132 Simpésio Brasileiro de Redes de Computadores 549

The Federative Trader Model of the Multiware Platform

Luiz Augusto de Paula Lima i
Edmundo Roberto Mauro Madeira®

Abstract

This work proposes a model of TRADER considering specially the aspects
related to the establishment and management of FEDERATIONS OF TRADERS
inside the framework of the Reference Model for Open Distributed Processing
(RM-ODP). The modules of the proposed model are commented and the opera-
tions at the interfaces are listed. Finally, a protocol for the communication be-
tween the trader and its administrator is defined and the federation
establishment process is discussed. A prototype of this model was implemented
inside the Multiware Platform which is being developed at the University of
Campinas.

Sumario

Este trabalho propée um modelo de TRADER considerando especialmen-
te os aspectos relacionados ao estabelecimento ¢ gerenciamento de FEDERA-
COES DE TRADERS dentro da estrutura do Modelo de Referéncia para
Processamento Distribuido Aberto (RM-ODP). Os madulos do modelo propos-
to s@o comentados e as operagées nas interfaces sao listadas. Por fim, um pro-
tocolo para a comunicagdo entre o trader e o seu administrador ¢é definido e o
processo de estabelecimento de federagao é discutido. Um protétipo deste mo-
delo foi implementado dentro da estrutura da Plataforma Multiware que estd
sendo desenvolvida na UNICAMP.

Keywords: open distributed processing, ODP, trader, interworking, federation
of traders.

1. INTRODUCTION

The advances in the communication technology with high transmission rates, improved
security and low error rates, the future (and present) needs of the users for integration of auto-

I Institut National des Télécommunications - LOR - 9, rue Charles Fourier - 91011 - Evry Cedex - France
E-mail: lima@hugo.int-evry.fr or lima@dcc.unicamp.br

2.Universidade Estadual de Campinas - DCC - Cx. Postal 6065 - 13081-970 - Campinas - SP - Brazil
E-mail: edmundo@dcc.unicamp.br

550 SBRC 95

mation islands, computer support cooperative work (CSCW) and architectures for open distrib-
uted services and the progress in the standardization (RM-ODP) made an environment for open
distributed processing not only possible, but also indispensable to attend the new demands of
the users (e.g., decision-making systems [1], distributed artificial intelligence (DAL, etc.).

The open environment has the advantage of being unlimited and free to admit any kind of
user, component or application. Therefore, this environment is characterized by heterogeneity
and decentralization, but, at the same time, it must assurc the autonomy of each component or
local environment.

In an Open Distributed System, it is highly desirable the existence of a means to make
dynamic selection of computational services that satisly certain properties. For this reason, the
trader is a key component in such an environment. Its role is 1o manage the knowledge of the
currently available services and to find service offers that match the clients’ requirements [2].

The grouping of traders in Federations allows that distinct distributed systems work to-
gether but, at the same time, keep control of their own domains [3].

In this work, we present a model which can be used as a basis for an implementation of a
trader, and we give special attention to the as"ﬁccls related to Trader Federations. This is done
according to the standard of the ISO for ODP' [4][5][6][7][8][9][10]. This means that autono-
my, decentralization and encapsulation are the fundamental principles that will lead all the fol-
lowing proposals.

Since a number of traders have been implemented in several parts of the world, recently,
a project for the interworking of these traders has been launched [11] to allow interaction be-
tween these heterogeneous trader implementations. This project will also give participants ex-
periences in interworking for an open environment and in providing an excellent test-bed for
interworking across different type systems, different organizations with different policies, dif-
ferent networking, different operating systems and so on.

The work reported in this paper gives contributions to the current international standard-
ization process.

A prototype of the model was implemented inside the framework of the Multiware Plat-
form [12], which aims at providing support for the creation of distributed applications.

2. AMODEL FOR A TRADER
There are basically two groups of activities performed by a trader:

» the management of the data base related to the (static and dynamic) information held
by the trader; and
« the execution of the operations using the information.

We propose a model that consists of the refinement of these two “modules”, considering
separately local functions and those related to the establishment of federations and federated op-
erations, and also putting in different modules the management of the static and dynamic infor-
mation.

1.The ISO documents for the trader are currently “committee drafts”. But it is hoped that
they will become “draft international standards™ by July 1995. The last version of the ODP
Trading Function Standard was an output of the ODP Trader meeting in Southampton, July,
1994.

132 Simpdsio Brasileiro de Redes de Computadores

Figure 1 presents a model (see [17]) for the trader where we can identify three basic com-
ponents (agents, from the enterprise viewpoint). They are:

« the client which is the importer or exporter of service offers;

« the administrator - the /ocal one that deals with local management and the federation
one which deals with the establishment of federations (section 3);
» the trader.

TRADER
Type ’ [’ l Directory
Repositor Sl (Service Offegrd
(Local Adm. \

)
@ederation Adg. /

Context
Management If.

—

Static
Informatio

Dynamic
Informati

_ | Federation Executive
Federation Executive .
Contract If. Authenticatqgr
Fed. Estab. Fed. Trading Imp. Op. |Exp. Op. Policy
If. Interagtion If. If. I£. Contm#er
2
IMPORTER : EXPORTER
| - List, Search, Select 4 - Status Update
2 - Export, Withdraw, Modify 5 - Service Invocation
3 - Status Inquiry 6 - Service Results

Figure 1 : A model for a trader. (if. = interface)

2.1. The description of the modules

Two modules are responsible for storage and information retrieval in the trader. They are:

552 SBRC 95

« Static Information Module

This module concentrates the operations that handle the static informa’*~n which cor-
responds to service types (in the Type Repository') and service offers (in the Directory).

« Dynamic Information Module

It is responsible for updating the dynamic propertics of a service offer. This module
contacts the Policy Controller of the exporting object to obtain this information. If the
identifier of the policy controller in the service offer stored as a static information is null,
no operation is done.

The Type Repository supports the storage (using the Storage Module) and the dynamic
matching of service types to indicate, for example, when two types are equivalent or when a
type is a sub-type of another, according to the ISO standard [6]. As said before, the type repos-
itory can be an autonomous object with its own interfaces and operations. For simplicity, we
placed it here.

The Directory stores all the service offers exported to the trader. It can be implemented
using the X.500 of the ITU-T, for example (see [13]).

The Executive Module is responsible for executing the local operations of the trader using
the information available. The Federation Executive analyses the requests that arrive through
the interface of federated interaction considering the respective exporting contract and it may
send the request to the executive module (in case the constraints in the contract are satisfied).

The federation executive is also responsible for the process of establishing the federation
confracts.

The Authenticator is the module that checks the permission of the importer or exporter to
execute a given operation.

The Local Administrator uses the Static Information Module to create and remove con-
texts, and to deal with the security aspects related to the static information. The Federation Ad-
ministrator uses the Federation Executive to establish contracts that are stored as special static
information.

2.2. An example - federative search

When the trader receives an import request, it checks through the authenticator the access
permissions. Then, the executive tries to find service offers from the modules of static and dy-
namic information that match the importer requirements. To do so, first of all, the types are
checked (Type Repository) and the information is then retricved from the directory. If there is a
policy controller interface defined, the dynamic information is searched. If there is no service
offers locally, then a request for a federated import is passed o the federation executive module
that checks the existence of suitable importing contracts in the search scope and then sends the
request for a federated search to the remote trader.

In the remote trader, the search request arrives in the Federation Trading Interaction in-
terface. Then, the federation executive applies the restrictions, rules and mapping functions
which are specified in the respective export contract to the parameters received with the remote

1.The Type Repository can be located outside the trader and this module can be used to
deal with the efficient communication with the “real” type repository.

132 Simpdsio Brasileiro de Redes de Computadores 553

search. Once all the constraints are satisfied, a new operation with possibly new (transformed)
parameters is issued to the executive module that performs the normal operation and returns the
found values (if any) to the federation executive module.

For example, when an operation

search (..., service_type, matching_criteria, scope, ...);

is performed in some Federation Trading Interaction interface, the federation executive applies
the rules in the associated export contract transforming (if necessary) some parameters to meet
the requirements specified in the contract and to make them understandable for the local trader.

Then an operation
search (..., service_type’, matching_criteria’, scope’, ...);

is issued to the executive module which goes on with the normal procedure.

2.3. Interfaces

From this model, we identify a set of interfaces that are needed to allow trader manage-
ment and to attend the functionality that is required. The interfaces with the respective opera-
tions are presented in figure 2.

The interfaces for importing and exporting operations correspond to the trading interface.
This is the most used interface in a Trading Community because it contains the basic operations.

The interfaces of Context Management and Federation Contract are used only by the lo-
cal and federation administrators, respectively.

The interface of the Policy Controller allows the trader to obtain the dynamic information
of a service offer.

The interface of Federation Establishment offers to other traders the possibility of estab-
lishing federation contracts between them.

Finally, the interface of Federated Interaction receives requests of federated imports and
exports from other traders that are acting on behalf of their clients and with whom there is a fed-
eration contract established. There is a distinct interface of Federated Interaction for each ex-
porting contract of the trader. All the operations in this interface have the same semantics and
the same parameters that are found in the operations of the Export and Import Operations inter-
faces. But here all of these operations are submitted to the restrictions specified in the associated

export contract.

3. THE ADMINISTRATOR

The local and federation administrators are responsible for the definition and the enforc-
ing of the trading policies in the local and federation levels, respectively. The local administra-
tor adds new service types to a given context, creates, destroys and renames service offer
contexts and authorizes clients to use (for a search or an export) the several existing contexts.
The role of the Federation Administrator is to prepare the catalogue, to request a catalogue from
other trader, to decide when and with whom it should establish a federation, to accept, refuse or
make proposals for federation contracts defining the policies to establish such federation. A cat-
alogue contains information on the service types and on the extension of the service offer data

SBRC 95

Interfaces
Export Operations

Operations

EXPORT, WITHDRAW, REPLACE

Interface
Importer Operations LIST_OFFER_DETAILS, SEARCH, SELECT
Interface

Policy Controller
Interface

STATUS_INQUIRY, EXPORTER_POLICY

Context Management
Interface

CREATE_CONTEXT, DELETE_CONTEXT,
LIST_CONTEXT,LIST_CONTEXT_CONTENT,
AUTHORIZE

Federation Contract
Interface

ESTABLISH_FEDERATION,
DISTRIBUTE_CATALOGUE,
REQUEST_CATALOGUE

Federation Establishment
Interface

EXCHANGE_CONTRACT

Federated Interaction
Interface

EXPORT, WITHDRAW, REPLACE, SEARCH,
LIST_OFFER_DETAILS, SELECT

Figure 2 : Table of interfaces and their operations.

base that the trader will make available to other traders. It also specifies the permitted operations
through federation (exporting trader policy) and the linking cxtension to other traders, i.e. if the
exporting trader will pass on requests to other traders or not.

The administrators are located outside the trader to add the possibility of several traders

Our administrator is divided into two parts as can be seen in figure 3.

« The Server Part, that offers the following services to the trader :

being managed by only one administrator, which is desirable if we consider several traders in a
same enterprise, for example. In other words, a trader must have only one administrator, but an
administrator can manage several traders (as suggested also in [14]).

- send_catalogue : using this operation the trader can inform the administrator

about a received catalogue;

- request_catalogue : asks the administrator to create a catalogue;
- evaluate_contract : asks the administrator to evaluate a proposal of a federation

contract.

 The Client Part that uses some operations in the trader’s interfaces. These opera-

tions are :

-in the Tvpe Repository Interface :

132 Simpésio Brasileiro de Redes de Computadores

Client | Server request_catalogue

Part Part send_catalogue
evaluate_contract

Figure 3 : The administrator.

« add_service_type : adds a service type to the type repository;
« display_types : shows the service types in the type repository;
« (other operations needed to manage the type repository).

- in the Context Management Interface :

« createldelete_context : creates/destroys a given context in the directory of ser-

vice offers;
e authorize : defines the set of available interfaces, operations and contexts for a

client.
- in the Federation Contract Interface :

« distribute_catalogue : asks the trader to advertize its catalogue to some other

trader.
e request_catalogue : asks the trader to obtain the catalogue from some other

trader.
« establish_federation : asks the trader to try the establishment of a federation

contract with other trader providing a contract proposal.

3.1. Establishing federation contracts

To establish a federation contract it is necessary the intervention of the Federation Admin-
istrator, because the decisions to create a federation and to evaluate and propose contracts are

taken by this object.
In figure 4 it is represented the scenario for negotiation and establishment of a federation

contract between two traders, where one performs the role of exporter and the other the role of
importer of services.

Beforehand, in order to establish a federation contract, it is necessary that the importing
trader receives the catalogue of the exporting trader. And there are two ways to do this. In the
first one. the administrator | decides to send its catalogue to a potential importing trader. When
the exporting trader receives the request to distribute the catalogue (distribute_catalogue oper-
ation) from its administrator, it acts as a normal client of the importing trader using the “export”

556 SBRC 95

_____ “*~ "ok or error
o " (0, error_code)
** "ok or error
st_catalogue ,
search -Lﬁu-e—-:—"""‘ Requesting
req_catalogue = the Catalogue
|
(catalogue) ™ R
Calalogue) | = @=Z0F— — — _
(catalogue) |
establish_fed
exchange_contract la— | Federation
evaluate_contract il i Establishment
Process
(a—c-c;;“-TGﬁJ_;G)-b ~ "_" —— —
acceplrefuse) | @0 —— — —
) (accept, refuse)”

Figure 4 : Scenario to establish a federation.

operation to send the catalogue as service properties and 1o announce the identifier of its Fed-
eration Establishment interface. As soon as the importing trader identifies an export request
with the standard service type of federation establishment, it wams its administrator
(send_catalogue operation) about the arrival of a catalogue. What is returned to the importing
trader, to the exporting trader and to the administrator I is only an indication that the adminis-
trator 2 is informed about the exporting trader’s cataloguc. The other way to notify the admin-
istrator 2 about the catalogue of the exporting trader consists of simply requesting the catalogue
and the process is similar.

Once the catalogue of the exporting trader is known to the administrator 2, it can now be-
gin the negotiation of the federation contract. If it is interested in the entries in the catalogue, it
can start the contract establishment process. The administrator 2 creates a federation contract
proposal (based on the information held in the catalogue) and sends it to the administrator 1
(establish_fed, exchange _contract and evaluate_contract operations). The administrator 1 may
accept, refuse, or refuse the proposal and suggest a reduced contract. When a federation contract
is agreed, a new Federated Interaction interface associated with the exporting contract is creat-
ed in the exporting trader and the federated operations can be now executed.

The operations that allow a trader to communicate with its administrator are presented in
the table of figure 5.

132 Simpésio Brasileiro de Redes de Computadores

557

. ;Qj:gration_

Parameters

distribute_catalogue

location of the imp. trader, cat-
alogue

ok or error

send_catalogue

catalogue, fed. establishment
interface id.

ok or error

request_catalogue

location of the exp.

catalogue (pos-

trader sibly empty)
req catalogue catalogue
establish_fed fed. establishment interface id., | accepted or
location of the exp. trader, pro- | refused
posal of a federation contract,
local context to store the imp.
contract
evaluate contract proposal of a federation con- accepted or
tract refused

Figure 5 : Operations between the trader and its administrator.

3.2. Interworking considerations

In our work, we have identified basically two phases involved in the interworking of trad-

cIs .

» the phase of “federation establishment™ (or “link establishment”, or “contract estab-

lishment™);

« and the phase when the federated operations are performed.

There are also two approaches in attempting to solve the problem of service types Crossing
type domain boundaries : either we leave the “heavy work ™" to be made in the importing phase
(when a federated search is performed), or we leave it to the federation establishment phase.

From our point of view, it is better to do all the “heavy work™ in the federation establish-

ment phase for the following reasons :

1. the trading operations through federation become lighter, that is, faster, and perfor-

mance aspects are more important here than in the federation establishment phase;

2. we will not need a universal standard language for expressing service types, but
just some (type description) language agreed between cach pair of traders in the federa-

tion establishment phase;

3. we will not need to know, for example, the interface identifier of the remote type

repository.

558 SBRC 95

3.3. Implementation aspects

The Multiware Platform includes most already known ideas and functions of RM-ODP.
This platform is composed of three layers: Basic Softwarc/ Hardware, Middleware and Group-
ware (Figure 6).

Application Final User
Support for CSCW Groupware
O_D‘P Le“f‘?l_ Trader
Multimedia | _(ObiectServices) L1 Middleware
Processing
ANSAware nucleus DCE ORB
Micro Operating : Software/
Kemel System Frotocols REC Hardware

Figure 6 : The Multiware Platform.

The Basic Software/ Hardware is composed of an operating system (eventually built
above a microkemnel), communication protocols, and so on. This layer provides no distributed

system support.
The Middleware layer is responsible for providing distributed processing facilities to the
Groupware layer and to the applications. The Middleware layer is composed of two sublayers:

1. Multimedia Processing sublayer - allows the exchange of real-time multimedia infor-
mation with a specified quality of service; and

. 2. ODP sublayer that is composed of two levels:

2.1. Commercial Distributed Systems - like ANSAware, ORB (Object Request
Broker) [18], and DCE (Distributed Computing Environment) [19]; and

2.2. ODP-level - aggregates ODP functionalities to the commercial distributed
systems.

The Groupware layer provides the functionalitics demanded by different classes of appli-
cation, like CSCW (Computer Support Cooperative Work). Typical services supported by this
layer are: dialogue management, interaction protocols and handling of multimedia documents.

In the current implementation, CORBA (Common Object Request Broker Architecture)
is used as the basic infrastructure. Object Services can be put upon an ORB. The Object Services

132 Simpésio Brasileiro de Redes de Computadores 559

constitute a set of services (interfaces and objects) that provides the basic functions to use and
to implement objects.

The reasons for the choice of the ORB are: ORB is a simple platform, it covers the main
concepts proposed by the ODP specification, and it allows adding of new objects with ODP
functionalities (Object Services).

In the Multiware Platform, the Trader is an Object Service that is located in the Middle-
ware layer, in the ODP-level. It is responsible for providing the trading functions to the upper
layers. In this level, there are other Object Services, like the group support and transaction sup-
port, among others.

Since the Multiware platform [12] is in process of design and initial implementation, we
had to implement the trader prototype directly over the SunOS using Remote Procedure Calls
(RPCs). To do so, a module called “Broker” was implemented aiming at providing communi-
cation facilities between the trader and its client (importer or exporter) and to provide the inter-
mediary functions. The Broker corresponds to the result of the compilation of the interface
definitions written in some Interface Definition Language (IDL).

The concept of an interface was implemented in order to group operations which are like-
ly to be used by some specific client. Doing so, we become capable of controlling more effi-
ciently the access and the availability of the operations.

The Trader interfaces were defined using the OMG-IDL to facilitate the migration of the
Trader to the ORB platform. The repository and storage functions were implemented and incor-
porated to the Trader.

To transport the prototype to the Multiware Platform, that initially uses the ORB, it is nec-
essary to substitute the compilation of the OMG-IDL interfaces with the developed “Broker”.
Then, this new broker is composed of stubs that call the ORB to manage the communications
among clients, traders and administrators.

In our model, a generic object can:

« create and destroy interfaces dynamically;

"

« check the authorization of clients to use a given operation which belongs to a given

interface;
« define which clients are allowed to use a given interface;
« associate a service type to a given interface (which is particularly useful when we

associate an exporting contract to a given interface).

To the normal (non-federated) operations of the trader, there are Iwo interfaces:

« the importer operations interfaces and;
« the exporter operations interface;

which contain the corresponding operations as shown in figure 2. By now, we have im-
plemented the operations:

* export;

« withdraw;

« search;

« list_offer_details;

among other managing/administrating operations. We will comment briefly some imple-
mentation aspects of each one, namely:

560 SBRC 95

1. Export

According to the model of figure 1, after checking the authorization of the exporter to per-
form the operation, the executive verifies that the service type requested for exporting exists and
the service properties are correctly given, This information is retrieved from the Type Reposi-
tory. If everything is all right, it “packs” the received paramcters in a “service offer” and stores
it in the proper context of the trader’s directory. If no errors were found during this process, the
trader returns to the user an identifier of the service offer (which is unique in a given context).
Otherwise, an error code is returned.

2. Withdraw

This operation simply removes the service offer from the directory. It is performed by the
exporter which is the “owner” of the offer.

3. Search

With this operation, the importer can specify the service type it wants, the desired prop-
erties (according to the type) and the scope of search. After checking the authorization, the trad-
er verifies the correctness of the required properties according to the type (with the Type
Manager) and performs the search on its own directory. During the search, every time it finds
an import contract inside some context that belongs to the scarching scope, the trader puts that
contract in a list. In the end of the search, if no service offer is found locally, the contract list is
used to perform federated trading. Otherwise, the contract list is simply discarded. A list of
matching service offers (that can be empty) is returned to the importer.

4. List_Offer Details

This operation is normally executed after a “generic™ scarch operation to look into some
specific service offer. The complete list of the properties of that offer is returned to the importer,
if it has authorization to do such an operation.

In our prototype, all of the operations of figure 5 were implemented together with those
necessary to the federation establishment process (e.g., export, search, exchange contract, etc.)
and other security functions. The prototype will be soon migrated to the Multiware Platform
which is based on the ORB.

Our approach in attempting to solve the “interworking problem™ is to rely on the federa-
tioh establishment phase to define the equivalence between service types that belong to different
“service type domains” (this is done using mapping functions) and to define the searching scope
by means of the agreement of a number of available contexts via federation. This information
is stored in the exporting contract in the exporting trader side and in the importing contract in
the importing trader side.

The contexts of the remote (exporting) trader are associated to the local context space
through the importing contract which is stored in some local context. An importing contract
contains a list of the accessible contexts (for reading and/or writing) of the remote trader and it
always belongs to at least one context of the importing trader. The appropriate context where it
is stored is specified by the administrator in the federation contract establishment process.
Therefore, the relation between the local and remote context spaces is only “logical”, it is nei-
ther reciprocal nor hierarchical and, in fact, this relation is very “free”, in a sense that it “asso-

132 Simpdsio Brasileiro de Redes de Computadores 561

ciates” a context in one trader to a list of contexts in the remote trader, which may be or not part
of a directed acyclic graph structure.

4. RELATED WORK

Many traders are currently being implemented around the world (DSTC - Australia, Uni-
versity of Hamburg, the trader of the BERKOM project, etc.) and some approaches have been
proposed (integration with X.500, implementation over DCE/OSF, etc.). Here, we will com-
ment briefly some aspects related to using the X.500 directory with the trader and some features
of the trader of the BERKOM project.

The Directory presented in figure | can be implemented using the X.500 directory, as sug-
gested in [13], but in our implementation we did not use X.500. Instead, we built a simple di-
rectory using C++ subroutines. As pointed out in [13] there are certain problems which cannot
be solved inside the X.500 service (e.g., type checking) and it is impossible to model some re-
lations between traders forming a federation. For this reason, in our model, the X.500 is suitable
only with a limited “power”, that is, only to store the (possibly distributed) static information
which concerns only one trader. The fact that the structure of the X.500 directory is hierarchical
can impose some undesirable constraints, since the directed graph required by the ODP docu-
ments [15] is a more flexible structure. To sum up, our trader is not based in the X.500 ideas
because we think they may be restrictive in some cases, but we agree that the X.500 could be
used to implement the directory depicted in figure 1.

In the trader of the Y Platform [16] the imports always return only the best service offer.
In other words, their search corresponds to our select. This means that the trader must verify the
availability of the found service in every import in order [0 assure that the client will not need
another option (one that it cannot give, since it returns just “the best” one). Performance aspects
are seriously considered [2] to reduce the importing time (e.g., cache memory). They will be
added into our prototype that was implemented using the model of figure 1. There is no mech-
anism for federation in the analysed version of the trader of the Y Platform.

5. CONCLUSION

The model described in this work is suitable for an Environment for Open Distributed
Processing, where autonomy, decentralization and encapsulation are basic principles. To sum
up, the main contributions of this work are:

 the clear specification of the modules inside the trader leads to an easier implemen-
tation;

« the definition of the basic protocol between the trader and its administrator is very
important (it shall be improved in the future) to allow interworking;

« one administrator may manage several traders in different sites (but inside a certain
domain);

« a scenario for the federation contract negotiation phase was proposed.

Indeed, by now we cannot evaluate how expensive our proposal for interworking can be.
Future work is needed to find out if this approach is reasonable. It will certainly require more
“human interaction” (by means of the administrator). However, some operations of the admin-

istrator can be automated.

562 SBRC 95

The problem of making new service types available to the remote trader is the same prob-
lem of the contract federation updating and in this stage of the work we do not have a proposal
for a solution.

Following this discussion, there are some aspects that need a more detailed definition and
can be subjects for future research :

« formalizing the “mapping function™ concept;

« deciding on how to update a federation contract;

« deciding on how to negotiate the agreement of types, services, scope, etc. in an effi-
cient way (defining the scope of “human interaction™).

Our approach to interworking requires a greater participation of the trader administrator
because most of the details for interworking are agreed in the federation establishment phase.

The Multiware Platform will incorporate the prototype that was implemented following
the concepts of the proposed model.

6. ACKNOWLEDGMENTS
The work reported in this paper was funded by CNPq and FAPESP.
7. REFERENCES

[1] Mendes, M. J.; Loyolla, W. P. D. C.; Madeira, E. R. M. - “Demos: A Distributed De-
cision-Making Open Support System” - 4th IEEE Workshop on Future Trends in Distributed
Computing Systems - Sept. 1993 - Lisbon - Portugal - pp 208-214

[2] Tschammer, V. - “Trading in Open Distributed Sysiems™ - Proceedings of the Invited
Papers - XI SBRC - Campinas - Brazil - May 1993

[3]1 Bearman, Mirion; Raymond, Kerry - *Federating Traders: An ODP adventure”, IFIP
1992, pp 125-141.

[4] “ISO/IEC JTC 1/SC 21/N 7053" - Basic Reference Model of ODP - Part 1: Overview
and Guide to Use

[5] “ISO/IEC DIS 10746-2 - ITU-T Draft Rec. X.902 - Feb. 1994” - Basic Reference
Model of ODP - Part 2: Descriptive Model

[6] “ISO/IEC JTC 1/SC 21/N 10746-3.2 - ITU-T Draft Rec. X.903 - Feb. 1994” - Basic
Reference Model of ODP - Part 3: Prescriptive Model

[7]1 “ISO/IEC 21/N 7056" (Recommendation X.905) - Basic Reference Model of ODP -
Part 5: Architectural Semantics

[8] “ISO/IEC JTC 1/SC 21/N 7047, 1992-06-30"" - Working Document on Topic 9.1 -
ODP Trader

[9] “ISO/IEC JTC 1/SC 21/N 7057, 1991-06-20" - WG7 Project Management Document:
ODRP list of open and resolved issues - June 1992

[10] “ISO/IEC JTC 1/SC 21 - Nov. 1993" Information Technology - ODP Trading Func-
tion

[11] Vogel, A; Bearman, M.; Beitz, Ashley - “Enabling Interworking of Traders™ -
ICODP’95 - IFIP International Conference on Open Distributed Systems 95, Brisbane, Austral-
ia, February 1995 (accepted paper)

[12] Loyolla, W. P. D. C; Madeira, E. R.M.; Mendes. M. J.; Cardoso, E.; Magalhaes, M.
F. - “Multiware Platform: an Open Distributed Environment for Multimedia Cooperative Ap-

132 Simposio Brasileiro de Redes de Computadores 563

plications™ - COMPSAC’94 - IEEE Computer Software & Application Conference, Taipei, Tai-

wan, Nov. 1994
[13] Popien, C.; Meyer, B. - “Federating ODP Traders: An X.500 Adventure” - Proceed-

ings of the International Conference on Communications 1993 (ICC'93), Geneva, Switzerland,

pp. 313-317
[14] Popien, C.; Heineken, M. - “Object Configuration by ODP Traders” - Proceedings of

the IFIP TC6/WG6. 1 International Conference on Open Distributed Processing, Berlin, Germa-

ny, 13-16 Sept. 1993, Publ. North-Holland, pp. 406-408 !
[15] Bearman, M. - “Tutorial on Trading Function™ - Part of ISO/IEC 13235: 1994 or

ITU-TS Rec X.9tr - WG7 Committee Draft ODP Trading Function Standard - Sept. 1994

[16] Popescu-Zeletin, R.; Tschammer, V. and Tschichholz, M. - *Y Distributed Applica-
tion Platform” - Computer Communications, vol. 14, 6 - July/August 1992

[17) Lima Jr., L. A. P.; Madeira, E. R. M. - “A Model for a Federative Trader” - Partici-
pant’s Proceedings of ICODP’95 - IFIP International Conference on Open Distributed Process-
ing 95, Brisbane, Australia, February 1995 - pp. 155-166

[18] Object Management Group, “ORB Architecture”, July 18, 1993, OMG TC Docu-

ment 93.7.2
[19] Open Software Foundation, “Distributed Computing Environment™ - Sept. 1990

