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Resumo

Existem dois aspectos fundamentais no projeto de sistemas de tempo real que
sao: cumprir com as restricoes de tempo real e ser confidvel. Estes dois aspec-
tos sao conflitantes e geralmente sao pesquisados separadamete. Para proporcionar
tolerancia a falhas por um lado, é necessirio um tempo maior de execug¢ao; mas por
outro lado os sistemas de tempo real requerem que as tarefas sejam completadas
dentro de seus limites de tempo. Existe uma necessidade clara e urgente de mecan-
ismos que sejam capazes de integrar os requisitos de tempo real e confiabilidade.
Desta forma, seria possfvel abordar os requisitos de tempo real e tolerincia a falhas
ao mesmo tempo durante o projeto do sistema. Isto tornaria simples e eficiente o
desenvolvimento de sistemas confiaveis de tempo real. A nossa abordagem se baseia
na idéia que se o sistema é adaptavel entdo a confiabilidade é alcangada mais facil-
mente. Foi desenvolvido um mecanismo, conhecido como ”"Real-Time Recoverable
Action” (RTR-Action), o qual integra os requisitos de tempo real e confiabilidade.

Abstract

There are two fundamental aspects in the design of the real-time systems: to
meet the real-time constraints and to be reliable. These two aspects are in conflict
and usually are researched separately. To provide for fault-tolerance on one side,
there is the need for a greater execution time; but on the other side real-time systems
require tasks to be completed by their deadlines. There is a clear and urgent need for
mechanisms that are able to integrate the real-time and the reliability requirements.
So, it would be possible to address the real-time and fault-tolerance requirements
together during the design of the system. This would make the development of
reliable real-time systems simple and efficient. Our approach is based on the idea
that if the system is adaptable then the reliability is easier to achieve. We have
developed a mechanism, known as Real-Time Recoverable Action (RTR-Action),
which integrates the real-time and the reliability requirements.

*This work was carried out while the author was following a Ph.D. program at the University of
York, England; supported by a Brazilian Government Scholarship through CNPq - Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico.
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1 Introduction

The fast and continuous development of hardware, as well as the demand for more sophis-
ticated and reliable systems, are bringing about the need for a new generation of hard
real-time systems. These newly-required systems are complex, dynamic and adaptable.
Furthermore these emerging systems need to be highly reliable, because of the risk of
human and financial losses, as well as the necessity of long periods without human in-
tervention. Therefore it would be impossible to develop these systems using techniques
currently available [8, 5].

There is a clear and urgent need for mechanisms that would make the development
of reliable real-time systems simple and efficient. These mechanisms should be able to
integrate the real-time and the reliability requirements together. This is to say, the system
must not only deliver the right results but also do so at the right time.

Fault-tolerance is characterised by the introduction of redundancy, overhead, and a
greater execution time. On the other hand, real-time systems are characterised by non-
determinism, time constraints and the possibility of disaster in the case of time violation.
There is an apparent conflict between these two characteristics. To provide for fault-
tolerance on the one hand, there is the need for a greater execution time; but on the other
hand real-time systems require that tasks are completed by their deadlines. Thus making
the system fault-tolerant might, at the same time, increase the probability of more time
errors. As these systems cannot compromise over fault-tolerance, the solution for this
problem is to address both the real-time and the fault-tolerance requirements together at
the design stage of the system.

Predictability can be measured by the fulfillment of the requirements of real-time sys-
tems. Predictability can be defined as the likelihood that the specification and design
assumptions are not violated at run-time, provided the run-time conditions match the
specifications.

There are two possible approaches to make a system predictable:

e considering that the future state of the system can be guaranteed; or

e considering that the future state of the system cannot be guaranteed.

In the first approach, the system uses off-line information to reconcile the competing
demands of the various processes within the system; that is done by creating a schedule
that guarantees that all processes meet their timing constraints. This approach carries
some difficulties such as: a) even if we assume that complete information is available,
we cannot make guarantees about external system behaviour; and b) the scheduler may
require information that is either unavailable or just too difficult to collect; a predictable
schedule only lasts as long as the world remains unchanged. This approach can only be
used within small systems and has a limited use or value in a highly dynamic environment.

The second approach relies on the fact that if we cannot guarantee the future state of
the system, we need to make the system adaptable to possible changes in the environment.
Large and complex real-time systems need to be adaptable, or at least to attempt to be
so to some degree. In an adaptable system, timing constraints on behavioural tasks might
be well specified, but an upper bound on execution time for each process might not be
known. Process timing constraints may not be well understood, or may be so complex
that they may be approximated by very crude and pessimistic approaches.
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Thus, for small systems we can achieve predictability by means of off-line knowledge,
but for a highly dynamic and complex real-time environment, the predictability should
be achieved by system adaptability.

2 Use of Fault-Tolerance in Real-Time Systems

Reliability in real-time systems has been achieved in the past largely by using ad hoc im-
plementation, without a general approach able to deal with a large class of systems. Most
of these systems have been implemented using the recovery block mechanism. Hecht [12]
has proposed a fault-tolerant flight control system using the recovery block mechanism.
Another implementation using a distributed recovery block mechanism was carried out by
Welch [21]. This implementation by Welch was the design of a radar tracking system using
four processors. The Deadline Mechanism [13] was proposed as a suitable approach to be
used within real-time systems. This mechanism basically makes two assumptions: that
the alternate algorithm is correct; and that the worst case execution time of the alternate
block is previously known. The Exchanges mechanism [4] was another mechanism aimed
at cyclic real-time systems. It fits into the old model of cyclic executive, but not into the
current multi-task model which reflects the actual nature of real-time systems.

More recent researches are aimed at using more effectively the resources of the system
as a whole. The redundancy introduced by the fault-tolerant mechanisms can become an
unacceptable waste of resources in large real-time systems. The trend is to better utilise
the slack resources in order to improve the performance of the system. In this direction
there is a work by Bondavalli et al. [1] which proposes the Self-Configuring Optimistic
Programming (SCOP). The aim of the research is to improve the cost-effectiveness of the
fault-tolerant design. It uses dynamic redundancy in order to allow a trade-off among
reliability, response time and throughput according to the needs of the application. This
approach is difficult to be applied in systems with tight deadlines. Another work in the
same direction is the one by Bondavalli et al. [2] which proposes the Fault-Tolerant
Entity for Real-Time (FERT). Its aim is to improve the run-time efficiency of the system
without losing in the reliability requirement. The application modules are separated from
the control module. The control module specifies the interaction among themselves and
the scheduler. A FERT represents a unit of schedulable activity. The designer specifies the
time and functional requirements, ignoring the redundant organisation. So, the FERTs
can be viewed as a redundancy-management layer of design.

There has been also some attempts to integrate the hardware and software fault-
tolerant techniques in order to make an effective use of the CPU resources. Burns et al.
[3] for example, proposed the fail-omission nodes which guarantee that any output each
node produces is correct in the value and time domains. This allows reliability to be
achieved without unacceptable increase in the number of processors used.

The model of the robust object, which can tolerate hardware and software failures, fits
nicely into real-time systems. However, the overhead imposed by this structure makes its
utilisation impossible within hard real-time systems. There is little research into a general
model for the use of robust objects in hard real-time systems.
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3 Real-Time Recoverable Action

In a distributed or parallel hard real-time system processes execute concurrently on dis-
tributed nodes. These processes have to coordinate their operations under time con-
straints. Atomic action has traditionally been used in the design of fault-tolerant systems.
We will extend the concept of atomic action to be used in hard real-time systems.

We are proposing a programming structure Real-Time Recoverable Action (RTR-
Action) which will provide fault-tolerance for real-time systems. The objective is to create
a high-level abstract structure, making it easier to enforce the real-time constraints and
€ITOor Tecovery.

The aim of the proposal is to extend the concept of action to the real-time control
process environment, thus making possible the utilisation of the mechanism to achieve
recovery from violations of the time constraints.

A system is composed of a set of processes which are to be executed on a parallel
system. Each processor may have one or more processes. Processes can be either periodic
or aperiodic. Processes communicate by message passing. Processes may preempt one
another depending on their priorities. There is a fixed number of processes which are
allocated to processors statically. Each process has a dynamic priority associated with it.
This priority changes as the execution of the process is carried out, reflecting the dynamic
behaviour of the system.

The parts of the system to be made fault-tolerant are identified by the use of the
RTR-Action. A sub-set of processes can participate in an RTR-Action by means of an
entry command in the body of each of these processes. The processes can communicate
only inside of the RTR-Action and only with the processes that participate in it. This
set of entry points establishes the recovery line of the RTR-Action and imposes stronger
constraints than those already existing in the processes; these constraints represent the
combination of the conctraints of the set of processes. There is also the declaration of the
exit point of each process in the RTR-Action.

3.1 Computational Model

The characteristics of the next generation of real-time systems are discussed in [20, 6].
These systems are believed to be large, complex, distributed, adaptive, to contain many
types of timing constraints, to operate in a non-deterministic environment and to have a
long system lifetime. The aim in building these systems is to integrate a large number of
subsystems into a distributed system in order to reduce costs, over capacity of computer
power and wiring. To this end, we view a real-time system as one that consists of a set of
hard real-time tasks that must meet all their deadlines, and a set of soft real-time tasks
which if they do not meet their deadlines will not provoke a disaster.

We also assume that: the system is always able to execute at least the hard real-time
set of tasks in the worst situation. This implies that as many of the soft real-time tasks
as possible will also be guaranteed. In complex real-time systems, normally the number
of tasks with hard deadlines is smaller than the number of those with soft deadlines. We
note that such an assumption is a rather minimal one and should be present in systems
where guaranteeing deadlines are done off-line.
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3.2 Communication Model

Real-time actions are little addressed in the literature because of the restrictions imposed
by the overhead. If we talk about real-time action in a parallel environment the factor
of communication delay will be added to the overhead. The atomic commitment limits
the concurrency inside the action. In order to minimise the limitation in the concurrency,
we opted for the use of a parallel system connected by a fast point-to-point network.
The system is composed of a set of processors; where each processcr has a large primary
memory and links of communication to other processors. The class of processor which
has these characteristics is the tranputer-like class. Within this class of processors, the
following ones are currently available: INMOS T4xx, T8xx, and T9xxx; Intel 1860; Texas
TMS320C30 and TMS320C40.
Our parallel system will allow us to extract three major advantages which are:

® Higher communication rates - The processors have high rate communication links,
and moreover, the possibility of parallel communication will increase the communi-
cation rate.

® Scalable number of processors - In order to match the specific capacity of a particular
application we need to adjust the number of processors allocated to it.

e No memory bottleneck - The large primary memory allows us to keep all necessary
data on it.

Each processor has its own local clock. There is an upper bound clock drift and we
will call it e.

3.3 Fault Model

Although we do not discard the importance of fault-avoidance and fault-removal, our tech-
nique is focused on fault-tolerance for real-time systems. More specifically, our technique
is aimed at the logical and the time fault design in process control systems.

As our main objective is to deal with design time faults, we are not supporting node
fault. However, our technique can be used together with other existing real-time fault-
tolerant techniques in order to provide node fault-tolerance. The consequence of not
supporting fault-tolerance for node crash is that we do not need to keep the state of the
processes in a stable storage (disk copy). Instead, the state of the processes is kept in a
protected part of the primary memory.

We assume that there is no malicious fault in our process control environment.

3.4 Timing Model

The time-constraints specification might be enforced either at the compile-time or at
run-time. At the compile-time we have the advantage of not having overhead in the
execution; however, the actual behaviour of the system becomes very difficult to predict.
This approach is not easily applied to systems which have a great number of aperiodic
tasks. On the other hand, the enforcement of the time constraints at run-time has the
advantage of allowing reaction to unpredictable events; however, the price paid is a general
overhead in the system.
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Our approach is to deal with the real-time constraints at run-time. A real-time system
is viewed as a set of processes, where each process is associated with a set of constraints.
The process may contain one or more of the following constraints:

e Criticality - This can be either Hard or Soft. If omitted it is assumed to be soft.

e Start - The absolute time at which the execution should begin. If omitted it is
assumed to be the earliest possible time.

e Deadline - The absolute time at which the execution should/must finish. If omitted
it is assumed to be infinite.

e Duration - The time during which the process executes. If omitted it is assumed to
be infinite.

e Period - The interval between successive executions of a periodic process.

e Priority - A value indicating the importance of this process.

4 Scheduling the RTR-Action

In order to make possible the scheduling of the RTR-Action, there is a need for an adapt-
able scheduler able to respond to sudden changes in the environment. This is due to the
fact that the action is a heavier structure than the simple process. The action is performed
by a set of processes, and this is why there is a need for a scheduler that is more sensitive
to changes.

Existing schedulers work by making a pessimistic assumption about the conditions
of the system, and they lack adaptability whilst relying heavily on an off-line knowledge
of the system. The use of this kind of scheduler for the RTR-Action would render it
extremely inefficient, and the guarantee of the time requirements would be very difficult
to achieve. '

We have designed the Milestone Least Laxity Scheduler Algorithm [16, 18, 17], which
is an adaptable scheduler made possible because of the information passed by the appli-
cation. A solution has been found to the main problem presented by the traditional Least
Laxity Scheduler Algorithm, namely its inability to cope with a transient overload of the
processor. The solution is an alert mechanism which is triggered according to the infor-
mation available about the current execution of the processes. So, the alert mechanism
can foresee the danger of a deadline being missed and then the scheduler can take action
to increase the priority of these processes, in order to reverse this trend.

The RTR-Action is guaranteed indirectly by guaranteeing each of the processes that
participate on it. However, the time constraints of the processes change during the exe-
cution of the RTR-Action, assuming an astringent value which is the composition of the
several individual time constraints.

In a distributed or parallel system, in addition to scheduling the processes, we have to
schedule the communication messages. If these systems are real-time then this schedul-
ing can affect the correct functioning of the system. As our model uses a point-to-point
communication network, instead of using complex protocol, we can schedule the commu-
nication messages straightaway using the laxity of the sender process. Thus, we need just
to place the message in the proper queue classified bv its laxitv. without imposing extra
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overhead. Although the laxity is calculated locally, it has a global significance because
it represents the urgency of the process execution. So, when the message arrives at the
receiver node, it will be dealt with according to its laxity.

5 Basic Operations to Manipulate the RTR-Action

The RTR-action mechanism provides basic operations to coordinate the concurrency and
the management of the state of the participant processes of the action. A particular
part of a process (or processes) can be made atomic using the operations provided. The
processes participating in the RTR-Action are declared in the following way:

RTR-Action Action_Name participating List_of_Participating_Processes

The first process declared in List_of_Participating_Processes is called coordinator and
its role is to coordinate the commitment of the RTR-Action. To define the RTR-Action
we opted to use a set of independent basic operations instead of a rigid and inflexible
structure. The user has the freedom to choose how to construct the RTR-Action, by
defining its structure using the basic set of operations. Each of the processes in the
List_of_Participating_Processes must use a basic operation to declare the entry point of
the RTR-Action. When the block of the action has been executed, the user tests the
acceptance test; depending on the result of the operation the process commits or uncom-
mits. After the process has committed or uncommitted, it must wait for the others to
do the same. An operation is needed to synchronise the commitment of the processes.
This operation blocks the process until all processes have committed or uncommitted. In
case an error is found, an operation is needed to recover the saved state of the processes.
Also an exit operation is needed to leave the structure of the RTR-Action. And finally
an operation to abort the execution of the action is provided.

5.1 Action

This basic operation allows the participant process to begin the RTR-Action. It basically
saves the state of the participant process in order to be able to roll back the computation.
The syntax of this basic operation is:

Action (action_name )

5.2 Commit

If after the execution of the block command of the RTR-Action everything is correct,
then the participant process must tell this to the coordinator. This is done using the
basic operation Commit. This announcement will set the status of the participant process
as COMMITTED. The syntax of this basic operatlon 1s:

Commit (action_name )

5.3 Uncommit

If after the execution of the block command of the RTR-Action an error is detected,
then the participant process must inform the coordinator. This is done using the basic
operation Uncommit. This announcement sets the status of the participant process as

UNCOMMITTED. The syntax of this basic operation is:
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Uncommit (action_name )

5.4 Status

After the participant process has committed or uncommitted the RTR-Action, it needs to
wait for the other participant processes to finish the execution of its basic operation. The
basic operation Action_Status is the synchronisation point of the Action and will return
the status of the whole RTR-Action. This status will be COMMITTED if all participant
processes have committed the RTR-Action or UNCOMMITTED if not. The syntax of
this basic operation 1is:

Action_Status (action_name )

5.5 Restore

If the status of the RTR-Action is UNCOMMITTED the state of the participant processes
must be restored. The basic operation Restore allows backward error recovery. The state
of the process can be restored to the previous state saved at the beginning of the RTR-
Action.The syntax of this basic operation is:

Restore (action_name, alternate_name )

5.6 RestoreF

This basic operation is used in the same situation as Restore, but instead of Backward, it
provides forward error recovery. The state of the process can be restored to a known safe
state. This is done executing the recovery_procedure. The syntax of this basic operation
1s:

RestoreF (action_name, recovery_procedure )

5.7 End

If all processes commit the RTR-Action, then the action can be ended. This is done
using the basic operation End_Action which discards the state of the process and resets
all variables for the next execution of this RTR-Action. The syntax of this basic operation
18:

End_Action (action_name )

5.8 Abort

The status of the RTR-Action can be uncommitted for the second attempt of execution
or some special circumstances can be detected. In this situation, the RTR-Action can be
aborted by using the basic operation Abort_Action. The syntax of this basic operation is:
Abort_Action (action_name, abort_procedure )
The RTR-Action will be stopped and the abort_procedure will be executed. If the
abort_procedure is omitted then the RTR-Action will be stopped and the state restored
to the saved state.
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6 Time Constraints inside the RTR-Action

The real-time constraints are defined in the process and consequently are extended to the
RTR-Action. Table 1 shows the real-time constraints defined in the processes and their
significance in the RTR-Action. There are some constraints that have no meaning in the
RTR-Action because they are imposed at process level. These are the start time, duration
and period. The other three constraints criticality, deadline and priority, which do have
meaning in the RTR-Action, are the composition of the constraints of the processes that
participate in it. So, these constraints inside the RTR-Action are more severe. Take for
example a RTR-Action with three participating processes where the priorities are 1, 5 and
7 respectively. As all the participating processes will leave the RTR-Action at the same
time, processes with priority 5 and 7 may delay the leaving of the process with priority 1.
So, in order to avoid this delay, during the execution of the RTR-Action, the priority of
all participating processes should be equal to the priority of the process with the highest

priority.

[ CONSTRAINT | meaning inside the RTR-Action |

criticality | hard if at least one process is hard, otherwise soft
start time (st) X
deadline (dI) min dI(P1), dI(P2) ... dI(Pn)
duration (dt) X
priority (pt) max pt(P1) ... pt(Pn)
period (pd) X

Table 1: Constraints inside the RTR-Action

where:
X: indicates that there is no meaning to the constraint in this level

7 Backward and Forward Error Recovery

The RTR-Action uses backward error recovery in a way similar to that of Randell’s con-
versation [19]. The run-time environment will enforce the real-time constraints of the set
of processes that participate in the structure. Each of the participant processes has a pri-
mary block which performs the normal processing and an alternate block which performs
a second processing attempt. The limitation of the number of alternates is because the
scheduler must guarantee the primary block and all alternate blocks. With several alter-
nate blocks this guarantee will require an excessive spare time and make the fulfillment
of the time constraints more difficult. Inside the primary and alternate blocks, there is
a mechanism which provides information about the actual execution point that can be
checked with the constraints of the processes.
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The forward error recovery of the RTR-Action is embedded in the basic operation
which restores the state of the participant processes. The state can be restored to the
previous saved one or can be restored by the execution of a specified procedure. For more
details see section 5.5 and section 5.6.

The general structure of the RTR-Action, using backward error recovery with the basic
operations presented in the last section, is as follows:

Action ( Action_Name )

wcet_primary: value;

wcet_alternate: value;

Begin

... primary block

if (acceptance test == TRUE) Commit (Action_Name);
else Uncommit (Action_Name);

if (Action_Status (Action_Name) != COMMITTED)
Restore (Action_Name,alternate_name);

else End_Action (Action_Name);

end

Alternate Alternate_Name

Begin

.. alternate block

if (acceptance test == TRUE) Commit (Action_Name);

else Uncommit (Action_Name);

if (Action_Status != COMMITTED) Abort_Action (Action_Name):
else End_Action (Action_Name);

end

The general structure of the RTR-Action for forward error recovery is similar to that
of the backward error recovery. However, instead of using the basic primitive Restore,
the basic primitive RestoreF must be used having as parameter recovery.name.

The worst case execution time of the RTR-Action is calculated by adding the worst
case execution time of the primary (wcet_primary ) and the worst case execution time
of the alternate block (wcet_alternate). In most of the executions only the primary
block will execute and the execution time of the alternate will then be reused by other
processes. This is done automatically by the adaptable scheduler.

8 Atomic Commitment

The processes which participate in the RTR-Action execute in a parallel system and
must coordinate when meeting the real-time constraints imposed on them. Inside the
RTR-Action there are two attempts of execution of the action block, one by means of
the primary block and another by the alternate block. After the execution of the RTR-
Action, there is a situation such that all or none of the components perform correctly. So
the system will always be left in a consistent state.
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In [15] we have the development of the so called timed atomic commitment. The timed
atomic commitment is the traditional atomic action together with the enforcement of a
deadline on the decision and performance of the action. Because of the fact that the
deadline may expire while the action is still executing they use a more complex protocol
of action commitment than the traditional one.

In contrast, our model provides the guarantee that the hard tasks will meet their
deadlines. So, we have the major advantage of being able to use in the RTR-Action
the same algorithm as that used in the traditional atomic commitment. As a result of
this, some execution time is saved and this represents a precious commodity in real-time
systems.

Each process of the set of processes which participate in the RTR-Action has two
variables associated with it: process_status and action_status. The variable process_status
represents the status of the process which can be COMMITTED or UNCOMMITTED.
The variable action_status represents the status of the RTR-Action which can be UNDE-
FINED, COMMITTED or UNCOMMITTED. This variable is initialised as UNDEFINED
meaning that a decision about the status of the RTR-Action has not been reached. When
a decision is reached and received by this process the variable action_status will be COM-
MITTED if the RTR-Action has committed, otherwise it will be UNCOMMITTED. For
the commitment of the RTR-Action we are using the traditional Two Phase Commit
Protocol [10, 14]. The specification of the traditional atomic commitment is given by
Hadzilacos [11]. This protocol introduces a commit coordinator which in our case corre-
sponds to the first process participating in the RTR-Action. All participant processes in
the RTR-Action have a communication path with the coordinator. The participant pro-
cesses enter the RTR-Action and go into a state such that the participant processes can
either redo or undo the RTR-Action. The participant processes perform the commands
needed and commit or uncommit the RTR-Action according to the acceptance test.

9 Overhead of the RTR-Action

In real-time systems, the overhead inherent in the implementation of fault-tolerant mecha-
nisms apparently conflicts with the need to fulfill the time constraints. In order to validate
our mechanism we need to show that the mentioned conflict was solved. It means that
the overhead imposed by the mechanism is an acceptable value within the real-time en-
vironment. We carried out a simulation of the adaptable scheduler to better understand
its behaviour, and we could do the same with the whole RTR-Action, but we certainly
would not touch on the central point of the mechanism. So, the only option left was
to implement the real-time recoverable action in a hardware parallel platform. To build
the whole operating system was not viable due to the time available. The final solution
was to utilise an industrial real-time kernel and add to it the whole RTR-Action and its
structure.

We have implemented the RTR-Action with the Milestone Least Laxity Scheduler in
the Real-Time Kernel RTXC/MP !. We are running the RTXC/MP kernel in a mother-
board with Transputers (T800 - 20 MHz).

The amount of time used by the kernel to execute the kernel calls of the RTR-Action
was measured in our implementation. The results can be seen in Table 2. These measure-

'RTXC/MP is a trademark of Intelligent Systems International.
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ments were carried out using the timer calls of the kernel which have accuracy on the order
of micro-seconds. More precisely, they were carried out by measuring the time before and
after the execution of the kernel call. The results shown in the table correspond to the
average of these differences.

PRIMITIVE | TIME (microseconds)

Action 128
Restore 233
RestoreF 64
Commit 64
Uncommit 64
Action_status 64
End_Action 64
Abort_Action 64

Table 2: Overhead of the RTR-Action’s Kernel Call in a Single Processor

We can see that for a single processor the overhead imposed by the RTR-action is quite
reasonable. In the case where the action commits, the result is a total overhead of 256
micro-seconds (Action, Commit, End_Action). In the case where the action uncommits
the results is a total overhead of 553 micro-seconds (Action, Uncommit, Restore, Commit,
End_Action).

The overhead of the kernel call Restore depends on the size of the stack of the process.
Table 2 was built using a stack of 128 bytes. In order to better understand the effect of
different stacks on the overhead, we built Table 3.

[ STACK [ TIME (microseconds) |

1 Kbytes 324
512 bytes 275
256 bytes 246
128 bytes 233

Table 3: Overhead of the Kernel Call Restore with Differents Stacks

9.1 Overhead for More than One Processor

Table 4 shows the overhead of the action for the situation where the participant processes
are being executed in more than one processor. The overhead of the kernel calls Action,
Restore, Commit, Uncommit, End_Action and Abort_Action remains the same. The
execution of the commit protocol involves a communication delay. So the Action_status
kernel call has this additional overhead. This overhead is imposed by each participant
process that is running in a different processor.
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In our computational model there are several communication links and this brings the
possibility of parallel communication. In order to our system achieve a better performance
its configuration needs to be in such a way that the commitment protocol can be executed
in parallel. This is to say that each participant process should have an exclusive link that
would allow it to communicate with the coordinator processor.

PRIMITIVE TIME (microseconds)
Remote Commit 344
Remote Uncommit 344
Remote Restore S5TT
[ Remote RestoreF 408

Table 4: Overhead for the remote commit/uncommit

10 Conclusion

The fulfillment of the real-time requirements and fault-tolerance in real-time systems
have been addressed without regard for the integration of these conflicting aspects. The
fault-tolerance aspect can interfere in the fulfillment of the real-time requirements and
vice versa. Hence, it is very difficult to tackle efficiently just one of these aspects; what
is needed is a uniform, high level structure which is able to address the real-time and
fault-tolerance requirements together during the design of the system.

We designed a programming structure Real-Time Recoverable Action (RTR-Action)
which provides fault-tolerance for real-time systems. The objective was to create a high-
level abstract structure, making it easier to enforce the real-time constraints and error
recovery. The atomic action has traditionally been used in the design of fault-tolerant
systems. We extended the concept of atomic action to be used in hard real-time systems,
thus making possible the utilisation of the mechanism to achieve recovery from violations
of the time constraints. An adaptable scheduler was used to help in the detection of the
timing errors, as well as in the scheduling of the whole set of processes including the ones
that participate in the RTR-Action.

We have designed the Milestone Least Laxity Scheduler Algorithm, which is an adapt-
able scheduler made possible because the information passed by the application. The use
of schedulers currently available to schedule the RTR-Action could make it very inefficient
and the guarantee of the time requirements would be very difficult to achieve. Our adapt-
able scheduler is able to cope with a transient over load of the processor. The guarantee
of the hard tasks is achieved by using an alert mechanism, which can foresee the danger
of a deadline being missed and then react by increasing the priority of these processes.

We are using the same adaptable scheduler to schedule the processes as well as the
messages exchanged through the point-to-point communication network. This approach,
which uses the integrated scheduler, proved to be very effective in allowing us to deliver
the RTR-Action with a low overhead.
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The great advantage of our model is that, as we can guarantee the hard tasks, we
do not have the possibility of a deadline being missed during the execution of the RTR-
Action. In contrast with other timed atomic commitments we can use the traditional
atomic commitment instead of a more complex one.

The crucial question of the overhead was kept at an acceptable level. It is not easy
to determine an ideal value which is convenient for everybody and can be used for all
applications; it is application dependent. There is little discussion about overhead in the
literature to be compared.

We can mention the overhead of a real-time action [7]. It does not have support to
recovery from fault, but it uses a reserve of resources. A limitation in this implementation
is the connection of the network by an Ethernet. The overhead of this action is around
70 milliseconds.

Another example of overhead that we can mention is the CHAOS [9] abstract ob-
jects. There are the ObjFastInvoke which involves no transfer of data and the ObjInvoke
which involves the transfer of control or data information. The overheads of the local
sharable object are: for ObjFastInvoke 1.1 milliseconds and ObjInvoke 6.0 milliseconds.
The overheads of the remote sharable object are: for ObjFastInvoke 1.1 milliseconds and
Objlnvoke 6.4 milliseconds.

Another way of looking at this question is by comparing the overhead obtained for
the whole RTR-Action with the overhead of a kernel call of the RTXC/MP. We can use a
kernel call wait /signal handshake between two tasks which spends 159 microseconds. The
overhead of the RTR-Action in the centralised case is around 0.5 milliseconds, which corre-
sponds to approximately three mentioned kernel calls. In the parallel case, the overhead is
around 1.5 milliseconds, which corresponds to approximately nine mentioned kernel calls.
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