132 Simpésio Brasileiro de Redes de Computadores 533

Parallel Cluster Labeling
on a Network of Workstations'

Felipe Knop?
Department of Computer Sciences Laboratério de Sistemas Integréveis
Purdue University Departamento de Engenharia Eletrénica

West Lafayette, Indiana 47907, USA Escola Politécnica da Universidade de Sdo Paulo
S&o Paulo, SP, Brazil

E-mail: knop@cs.purdue.edu

Vernon Rego
Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907, USA
E-mail: rego@cs.purdue.edu

Resumo

Nos dltimos anos, encorajados pelas rdpidas estagdes de trabalho e também pelos sistemas de
software que visam transformar aglomerados de estagbes em ambientes de programacdo paralela, redes
de estagbes tem sido cada vez mais usadas como engenhos computacionais. Entretanto, redes de
estagbes néo sdo substitutos ideais para supercomputadores, devido a baixa capacidade de interconexdo
fornecida pelas atuais redes locais. Neste artigo, apresentamos EcliPSe, um sistema de software para
processamento paralelo em ambiente heterogéneo para aplicagdes baseadas no paradigma de replicacfio.
EcliPSe também suporta formas mais gerais de processamento paralelo basedo em troca de mensagens.
Neste artigo, apresentamos o uso do sistema EcliPSe na paralelizagio de um algoritmo de rotulamento
de aglomerados. O algorftmo foi projetado para usar algumas funcionalidades de EcliPSe para reduzir
0 tempo gasto em comunicagdo, o que torna o algorftmo adequado para uso em redes de estagdes.
Descrevemos no artigo algumas medidas de desempenho obtidas na execugfo do programa paralelo.

Abstract

In recent years, encouraged by today’s fast workstations and by software systems designed to
transform workstation clusters into parallel programming environments, network of workstations have
been increasingly used as computational engines. Networked workstations, however, are not ideal
replacements for supercomputers, because of the low interconnection capacity provided by current local
area networks. In this paper, we present an application using the EcliPSe toolkit, a system for replication-
based parallel processing in heterogeneous environments. Although primarily designed for replicative
applications (that generally do not require large amounts of communication), Ecl/iPSe can be used for
more general forms of message-passing parallel processing. We describe the use of the toolkit in the
parallelization of a cluster labeling algorithm. The algorithm is designed so that it uses some of EcliPSe’s
features to reduce communication overhead, making the algorithm suitable for execution on workstation
clusters. Early performance results are described.

! Research supported in part by NATO-CRG900108, NSF CCR-9102331, ONR-9310233, and ARO-93G0045.
2 PhD student. Research supported by CNPg-Brazil process number 260059/91.9.

534 SBRC 95

1 Introduction

The last few years have witnessed a dramatic increase in the processing power available on
networked workstations. Many scientific applications that previously required supercomputers
can now be executed in a distributed manner by dividing the computation among heterogeneous
workstations and using a local (or wide) area network as the communication substratum. This
approach has been called “cluster computing”, “metacomputing”, “network-based computing”,
among other names [14]. Using networked workstations in distributed computing is very attrac-
tive, since these are usually much cheaper and more easily available than supercomputers. Also,
the increase in available networked resources available has fostered the development of several
software systems giving support for cluster computing, motivating scientists to move many
compute-intensive programs to networked workstation environments. We mention PYM [13],
HeNCE [1], Isis [2], MPI [4], and EcliPSe [10] as example of such software systems.

At the present time, heterogeneous workstation clusters are not ideal replacements for su-
percomputers, mainly because of their low interconnection bandwidth and reliability. Today’s
relatively low speed networks and communication protocols, not really designed to support clus-
ter computing, yield long communication delays. Consequently, cluster computing applications
are forced to use communication efficiently to avoid communication bottlenecks.

Keeping in mind the limitations of current network environments, we have designed the
EcliPSe toolkit primarily to ease the task of parallelizing replication-based simulation appli-
cations (those where a simulation must be run several times to obtain confidence intervals for
some desired parameters; see [5]). We describe in [7, 8] some performance experiments of
the toolkit using replication-based applications. EcliPSe, however, also provides features that
support more general forms of distributed computing. Here, we plan to demonstrate the utility
of these features.

In this work we use EcliPSe to parallelize the execution of a cluster labeling algorithm 3, 6].
Nowadays, researchers investigate statistical mechanics of polymer solutions. Among the
research questions are [9]: What shape does a long chain molecule take on when it is confined
in something like a porous sandstone? How do polymers move through a membrane ? The
first question is of interest to the oil industry and the second to pharmaceutical companies. The
problem is appraoched by focusing on a linear chain that has a restricted interaction with the
medium; that is, there are forbidden regions, and the chain is confined to other parts of the
medium. This can be modeled by a self-avoiding walk on a randomly diluted lattice (see [11]
for example), which is created by having a grid that is filled with probability p. A self-avoiding
walk is one that moves from a site to a nearest neighbor, avoiding sites that were previously
occupied and also sites that are not filled. One phase of the algorithm is the cluster labeling
phase, where the connected components are identified. Similar models are used in applications
ranging from the determination of the behavior of the DNA molecule to the determination of
the electrical conductivity in composite materials.

132 Simpésio Brasileiro de Redes de Computadores 535

Our resulting parallel cluster labeling program makes use of a workstation cluster. We
evaluate our effort in regard to performance and ease of parallelization.

The remainder of this paper is organized as follows. Section 2 presents the specification of
the cluster labeling problem and a sequential solution. Section 3 describes the EcliPSe toolkit.
In section 4 we describe the approach taken by our parallel solution to the cluster labeling
problem, and also the use of EcliPSe features in the implementation of the program. Section 5
presents the results of initial performance measurements, and Section 6 concludes the paper.

2 Problem Specification

2.1 The Cluster Labeling Problem

Let M be a N x N 2-D mesh, where each element (site) M|z, ;] (0 < ¢,7 < N) can be either
“full” or “empty”. Element M|z, ;] is a neighbor of element Mk, [] iff

(k=:1andl=3+1) or
(k=i1andl=)—1) or
(k=i14+1land!=)) or
(k=i—1land!=j)

(thatis, no “diagonal neighbors” are allowed, although the proposed algorithm can accommodate
such generalizations)
Site M|c, d| is reachable from site M [a, b] if there exists a sequence of “full” sites

So = Mla, b],S,,...,8, = Mle,d]

such that S;;, is a neighbor of S;.

A cluster C(i,j) is defined as a set containing M|z, j| and all elements M|k, [] such that
M[k,l] € C(1,7)iff M|k, 1] is reachable from M (i, j]. The task of the cluster labeling algorithm
is to identify (label) each cluster occurring in M with a unique integer id.

2.2 Sequential Solution

We describe the sequential solution presented in [6].

One intuitive solution to the problem is to traverse M row by row in increasing order,
assigning to M|, j| the same label as M [: — 1, j] if both positions are “full”, or the same label as
M][i,j — 1] if both M|z, ;] and M|z, j — 1] are “full”, as Figure 1(a) shows. It may be possible,
however, that the two neighbors examined are both “full” and have different labels, as shown
in Figure 1(b). This situation occurs when two clusters initially thought as being different are
actually the same. The solution is to re-label one of the two clusters and to mark the new site

536 SBRC 95

le 2e 3o
2 ™ i
i le

: lg |lg

(a) Labeling : the shaded site is labeled "2" (b) Labeling conflict

A
null | null | null [oull | mﬂ 4 null! 4

Label8 — = Labell
Label 6 ——~ Label 1

0 1 2 3 4 5 6 i 8

(c) The "proper” array PY "Full” sites

Number Cluster number

Figure 1: Sequential cluster-labeling algorithm

as belonging to the other cluster. In the example of Figure 1(b), the shaded position is assigned
label 1, and the elements previously belonging to cluster 2 are moved to cluster 1. To implement
the relabeling phase efficiently (avoiding having to search for all elements whose labels must be
changed) an array named proper is created and initialized to nu/l. When elements of cluster
x are moved to cluster y, we execute the command

proper (x] <- y

In a second traversal of M, we update the label of each M|[i, j] by recursively accessing
array proper until we find proper [x] is null, as Figure 1(c) shows. Then we set the label
of M|z, 7] to be x.

2.3 Evaluating the Algorithm

To evaluate the cluster-labeling algorithm experimentally, we must first create a sample 2-D
mesh. This task is accomplished by randomly filling each site with “full” or “empty”, with
a given probability p of having each site filled with “full”. Different values of p result in the
algorithm (sequential and parallel) having different performance.

We measure the execution time of the algorithm as (5 — {5), where ¢ is the time at which
mesh initialization begins, and ¢ is the time at which all cluster labeling ends. To measure the
parallel execution time, the same definition applies, but we must be careful to wait for all the
machines to finish their tasks.

132 Simpésio Braslleiro de Redes de Computadores 537

3 The EcliPSe Toolkit

In this section we examine the execution environment where the parallel cluster-computing
algorithm is implemented: the EcliPSe toolkit. EcliPSe is a cluster computing software system
for heterogeneous networked processors. It has been created primarily to parallelize replicative
applications, being able to obtain excellent performance for such applications. The system’s
design was guided by the following simple goals:

simplicity: little work should be required in modifying a sequential application so that it can
be replicated and executed on several processors in a coordinated manner.

flexibility: although structured for replicative simulations, the system should also allow general
data-parallel computations with interprocess communication.

portability: a distributed application should execute on a variety of architectures, including
multiprocessors and workstations on wide area networks.

scalability: mechanisms that inhibit serializing bottlenecks should be provided, so that appli-
cations can scale well to run on a large number of processors.

fault tolerance: programs should be able to recover from machine crashes and other failures
that affect long-running applications.

The present version of EcliPSe, an improvement over the prototype presented in [10, 12],
has already been used for production applications, such as the work described in [11].

3.1 Structure

A sequential application requires only minimal changes in order to utilize the power of EcliPSe.
This generally entails insertion of EcliPSe primitives in the original source code with some
(usually trivial) rearrangement of the code. Also, the user is required to provide a file containing
the names of the machines to be used, usually (though not necessarily) “idle” workstations.
The end result is a run consisting of a set of concurrently executing computational processes
coordinated by one or more monitor processes. An EcliPSe program must contain the following
components:

Computation code. This is code that is run by each of the computational processes, being
responsible for most of the “actual work” that the application performs. The computation
code usually requires (input) data from and returns (result) data to a monitor process.

Monitor function(s). These are functions executed by monitor processes. A monitor process
is responsible for coordinating the computation done by a set of computational processes,

538 SBRC 95

generating data for and collecting data from these processes, and finally determining when
the computation should be terminated.

Declarations. Each type of data item that is exchanged between monitors and computational
processes must be declared. By declaring data types, the user informs EcliPSe about data
characteristics. Declarations provide the added advantage of making explicit the flow of
information between monitors and computational processes.

3.1.1 Declarations

EcliPSe declarations are handled by a special preprocessor, which allows the user to make
the declarations using a “C-like” syntax. For example, suppose that computational processes
produce an array of 10 double precision numbers for the monitor. The declaration of this data
item is done as follows:

eclipse_decls ({
double type result(10];

The eclipse_decls block defines the region that the preprocessor is supposed to act
on. The preprocessor declares an integer variable called t ype_result that, at run time, will
contain a handle used in all subsequent EcliPSe calls that refer to the double precision array
(analogous to the notion of “file descriptor” in the UNIX systems). Therefore, when an array of
10 double precision numbers is to be sent to the monitor, only the data type handle and a pointer
to the data must be provided. Data is then transmitted in a machine-independent format.

3.1.2 Computation code primitives

The basic primitives available to the computational processes are simple: request _data
obtains data from a monitor, and put _st at sends data to a monitor. Both take as parameters an
(integer) type handle obtained in the declarations part and a pointer to the data to be transferred.
In general, if an application’s sequential code is already available, changing it to work with
EcliPSe 1s a simple task. It suffices to (a) replace the data input code (sometimes obtained from
the keyboard or from a file) by the corresponding request _dat a primitives, and (b) replace
the collection of result and statistics by the corresponding put _st at primitives.

The functionality of the original user code that was replaced by request_data and
put_stat primitives as described above is moved to the monitor function.

3.1.3 Monitor function

All code related to file I/O and to the collection of statistics is placed inside the monitor
function, which is executed by a monitor process. If a sequential application is being ported

132 Simpésio Brasileiro de Redes de Computadores 539

to EcliPSe, writing the monitor generally means moving the above functionality from the
computation code into the monitor. Calls to produce.data (counterpart to request_data)
and collect_stat (counterpart to put.stat) are inserted when needed. Thus, if the
original code read an input parameter from a file, the EcliPSe code will have the file read
operation and a call to produce.data in the monitor function, and a call to request_data
in the computational process.

It is worth noting that it is always up to the monitor to decide whether the computation must
be terminated. The computational processes must stay in an infinite loop, always working “on
demand”. Being the only process with some global notion of the computation, the monitor is
the only process capable of deciding when it is time to terminate the compu tation.

3.2 General features

Without mechanisms for efficient data transfers between computational processes and monitor
processes, it is possible for a monitor process to become a bottleneck for a distributed compu-
tation. EcliPSe provides a set of control mechanisms that prevent such serializing bottlenecks
and network clogs from occurring. These include:

Granularity control. With a small change in a data type declaration, the user may specify a
“grain size” to be used for that type. As a result, subsequent put _stat calls buffer data
instead of sending data directly to a monitor. When the number of buffered data items
reaches “grain size”, the buffered data is sent in a single message. This helps reduce
network usage and also decreases overhead at monitors and at computational processes.

Multiple monitors. If a monitor is being overworked due to high incoming traffic, then the
incoming workload can be distributed among several monitor processes. This is accom-
plished by coding additional monitor functions for the different workloads, specifying
their names in the declarations, and indicating (again, in the declarations) which data
types are to be associated with which monitors. Code for the computational processes
need not change.

Tree-combining. If a monitor were to receive data directly from a large number of computa-
tional processes, the amount of incoming traffic and resulting combining work could make
the monitor a bottleneck for the entire computation. This can happen, for example, when
the monitor averages results it receives from computational processes. To prevent such
a bottleneck from occurring, EcliPSe allows processes to be organized in a virtual tree
structure, with a user-defined topology and the monitor as the root. Each computational
process transparently sends data to its parent in the tree, instead of sending data directly
to the root. Each such parent combines its own results with the results it receives from
all of its children in the tree, applying the same operation that the monitor process would

540 SBRC 96

have applied had the tree-combining scheme not been used. As a result, the monitor at
the root only needs to combine data it receives from its own children.

The user may choose to employ the tree-combining scheme by declaring a data type to
be a “combining type” and by specifying its corresponding combining operation. The
latter may be either a user-written function or one of the standard combining operations
provided by EcliPSe (i.e., averaging, summation, concatenation, and others). No change
is required for the computational processes.

Data-diffusing. The virtual tree structure described above can also be used to speed up
the distribution of data from a monitor to each computational process. Instead of
sending data directly to each computational process, a monitor only needs to use the
produce_data.diffuse primitive on an array of data items to be distributed. Data
is then “diffused” down the tree, with each computational process receiving a data item.
The process behaves like a tree-combining process in reverse. The same primitive can
also be used for an efficient data broadcast. As with tree-combining, the declaration of a
data type must be changed to indicate use of data-diffusing, Code for the computational
processes need not change,

4 Parallel Cluster Labeling

4.1 Outline

The basic idea of the proposed parallel cluster labeling algorithm is to divide the mesh M into
n row-wise strips (n is the number of processors being used) and assign each strip to a different
processor. Each processor then executes the sequential algorithm outlined in section 2.2 on its
strip. This simple approach leads to incorrect labeling, since actual clusters may span more than
one strip. Therefore it is clear that processors must communicate to allow multi-strip clusters to
be correctly labeled.

One re-labeling alternative is to make each processor numbered 2: + 1 send its strip to
processor 2: (2 = 0,1,...n/2), allowing the latter to re-label the clusters in both strips. The
whole procedure is repeated log, times in a tree-combining fashion, resulting in the whole
mesh M being correctly labeled. As it turns out, this approach is clearly impractical for a
workstation cluster, because of the amount of data that must flow over the network for large
meshes. This scheme also requires one processor to hold the final mesh, which may not be
possible for large meshes.

Another alternative, which we adopt, involves the transmission of boundary rows rather than
of the whole strip. When processor ¢ sends its last row to processor ¢ + 1, the latter can build a
mapping table, as shown in Figure 2.

Using this mapping table, processor 7 + 1 can re-label all its clusters. Unfortunately this

132 Simpdsio Brasileiro de Redes de Computadores 541

Figure 2: Example of mapping table

Proc 1

Figure 3: Example of cluster that spans over more than one processor

re-labeling using only information local from processors ¢ and ¢ + 1 is not enough to guarantee
correct labeling. This is demonstrated in Figure 3.

In the example of Figure 3, it is only after gathering information from processors ¢, 7, k, and
[that we find that clusters ¢, and 7, (for example) are actually part of the same cluster. It is clear
that an accurate mapping table can only be obtained after examining all processors.

The main idea of the proposed algorithm is to use the tree-combining mechanism to build and
combine mapping tables rather than whole strips, therefore dramatically reducing the amount
of information that must flow between processors. Implementing tree-combining is made
reasonably simple by using EcliPSe’s tree-combining mechanism: only the combining function
must be written; all communication is handled internally by EcliPSe.

The combining operator @ must be designed so that its result has the same type as each of

542 SBRC 95

its operands. To satisfy this condition, the operands and the result are all defined to be the tuple
i

(£,1,T)

where f is the first row of the operand, [is the last row, and 7' is the mapping table,

Applying the combining operator @ over operandsi;, f5,. ..t resultsint, = t; ® 2, ® ... ® ti,
where t, = (f,, [, t.) is defined as:

= h
i =l

(Uizt.s T) U (Uistok-1 Tl fin)

-

~
I

provided the inputs correspond to contiguous segments. The combined first row is the first row
of the first segment (operand). The combined last row is the last row of the last operand. The
combined mapping table is the union of all input mapping tables with all mapping tables resulting
from the boundaries between each input operand. The mapping table is further discussed in
section 4.2.

With the implementation of @ as an EcliPSe combining function, it remains for each
processor : the task of generating the tuple (f;, /;, Tp): the first and last of its rows and an empty
mapping table. Tuples are then automatically sent to the parent node in the virtual tree topology,
where the combining function is applied. The whole procedure is repeated, and the monitor
process finally receives tuple (fi, [, 1"), with T' being the global mapping table. The monitor
must broadcast 7' to all processes (using the tree-diffusing mechanism), and each of them uses
the global mapping table to re-label all its sites.

The implementation of the algorithm using EcliPSe presents an added benefit; the use of
heterogeneous machines is allowed, since all information is transmitted over the network in a
network-independent format.

Figure 4 shows an example of a cluster found by the parallel cluster labeling program in a
256 x 256 mesh using 4 processes.

4.2 Implementation of the Combining Operator

After initially building a mapping table (Figure 2), we must change it into a format that allows us
to identify all clusters that are actually part of other clusters. The initial mapping table obtained
from the boundary between adjacent processors @ and b is nothing but a sequence of pairs (a;, b;),
where q; is the cluster number of site M, [0,] (first row) and b; is the cluster number of site
M;[(N/n) — 1,i] (last row), provided both sites are “full”. We may assume that a; > b;, since
initially the cluster numbers assigned by each processor are disjoint.

132 Simpd&sio Brasileiro de Redes de Computadores

256 x 256

Figure 4: Example of cluster found by the program

544 SBRC 95

table_transform(table 7°) T’ has entries of type (c;,d;)

Sort T by increasing c;
Foreach (¢;,d;)in T
if¢; = iy
(ciydi) < (max(d;-1, d;), min(d;_;, d;))
if ¢; # d;
re-insert((c;, d;), T') (keep T' sorted)
else
no action (originally (¢;, d;) = (¢;—y, d;—1); this entry will be
later eliminated)
For each (¢;,d;)in T
I — dt'
while 3r such that (I,r) € T
[e—r
d; « last of such r
Eliminate entries (¢;, d;) such that¢; = ¢;_; and d; = d;_,

Figure 5: Algorithm for transforming the mapping table

To allow clusters to be effectively relabeled, forcing them to be correctly coalesced, the final

mapping table must obey the following rules, where (c;, d;) and (c;, d;) are any two elements
of the table:

L Vi 6> d

2. j > 1 = ¢; > ¢ (table ordered by the left-hand-side element; no repeated left-hand-side
elements)

3. V1,7 : d; # c; (a right-hand-side element cannot appear in the left hand side; that is,
a cluster whose number is in the right hand side of the final table does not need to be
re-labeled)

In the final mapping table, it is possible that for some i we have c; and d; belonging to the
same processor, meaning that the final table identifies clusters that one processor previously
computed as different clusters as actually being parts of the same cluster (such as clusters ¢, and
22 in Figure 3).

The algorithm used to transform the initial mapping table into the final mapping table is
outlined in Figure 5. The algorithm’s worst case execution time is O(|7'|?).

We may combine mapping tables by using essentially the same algorithm used to transform
an initial mapping table obtained from two boundaries. The tables to be combined only need to
be concatenated, with the algorithm described in Figure 5 applied to the resulting table.

Besides allowing easy detection of repeated entries, having the mapping table sorted also
helps the last phase of the parallel cluster labeling, where the final table is broadcast to each

132 Simpésio Braslleiro de Redes de Computadores 545

processor and re-labeling takes place. Upon receiving the final table composed of pairs (¢, d;),
each processor determines elements f and [in the table such that the numbers ¢s,¢cf41,...,¢
are in the range of cluster numbers initially assigned to this processor. Then the final re-
labeling is done by traversing the whole mesh and replacing cluster number z of M|z, j] by d; if
x = ¢ € {cf,¢p415...,c}. The searchin {cs, cr41,..., ¢} is performed using binary search.

5 Experiments

The parallel version of the cluster labeling algorithm was implemented with the help of the
EcliPSe system. We report the results of initial experiments conducted on a network of SUN
SparcStations 5. Up to 33 machines were used in the experiments, each of them having 32Mb
of main memory and 120Mb of “swap” space. The communication time (as measured by the
UNIX t raceroute command working with 40-byte packets) between the machines is 3 ms.
The machines were lightly loaded during the experiments.

In the first experiment, we measured execution time as the number of machines used were
increased. In the second experiment, we evaluated the influence of parameter p (probability of
each site in the mesh being “full”) on the program’s execution time. For both experiments we
used a 4096 x 4096 mesh.

5.1 Scalability

The program’s execution time was measured as we increased the number of machines used.
Throughout this experiment the value of p was fixed at 0.5. Figure 6 shows the result. The
number reported on the x abscissa refers to the number of computational processes used,
an additional process was used as the monitor. To help us get a feeling for the program’s
performance, execution time was measured at two points in the program: after the monitor
receives and combines the mapping tables (“collecting mapping tables”) and after all processes
have received the final table and re-labeled its sites (“complete”).

It was not possible to obtain the execution time for only one computational process because
of the prohibitively large memory space required by the program (this actually highlights one
important motivation for parallelizing the algorithm).

For 2 and 4 processes, the execution time suffers because of the lack of physical memory to
label the mesh. Measurements made at particular points of the program indicated that more than
70% of the execution time was being spent paging in or out. For 8 and 16 processes, memory
is no longer a serious problem, because of the smaller sub-mesh size assigned to each process.
For 32 processes, however, communication starts playing a bigger role: not only does the
computation-to-communication ratio decrease, but the increased number of process boundaries
forces a growth in the number of elements of the mapping tables. We believe, however, that

546 SBRC 95

1000 T 1 T

complete ©— 5
collecting mapping table -

T T TrrIr
-

T

100

Execution time (seconds)

rrrreorg

T

10 -4
2 4 8 16 32
Number of processes

Figure 6: Execution times as we increase the number of processes

160 T T T

3

Execution time (sgconds}
&8 2 8 8

I

|

s
[=
|

|

0.2 0.4 0.6 0.8
p (prob of filling each slot)

(=]

Figure 7: Execution time as a function of p

increasing the size of the problem might still result in better speedup for the 32-process case.
Also, as we use a larger number of processes, tree-combining becomes crucial, and the tree
topology used may create a significant impact on execution time.

The lackluster performance of the 32-process case highlights one problem in using a network
of workstations as a computational engine: communication is several orders of magnitude slower
than computation. A significant amount of effort is required in some applications to be able to
extract reasonable speedup in a cluster computing environment.

5.2 Sensitivity to variation in p

In this experiment, we kept the number of computational processes fixed at 8 and varied the
probability p of each site in the mesh being “full”. Figure 7 shows the results.

For small p, the mesh is sparsely populated with only a few clusters. Also the mapping
tables tend to be small, since the number of elements in an initial mapping table is in average
>N (N is the mesh’s dimension), if we ignore the number of repeated entries. As p increases,

132 Simpésio Brasileiro de Redes de Computadores 547

6000 T T T T

numb. elements ©—
5000 —
4000 B
3000 |~ -

2000 - i

1000 |- -

Number of elements in mapping table

0 | 1 1 1

0.2 04 0.6 0.8
p (prob of filling each slot)

Figure 8: Number of elements of the final mapping table as we vary p

the number of clusters increases, as does the number of elements in a mapping table. This latter
number, besides making combining more expensive, causes the last part of the algorithm (where
each strip is re-labeled based on the final mapping table) to take longer.

When p reaches 0.6, however, the clusters tend to coalesce and contain a much larger number
of elements, and the number of distinct clusters falls drastically. Moreover, the mapping tables
start having a large number of repeated entries, which prompted us to eliminate repeated entries
also in the beginning of the algorithm of Figure 5. The result is that the execution time actually
decreases as p increases past 0.6.

Figure 8 shows the number of elements in the final mapping table as p varies. This number
is bound to change if we alter the number of processes, mesh size, or simply the random number
seeds.

6 Conclusions

Today’s typical cluster computer environment is composed of fast workstations (such as the SUN
5s used in the experiments reported in this paper) interconnected with relatively slow networks
(ethernet for our case). Although it is reasonable to expect networks to be faster in the future,
workstation speeds keep improving even more rapidly. This means that parallel algorithms must
be often modified for this environment, even if at an expense in terms of computation.

In this paper, we presented an algorithm for parallel cluster labeling and its implementation
on a network of workstations. The algorithm minimizes the amount of data exchanged between
processes by making them transmit only the information needed for the mapping table. By
using EcliPSe’s tree-combining mechanism, we were able to parallelize combination of mapping
tables. The use of EcliPSe has also alleviated the programming effort required, easing the task
of exchanging data between processes.

Among the issues related to parallel cluster labeling that we intend to investigate, we mention

548 SBRC 95

(1) evaluation of the performance of different tree topologies and (2) use of different cluster
labeling approaches, such as those where we start at a particular site and then attempt to find
other elements of the same cluster by searching the site’s neighborhood.

References

[1] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and R. Wade. HeNCE: a user’s guide
(draft). Technical report, Oak Ridge National Laboratory, Argonne National Laboratory, November
1991.

[2] K. Birman and R. Cooper. The Isis project: real experience with a fault tolerant programming
system. Operating Systems Review, pages 103-107, 1991,

[3] H. Gould and J. Tobochnik. An introduction to computer simulation methods - applications to
physical systems. Addison Wesley, 1988. part 2.

[4] B. Gropp and E. Lusk. A testimplementation of the MPI draft message-passing standard. Technical
report, Mathematics and Computer Science Division, Argonne National Laboratory, 1992.

[5] P. Heidelberger. Discrete event simulations and parallel processing;: statistical properties. SIAM
Journal on Scientific and Statistical Computing, 9(6):1114-1132, November 1988.

(6] J. Hoshen and R. Kopelman. Percolation and cluster distribution. Phys. Rev., B14(3438), 1976.

[7] E Knop, E. Mascarenhas, V. Rego, and V. Sunderam. An introduction to fault tolerant parallel
simulation with EcliPSe. In Winzer Simulation Conference, pages 700-707, December 1994

[8] F Knop, V. Rego, and V. Sunderam. EcliPSe: A system for fault-tolerant replicative computa-

tions. In Proceedings of the IEEE/USP International Symposium on High-Performance Computing,
March 1994.

[9] H. Nakanishi, V. Rego, and V. Sunderam. On the effectiveness of superconcurrent computations
on heterogeneous networks. Journal of Parallel and Distributed Computing, 24:177-190, 1995,

[10] V.J. Rego and V. S. Sunderam. Experiments in Concurrent Stochastic Simulation: The EcliPSe
Paradigm. Journal of Parallel and Distributed Computing, 14(1):66-84, January 1992.

[11] M.D. Rintoul, J. Moon, and H. Nakanishi. Statistics of self-avoiding walks on randomly diluted
lattice. (10 appear) Phys. Rev. E, July 1994,

[12] V. S. Sunderam and V. J. Rego. EcliPSe: A system for High Performance Concurrent Simulation.
Software-Practice and Experience, 21(11):1189-1219, 1991 .

[13] V. Sunderam. PVM: a framework for parallel distributed computing. Concurrency: Practice and
Experience, 2(4), December 1990,

[14] L.H. Turcotte. A survey of software environments for exploiting networked computing resources.
Technical report, Engineering Research Center for Computational Field Simulation, Mississippi
State University, June 1993,

