concurrent activities sometimes need to synchronize, as for example in the presenta-
tion of annotations and continuous documents. Synchronization of continuous media (e.g.
voice and video) is not an easy task, especially when user manipulation of the presen-
tation is allowed. The design of continuous media applications has to take into account
the particular characteristics of the media involved, quality of service requirements and
interaction forms.

Support for application distribution has been developed, particularly in the form of
software platforms sitting in between operating systems and the application level. More-
over, developments in operating systems and hardware to support distribution and con-
tinuous media encourage the development of distributed continuous-media applications.

2 Open Distributed Processing

System models and programming support are necessary for the development of distributed
applications. Facilities have been developed to allow the construction of such applications,
i.e. technologies including tools and software platforms to support client/server applica-
tions. System-dependent applications are restricted by the number of platforms on which
they can run or with which they can exchange information. A solution to this is seen in
open platforms for the programming of applications. Open platforms hide the differences

142 Simposio Brasileiro de Redes de Computadores 435

between underlying systems and make application development easier. The applications
no longer need to call device- or system-dependent services.

There has been research in order to establish means for open distributed processing.
Le. to allow systems or applications to be distributed and to execute

e on machines from different vendors. and
e independently of operating systems.

The basic needs for distributed applications are support for communication, concur-
rency and synchronization. Applications can be built on top of distribution platforms.
which provide facilities — such as RPC for interprocess communication, threads for con-
currency, and event counters and sequencers for synchronization (see section 3) - capable
of decoupling application developers from operating system and network primitives. If
some facilities, such as thread support, are provided by the operating system, the platior-
m makes use of them; if not, they are built within the platform implementation. In either
case, the platform hides the detailed mechanisms from the applications [15].

Other important issues in the development of distributed applications are how the
components of an application know about each other’s existence and the specificatior of
components’ binding. Elements like the OMG'/ORB (Object Request Broker) insulate
clients from the mechanisms used to communicate with, activate, or store server objects
[19]. Applications can be built as a collection of server objects that specify interfaces for
communication and offer them to a broker or trader, and client objects that search in
the broker for interfaces (by type) that are said to provide the services they want to use.
These technologies are the basis of our work, and as such, are further discussed in this
article.

2.1 Object-Based Approach

Object-oriented (or object-based) technology comprises methods, tools, and frameworks
used to build software systems from objects; object orientation is also a possible way to
achieve such goals as extensibility and reusability.

Modelling a distributed system as a distributed collection of objects, that have state
and behavior and offer interfaces for interaction, appears both natural and appropriate.
In Figure 1, object B provides two possibly different interfaces and serves objects A and
C; object C is a client of B and offers an interface that provides service shared by objects
A and D; A and D are clients only.

The following concepts, identified and discussed in [22], confirm the appropriateness of
objects for use in distributed systems:

e All objects embody an abstraction.
e Objects provide services.

e Clients issue requests.

e Objects are encapsulated.

¢ Requests identify operations.

'Object Management Group.

436 . SBRC 96

—l interface

—&= [nvocation

Objects interact by invoking operations
grouped in interfaces provided by each other.

Figure 1: Object model.

e Requests can identify objects.

e New objects can be created.

e Operations can be generic.

e Objects can be classified in terms of their services.
e Objects can have a common implementation.

e Objects can share partial implementations.

Object orientation has been explored in the development and use of distributed op-
erating systems (e.g. Chorus [20]), intermediate architectures (e.g. CORBA [18, 19] and
ANSA [2]) and applications and environments, such as PREMO [10, 24], a presentation
environment for multimedia objects under development by ISO/IEC JTC1/5C24/WG6
[11].

2.2 Standardization Initiatives

Two major, cooperating, initiatives for the standardization of open distributed processing,
one by the International Standards Organization (ISO) and the other by the Object
Management Group (OMG), an industry consortium, are presented in the following.

2.2.1 ISO/ODP

The ISO’s Open Distributed Processing Reference Model (ODP-RM) [12] covers the many
aspects of the operation of a distributed system. The ODP architecture provides means

142 Simpédsio Brasileiro de Redes de Computadores 437

for consistency checking in the relationships between the human interface, the program-
ming interface and the OSI protocols. Within the architecture, support of distribution,
interworking, interoperability and portability can be integrated.

According to the ODP model, a system is considered from different wewpoints, which
reflect specific design concerns [13, 14]. There are five viewpoints considered. and these
are briefly defined as follows:

(a) Enterprise viewpoint: this is concerned with the business and management policies
and human (user) roles with respect to the systems and their environment;

(b) Information viewpoint: this is concerned with the description of information models.
i.e. information sources and sinks and the information flows between them:

(c) Computational viewpoint: here the concern is with the algorithms and data strue-
tures of the distributed system;

(d) Engineering viewpoint: in this viewpoint there is concern with the mechanisms and
transparencies that support distribution:

(e) Technology viewpoint: this is concerned with the components and links from which
the distributed system is constructed.

While the five viewpoints are relevant to the design of distributed systems, the com-
putational and engineering ones are more specifically associated with the use and con-
struction of these systems.

2.2.2 OMG/CORBA

One of the objectives of the OMG is the definition of an architecture for distributed
applications using object-oriented techniques. The architecture consists of four elements:

(a) the Object Request Broker (ORB), which is the object interconnection bus, or the
communications element, for handling the distribution of messages between appli-
cation objects;

(b) the Object Services, which extend the capabilities of the ORB, allowing the logiczl
modelling and physical storage of objects - the services include naming, persistence,
life-cycle management and concurrency control:

(¢) the Common Facilities, divided into two categories, called horizontal and vert:-
cal. The horizontal common facilities provide information management, systems
management, task management and user interface services. The vertical common
facilities are to be provided in many application domains (e.g. health and finance)
through class interfaces:

(d) the Application Objects, which are specific to end-user applications, built on top of
the ORB, the object services and common facilities.

The Common Object Request Broker Architecture (CORBA) initially described the
interface technology for the ORB portion of the reference model. CORBA 1.1 [18] de-
fined the Interface Definition Language (IDL) and the application programming interfaces
(APIs) to enable interaction between client- and server-objects within a specific imple-
mentation of an ORB. CORBA 2.0 deals with the interoperation of ORBs from differen:
vendors [19].

438 SBRC 96

3 ANSAware

ANSAware is an implementation of ANSA (Advanced Networked Systems Architecture),
an architecture for open distributed processing, that conforms with the ODP model. which
supports the design and construction of distributed applications, and is not constrained
by network structure, or heterogeneous hardware and operating systems [2]. The main
features of ANSAware are described as follows.

Services. The basic building block of ANSA is a service; and a service is provided at
an interface. A component or object purely described in terms of the way it provides or
uses services is called a computational object. A computational object may have several
interfaces, each offering the same or different services (c.f. Figure 1) — a service is a
collection of operations. Each instance of a service interface has a unique identifier called
an tnterface reference.

Services are divided into application services, which are specific to the task to be
performed by the system or application, and architectural services, which provide functions
for naming and finding services, access control and management within a distributed
system.

A trader registers service offers made by service providers and returns information
about the available services accessible to clients that request them. When a client requests
a particular service, the trader matches the request with existing offers by using interface
types, context names and service properties in combination as selection criteria. This is
how the separate parts of a distributed application can find each other on demand. The
control of services available on a network is completed by two additional service providers.
node managers and factories. Trader, node managers and factories cooperate to allow.
for example, dynamic instantiation of objects [3]. (There is also dynamic instantiation of
interfaces, discussed later.)

Transparencies. ANSAware allows interaction between objects without needing them
to know each other’s physical location, and allows a uniform style of interaction irrespec-
tive of the objects’ construction or environment, or whether they are local or remote.
These are called location transparency and access transparency, respectively.

Languages. A computational object is described using the following two languages:

e IDL. This definition language is used to specify interfaces, e.g.

ExampleIntf : INTERFACE =
-- interface name

NEEDS CommonIntf;
-- gpecification inheritance

-- type definition

Status: TYPE = (Succeeded, Failed)

-- operation signatures

-- the following specification enables a synchronous call
Register: OPERATION [offered_service: ansa-InterfaceRef]

L Y

142 Simpésio Brasileiro de Redes de Computadores 439

- interface references can be passed as arguments
RETURNS [status: Status;
handle: CARDINAL;
reg.service: ansa_.InterfaceRef];

-- ... and received as results

-~ the following configures an asynchronous call

- - in which results are not needed
Dereg: OPERATION [handle: CARDINAL]

RETURNS [];
END.

e PREPC. This language provides a means for embedding invocations of interface
operations in C source files. The generic syntax for an operation invocation is:

! { results } <- interfaceref$operation (args) exceptions

Capsules. Computational objects are potentially remote from one another. When they
are compiled (and are then called engineering objects), operation invocations are translat-
ed into calls to the local nucleus. which manages the resources of a node and assigns them
to engineering objects called capsules. A capsule is the unit of autonomous operation

within ANSAware.

If ANSAware is supported by a multi-tasking operating system such as UNIX, then
one node may support various capsules, and a capsule, in this case, is a UNIX process.
Capsules have the following capabilities:

e encapsulation, i.e. a capsule is a protection domain and an atomic unit of failure;

e provision for concurrent activities, and synchronization and ordering of such activi-
ties within each capsule;

e communication with other capsules;

preservation of state between interactions, unless a failure occurs;

e provision for creating other capsules.

Concurrency. ANSAware provides concurrency in a multi-threaded environment. A
thread is an independent execution path which can be executed concurrently with other
threads. The resources a thread requires (a stack to store its local variables and function
return links, and a register dump area) are provided by a virtual processor called a task.
Tasks are the units of actual concurrency provided by the system, while threads are the
units of potential concurrency - tasks are more expensive than threads in terms of memory.
A thread has to be assigned to a task, and so tasks can service a queue of threads [4].
Components have multiple threads and may optionally support multi-tasking.

ANSAware allows concurrent activities within capsules, and thus, provides an inter-
task synchronization mechanism that permits objects to control the ordering of events
directly. The mechanism consists of eventcounts and sequencers:

® an eventcount is responsible for counting the number of events of a given type that
have occurred so far. It is associated with

— an advance primitive, which increases the value of the eventcount by 1, indi-
cating the occurrence of an associated event,

440 SBRC 96

— a read primitive, which reads the value of the eventcount, and

— an await primitive, which blocks the caller until the eventcount is equal to or
exceeds the given value;

sequencers can be used to help ordering events, because eventcounts alone cannot
do that. A sequencer is associated with a ticket operation, which returns the current
value of a sequencer and atomically increments the sequencer’s value.

Communication. Communication between capsules is done via the services they may
provide to each other. They communicate by invoking operations (via RPC) at service
interfaces whose references they know - one well-known interface reference is the reference
to the trading service. Interface instances can be created and destroyed dynamically, and
after creation their references can be ezported to the trader so that they can be imported
by clients. Any client which possesses an interface reference can use the service provided
at that interface. In an application, interface references can be passed as arguments and
returned as results of operations. In this case, such references are not known outside
the application. In any application, at least one interface reference generally has to be
exported. Figure 2 shows the use of trader’s service and non-traded interfaces (the example
interface (ExampleIntf) given before is considered as s1). The following steps, shown in

2. Import(s1) 1. Export(s1)

s1

Figure 2: Traded and non-traded services.

the figure, are explained:

1. object 2 creates an instance of the interface sl and exports the interface reference
to the Trader, offering the service provided via sl;

[

object 1 asks the Trader to return the reference of the interface type sl;

3. in possession of the reference of the interface sl, object 1 creates an instance of the
interface s2 and calls an operation in sl to register its reference, offering the service
provided at s2 to the object that provides sl (i.e. object 2);

142 Simpésio Brasileiro de Redes de Computadores 441

4. as a result of the operation Register, object 1 obtains the reference of the interface

s3;

5. the services provided at the interfaces s2 and s3 are used by their respective client-
objects.

In the communication between a client and a server, transparency in the remote pro-
cedure calls is achieved through routines called stubs. Interface specifications are input
to a stub generator, which produces both the client stub and the server stub, and these
are then put into the appropriate libraries. When the client is compiled, the client stubs
are linked into its binary, and the same occurs with respect to the server: i.e. the server
stubs are linked with it when it is compiled [25, pp. {20-427).

4 The Approach of this Work

The approach used in the work was developed through the design and construction of
an application, called The Annotation of Continuous Media [8]. which combines voice
with the presentation of continuous media documents in the form of music, video clips.
etc., allowing such documents to be voice-annotated. Annotations are remarks that refer
to specific points or segments of a document. Since the application deals with time-
dependent media (voice, sound, video, etc.), the reference chosen to link annotations
and the respective document-segments is #ime, enabling synchronization between them.
Figure 3 shows an example of an annotation that refers to a scene of a video clip. As the
annotation refers to scene 2, the annotation and this scene should be synchronized, giving
significance to the contents of the annotation.,

scene 1 scene 2 scene 3
video clip
time
annotation g;nd im: ore”“ q! ugkly
—
time

Figure 3: Example of an annotation.

Given the continuous nature of the observation, annotations are made relative to the
presentation time. The application is able to provide instant access to annotations and
locations in the continuous documents through a graphical user interface (GUI) including
a timeline - see Figure 4.

In the GUI, three regions are distinguished: the timeline, the annotations display,
and the buttons area. The slider in the timeline represents the time passing and can be
dragged, forwards and backwards, for time manipulation by the user. The annotations
display can show rectangles, representing existing annotations, and a line, representing
an annotation that is being recorded; by clicking on a rectangle, the user can select the
corresponding annotation to be played - notice that in this case time is manipulated, and

442 SBRC 96

Timeline

[X] Annotator

Timeline for cagf on rowan.ukc,ac.uk

-

pause & rec record cancel play NONE quit

Annotations display Buttons

Figure 4: The GUI of the Annotator.

any change of time affects both the presentation of the (continuous media) document that
is being observed and of annotations. The buttons in the GUI allow the user to execute
other actions:

e to pause the presentation of the observed document and record a comment (anno-
tate);

e to annotate simultaneously with the presentation;
e to cancel an annotation;

e to choose whether an annotation can be played or not. It can be played either
as the logical passing time reaches its initial time or only if the user clicks on a
rectangle, selecting the corresponding annotation - the choice is valid for all the
existing annotations, and the user may change mind as many times as wished during
the current session;

e to finish an annotation session by pressing the button quit.

It is clear, therefore, based on the description above, that synchronization among
components of the application is necessary. Support for synchronization is discussed as
follows.

4.1 Basic Components

The basic objects of the model for structuring continuous media applications can be seen
in Figure 5.

The model identifies a class of reusable continuous media subsystems which can be in-
tegrated into applications via their control interfaces, but which encapsulate the details of
continuous media transmission and associated resource management. Thus a continuous
medium subsystem consisting of a rope server, a storage server and a server for presen-
tation/capture of the continuous medium can be encapsulated so that its only external
interactions are via the control interfaces which start and stop activities, report events
and control the rate of the presentation. The details of the medium handling are within
the encapsulation boundary of the subsystem.

142 Simpdsio Brasileiro de Redes de Computadores

443

"4 S
/ \
!appliCatio
)
s A
L
Y
LY
A
i
\
L]
1
]
1
rate 3
control |
[}
L]
i
]
L
1
i
1]
-' 1
I' control
L
' cont !
o medium
o device
= serve
¢ stremﬂ—l'—‘ -\
[L]
L)]
']
! i
I 1]
I [
L stream support '

e e

Figure 5: Structuring continuous media applications in terms of support for synchroniza-

tion and streams.

444 SBRC 96

In the model, there is thus a clear distinction between rate control and stream sup-
port — achieved by identifying a stream transmission subsystem involving the continuous
medium storage server and the device server. Rate control is independent of the stream
transmission subsystem and is jointly performed by the server that manages the rope ab-
straction, based on the concept of voice rope introduced in [26] as a sequence of segments
containing continuous media data, its clients in the application, and the storage server.
The separation from continuous medium transmission makes the rate-control mechanism
reusable in a number of different applications. Continuous medium transmission is en-
capsulated so that optimised stream handling is carried out by the storage server and the
server that controls the devices for continuous medium presentation/capture. It is this
server that does most of the buffering contrel to support the real-time requirements of a
continuous medium.

4,1.1 Stream handling

Transmission of continuous media data from source to sink in a distributed environment
has been considered in several works [17, 1, 9, 16, 6] . Some of the issues involved are
definition of sample size, communication delays, transfer mechanism (RPC, etc.) and
buffer management.

In the application discussed in [8], which involves the annotation of music, audio
transfer occurs between the storage server and the audio server (providing the stream
support in figure 5) and this is done by repeated RPC to provide flow control. The
operation used for data transfer (Spurt) can receive 512 bytes of audio data, which are
put in the input queue for the device driver, and can return another 512 bytes of audio,
taken from the output queue (see figure 6).

- output queue
i Geios
(RPC) driver
—ns input queue

Figure 6: Buffering in the audio server.

The balance moves between the input and the output queues depending on the average
speed of the RPC and presentation mechanisms. In non real-time operating systems,
such as UNIX, if data buffering is limited, audio can be disrupted by delay caused by
privileged activities. If there is overloading there can be data loss. Therefore, the audio
server includes a control mechanism to stabilise the loop buffering. It is the audio server
which is responsible for maintaining the rate of presentation through control of buffering.
Observe that this control can be concentrated at the audio server, with buffering at
the storage server being sufficient to support disc operations (read/write). These disc
operations do not need to be positioned accurately in real time, but only need to meet the
rate constraints. and so there is no need for an additional component to control rates in
the transmission layer. Applications are freed from the task of doing additional buffering
control, since it is done by the device control server (e.g. audio server) and the storage
server used by the application.

142 Simpésio Brasileiro de Redes de Computadores 445

4.2 Main Ingredients of the Approach

The major issues involved in the design and construction of distributed continuous media
applications are:

e how continuous media are modelled: the way continuous media are structured and
represented is important to define how they can be manipulated;

e rate control: this relates to stream self- and mutual-synchronization, i.e. maintaining
presentation rates and synchronization of multiple streams; and

e continuous media transmission: this relates to resource control aspects of stream
handling, or how the real-time requirements of continuous media presentation can
still be satisfied, considering the variation of communication delay.

The following ingredients of the model proposed in this work provide solutions to the
problems described above:

e the rope server: because it lets its clients abstract from the complexity of manipu at-
ing continuous media; in particular, storage and transmission — the rope abstraction
allows the clients to see it as a simple structure, requesting via a simple interface for
a rope to be built, edited, stored, played, recorded, etc., without knowing what tvpe
of medium it represents and how the medium is structured; similar rope structures
can be used as a basis for video or audio applications;

e the rate-control mechanism: because it allows distributed application objects to
perform time-dependent activities efficiently according to logical clocks that can
themselves be periodically synchronized in a rate community, via a well-defined &nd
clear interface, called rate. A rate community is formed by objects interested in
synchronizing some of their activities. Each object defines logical clocks with re-
spect to real time. For each set of activities to be synchronized, a rate commurity
is established orchestrating local clocks to give global synchronization; thus, ob-
jects can be engaged in different communities if they wish to have some of theis
concurrent activities controlled by specific logical clocks (see Figure 7) — internally,
synchronization can be achieved through the combination between the rate-control
mechanism and event counters and sequencers.

Each object provides interfaces of the type rate in order to keep the clocks synchro-
nized in terms of position (in time), speed and direction. Each clock is then used
within an object to ensure that the associated fine-grain activities are performed on
time. The rate-control mechanism can be applied to many time-varying processes.
not specifically related to continuous media (e.g. those providing graphical feedback
of progress), making it highly reusable.

e the continuous medium subsystem: in particular, the mechanism implemented by
the continuous medium device server makes the stream transmission subsystem (in-
volving the storage server and the device server - see stream support in Figure 3)
incorporate all the real-time links to the supporting system - they form part of the
interface to the device - making the control interfaces as simple as possible; the min-
imum application involvement is ensured by the encapsulation of stream handling
in the reusable components of the subsystem.

446 SBRC 96

-

activities controlled by
clock engaged in community |

activities controlled by
clock engaged in community 2

Figure 7: Rate communities in an application.

Table 1 shows a summary of the ingredients, plus the advantages and disadvantages
of the solutions provided.

4.3 Related Work

The approach taken by Coulson et al. [6], for example, identifies

1. explicit representation of continuous flow in the computational viewpoint, and con-
tinuous commitment/ resource reservation in the engineering viewpoint, with regard
to continuous media support, and

2. programming specification and synchronization in the communication subsystem plus

operating system support, in the respective viewpoints, with regard to real-time
synchronization.

The first of these is a common requirement for any continuous media system, but the
degree to which an application developer needs to be involved with engineering detail can
be minimized by careful choice of system components and their interfaces.

With respect to the second point, the approach describes things in terms of close links
between communication and synchronization, whereas our approach has weak links, via
well-known components. In our case, the separation between synchronization and commu-
nication lets the choice of rate control be separated from continuous media transmission,
making the synchronization out-of-band; continuous medium transmission is encapsulated

142 Simposio Brasileiro de Redes de Computadores

447

Issue

Ingredient

Solutions Provided

Advantages

Disadvantages

Continuous

Rope server

Rope abstraction

e Reusability

Simple abstractions

media and simple e Client objects are fine, as long
modelling interface abstracted from | as they fit in with
details of the application,
continuous media | but if one needs to
manipulation do something that
e Continuous is not modelled
media seen as a (e.g. speech
simple structure | recognition) then
a more detailed
control may be
needed
Stream Rate control | Logical clock, e Wide Possibly less
synchroni- mechanism rate community, applicability precise than
sation well-defined ¢ Easy special-purpose
interface manipulation synchronization
and clear mechanisms
operations
Continuous | Stream sync. | Encapsulated e Very simple Possibly less
media subsystem stream handling real-time links efficient than

transmission

between the sub-
system and the-
supporting sys.
e Minimum
application
involvement

e Reusability

¢ Portability

system-supported
mechanisms,
because there
can be extra
latency

following control
operations, and
some additional
communication
cost

Table 1: Main model ingredients to be included in distributed continuous media applica-

tions.

448 SBRC 96

in optimised stream handling carried out by a stream transmission subsystem, which is
integrated into the application (as shown in Figure 5).

Observe that the features proposed by Coulson and colleagues are to be included in the
underlying systems, whereas our approach proposes that reusable components are inte-
grated into the application, so that the application developer does not need to know about
details of the continuous media support and works at an appropriate level of abstraction.
In fact, both approaches aim at reducing the degree of visibility of the underlying mecha-
nisms by the applications — the stronger the abstraction, the better. The main differences
are at what level the mechanisms are provided - Coulson’s approach is to provide them
in the underlying systems — and in the demands imposed on a platform by a continuous
media application. Qur system is, in this sense, easier to port to another similar, object-
based platform, since it does not require any special service to be included in the platform
or special support from the communication subsystem or from the operating system — the
mechanisms are encapsulated in it, allowing it to provide adequate and efficient support
for the real-time requirements of continuous media in open distributed processing, and
making the applications integrated with it highly portable.

4.4 Building Larger Systems

The fact that the separation of transport and synchronization reduces the number of con-
straints to be met simultaneously when selecting protocols and software components is
fundamental to the construction of larger systems — one can have different transport in
different parts of the system, while retaining any necessary synchronization. Another im-
portant point is that a rate community can be decomposed, forming a rate hierarchy, with
the server in a given community being a client of the rate server in another community,
allowing the communities, and therefore. their members, to synchronize — in a community
of communities. This gives better scaling properties than an n-way interaction depending
on a specific transport protocol. It also fits better with software structure, because a
subsystem can have its own rate community, which is synchronized with the application
as a whole, whereas the low level approach leads to problems of deciding which level of
software owns the synchronization hooks.

5 Measurements

Response times to user requests were measured in the application developed. In this work,
response time was defined as the time-interval between the user’s input and the beginning
of the last action to be taken to respond to the user-request — see illustration in Figure 8.

The maximum acceptable response time in the application was defined as 80 millisec-
onds, considering studies discussed in [5, 17, 23]. The times measured were related to the
following events:

e button click: it was measured the time when the user clicked the button to start an
operation;

e slider movement: the time when the slider started or finished moving in the timeline,
according to the operation requested, was also considered; and

142 Simpdsio Brasileiro de Redes de Computadores 149

user—input
Componenra — —_— —
action 1 (thread)
Componenrb - i —
action 2 (thread)

Component e —————

[=—— response time ———|

Component controls the GUI that accepts user inputs.

Figure 8: Definition of response time.

e presentation: the time of the start or stop — depending on the operation reques:ed
- of the continuous medium presentation was also measured.

The response times corresponded to the operations play, pause, continue, skip (forward
and backward), intended to affect the presentation of the continuous medium document,
and the average results obtained are given in Figure 9.

100
average responsa limes (ms)
PLAY sKIP PAUSE CONTINUE

Figure 9: Average results of the response times measured in the application.

Excessive communication, granularity of data transfer (to/from disk and over network-
s), buffering control, and trade-offs imposed by the applications are some factors that can
affect the performance of distributed applications. Additionally, machine loading, network
traffic, etc., are factors that can result in differences in performance. (Different hosts were
used in the different testing-sessions trying to minimise the influence of these additional
factors in the results.)

The factors above were considered and improvements were achieved, in relation to the
selected operations, mainly through control over communication and removal of unneces-
sary delays. The different performance results shown in Figure 9 can be explained by the
differences between the algorithms of the operations (see [8]).

6 Conclusions

This article has discussed the development of distributed continuous media applications. It
has been shown that modelling a distributed system as a collection of distributed objects,

450 SBRC 96

that have state and behavior and interact via the interfaces they provide, seems both
natural and appropriate. Open distributed processing has also been discussed as to allow
systems and applications to run on software platforms that provide transparencies, hiding
differences between underlying systems and making application development easier. The
main initiatives for the standardization of open distributed processing have adopted the
paradigm of object orientation.

Continuous media have strict synchronization requirements, either in terms of intra-
stream synchronization (i.e. maintenance of presentation rates) or in terms of inter-
stream synchronization (i.e. synchronization of multiple streams). Other items, like, for
example, storage, intrinsically require continuous media applications to be structured for
distribution. The applications can be built on top of distribution platforms, which provide
facilities for communication, concurrency and synchronization.

Data modelling, rate control and transmission are the major issues identified in the
design and construction of distributed continuous media applications. The proposed ap-
proach

e models continuous media generally,
e provides a high level of abstraction through simple and well-defined interfaces,

e is reusable, with little modification, in a number of applications that require synchro-
nized time-manipulation in the presentation of continuous media, including audio,
video, animation, etc.,

o satisfies requirements for open-endedness without asking for additional support in
the underlying platform, and

e can be used in the construction of larger systems.

The satisfactory results obtained in the measurements of response times related to
some operations in the developed application (The Annotation of Continuous Media)
show the efficiency of the synchronization mechanism and the adequacy of the structuring
model. The studies will continue with the development of larger applications and also
considering the possibility of multiple use, especially for synchronous collaborative work,
so that the synchronization mechanism can be exploited further. The applications should
also be developed on other platforms that use a similar object model.

Acknowledgements

[thank Prof. Peter Linington, my supervisor during my PhD (1991-95) at the University
of Kent at Canterbury (UKC), England, who contributed with his valuable opinion and
guidance in my work. I also thank members of the Distributed Systems and Networks
group at UKC, in particular David Barnes and Li Ning.

References

[1] D.Anderson and G. Homsy. “A Continuous Media I/O Server and its Synchronization
Mechanism”. [EEE Computer, 24(10):51-57, 1991.

142 Simpdsio Brasileiro de Redes de Computadores 451

(2] APM. An Overview of ANSAware 4.1. Architecture Projects Management Ltd.,
Cambridge, UK, 1993.

(3] APM. ANSAware 4.1: Application Programming in ANSAware. Architecture
Projects Management Ltd., Cambridge, UK, 1993.

(4] APM. ANSAware 4.1: System Programming in ANSAware. Architecture Projects
Management Ltd., Cambridge, UK, 1993.

[5] R. Coats and I. Vlaeminke. Man-Computer Interfaces: An Introduction to Software
Design and Implementation. Blackwell Scientific Publications, 1987.

[6] G. Coulson, G. Blair, J. Stefani, F. Horn, and L. Hazard. “Supporting the Real-
Time Requirements of Continuous Media in Open Distributed Processing”. Computer
Networks and ISDN Systems, 27(7):1231-1246, July 1995.

[7] D. Ferrari, A. Grupta, M. Moran, and B. Wolfinger. “A Continous Media Commu-
nication Service and its Implementation”. In Proceedings of GLOBECOM 92, pages
220-224, Orlando, Florida, 1992.

[8] C. Ferraz. The Annotation of Continuous Media. PhD thesis, Computing Laboratory,
University of Kent, Canterbury, England, 1995.

(9] D. Gemmell, H. Vin, D. Kandlur, P. Rangan, and L. Rowe. “Multimedia Storage
Servers: A Tutorial”. IEEE Computer, 28(5):40-49, May 1995.

(10] I. Herman, G. Carson, J. Davy, D. Duce, P. ten Hagen, W. Hewitt, K. Kansy, B. Lur-
vey, R. Puk, G. Reynolds, and H. Stenzel. “PREMO: An ISO Standard for a Presen-
tation Environment for Multimedia Objects”. In ACM Multimedia’94 Conference,
1994. (8 pages).

[11] ISO. Information Processing Systems - Computer Graphics and Image Processing -
Presentation Environments for Multimedia Objects (PREMO). International Stan-
dards Organization, 1995. Committee Draft ISO/IEC 14478:

[12] ISO. Open Distributed Processing - Reference Model. International Standards Orga-
nization, 1995. ISO/IEC 10746.

[13] P. Linington. Introduction to the Open Distributed Processing Basic Reference Mod-
el. In J. de Meer, V. Heymer, and R. Roth, editors, Open Distributed Processing,
pages 3-13. Elsevier, 1992.

[14] P. Linington. “RM-ODP: The Architecture”. In Intl. Conference on Open Distributed
Processing, Australia, February 1995.

(15] S. Mullender. Kernel Support for Distributed Systems. In S. Mullender, editor,
Distributed Systems, pages 385-409. Addison-Wesley, 1993.

[16] K. Nahrstedt and R. Steinmetz. “Resource Management in Networked Multimediz
Systems”. [EEE Computer, 28(5):52-63, May 1995.

[17) C. Nicolau. “An Architecture for Real-Time Multimedia Communication Systems”.
IEEE Journal on Selected Areas in Communications, 8(3):391-400, April 1990.

452 SBRC 96

(18] OMG. The Common Object Request Broker: Architecture and Specification. Object
Management Group, 1992. OMG Document Number 91.12.1, Revision 1.1.

[19] R. Orfali and D. Harkey. “Client/Server with Distributed Objects”. BYTE,
20(4):151-162, 1995.

[20] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Her-
rmann, C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. “CHORUS Distributed
Operating Systems”. Computing Systems Journal, 1(4):305-370, 1988.

[21] D. Shepherd and M. Salmony. “Extending OSI to Support Synchronization required
by Multimedia Applications”. Computer Communications, 13(7):399-406, September
1990.

[22] A.Snyder. “The Essence of Objects: Concepts and Terms”. IEEE Software, 10(1):31-
42, 1993.

[23] R. Steinmetz. “Human Perception of Jitter and Media Synchronisation”. To appear
in IEEE Journal on Selected Areas in Communication, 14(2), February 1996.

[24] H. Stenzel, K. Kansy, I. Herman, and G. Carson. “PREMO: An Architecture for
Presentation of Multimedia Objects in an Open Envirnoment”. In W. Herzner and
F. Kappe, editors, Multimedia/Hypermedia in Open Distributed Environments, pages
77-96. Springer-Verlag, 1994.

(25] A. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

[26] D. Terry and D. Swinehart. “Managing Stored Voice in the Etherphone System”.
ACM Transactions on Computer Systems, 6(1):3-27, 1988.

