132 Simpdésio Brasileiro de Redes de Computadores 319

A Customized Communication Subsystem for
FT-Linda*

Dorgival O. Guedes' David E. Bakken'* Nina T. Bhatti
Matti A. Hiltunen  Richard D. Schlichting

Department of Computer Science
University of Arizona
Tuecson, AZ 85721, USA

E-mail: {dorgival,bakken,nina,matti,rick}@cs.arizona.edu

Abstract

Distributed fault-tolerant systems usually impose much stronger requirements
on the underlying communication protocols than do applications developed without
fault-tolerance in mind. That is true, for example, of applications composed of
processes replicated on multiple hosts, where all replicas must keep the same view
of the state of the communication. This paper describes how the communication
substrate for a specific application with strong communication requirements was
developed. The application, the runtime system for a fault-tolerant version of the
Linda language called FT-Linda, requires a communication substrate capable of
providing ordered atomic multicast, failure detection and membership services. The
implementation relies on a new framework for the composition of event-driven micro-
protocols that is used with the z-kernel.

Resumo

Sistemas distribuidos tolerantes a falhas usualmente impoem maiores exigéncias
sobre os protocolos de comunicagao utilizados do que aplica¢ées desenvolvidas sem o
objetivo de se prover tolerancia a falhas. ‘Tal fato ocorre por exeniplo coin aplicagoes
desenvolvidas replicando-se um processo em varias maquinas, onde todas as véplicas
devem manter a mesima visao do estado do sistema. Este artigo descreve o desen-
volvimento de um protocolo uma aplicagdo especilica, o ambiente de execugao de
FT-Linda, uma versao tolerante a falhas da linguagem de coordenagao Linda. O
sisterna exige umn protocolo de comunicagao capaz de prover detecgao de falhas, iden-
tificagao de participantes e um servigo de “multicast”™ confiavel. A implementagao
se basea em um novo ambiente para composigao de micro-protocolos acionados por
eventos que € utilizado e combinagao com o z-kernel.

*This work supported in part by the Office of Naval Research under grant NOO014-91-J-1015.

tSponsored by Conselho Nacional de Pesquisa (CNPq), Brazil, Process no. 200861/93-0

ICurrent address: Distributed Systems Department, BBN Systems and Techuologies. 10 Moulton
Street MS 6/3D. Cambridge, MA 02138 USA




320 SBRC 95

1 Introduction

Distributed systems are used nowadays in applications that require dependable service,
which poses difficult problems for the implementor of such systems. Although the general
issue of fault-tolerant distributed systems is undoubtedly a hard one, techniques have
been developed that can be used by developers to implement those systems according to
well-known paradigms. Among these techniques, communication protocols that provide
elaborate services like failure detection, membership management and atomic multicast
are some of the important building blocks available [19, 7, 11].

Due to the strong requirements imposed on fault-tolerant systems, such protocols are
usually extremely complex and constrained to provide only a single set of rigidly defined
semantics, which makes them very difficult to construct and use. A new approach for
addressing these problems has been developed in which properties can be implemented as
separate micro-protocols and then configured together to construct a higher-level composite
protocol that provides a customized service. Each part of the service can be implemented
and tuned separately, while the interaction among the parts can be explicitly defined.

This approach makes it easier to develop the services, since each micro-protocol can
be implemented as a separate logical unit, and each unii can be adapted to a certain given
application. Altering the behavior of the protocol to adjust to changes in the required
service is easily done by replacing or adjusting the micro-protocols responsible for a certain
feature. The modularity also makes it much simpler to develop and debug the composite
protocol, since the interfaces among the parts are well defined.

This paper describes a case study in which a customized service is constructed using
this approach for FT-Linda, a version of the Linda coordination language designed for
writing fault-tolerant parallel programs [2]. The service, an atomic ordered multicast
protocol that is used as the communication substrate for the language runtime system, has
proven to be difficult to construct in practice. This has been demonstrated, for example,
by earlier experience with Consul, the protocol suite previously used by FT-Linda [14].
When compared to the original design done with Consul, the system constructed using
micro-protocols is simpler and better tuned to the special characteristics of the FI-Linda
runtime system. It also allows various different aspects of the service to be altered in
order to determine the best implementation for the given system.

The remainder of this paper is organized as follows. Section 2 describes F'I-Linda, its
motivation, the new syntax and semantics, and the communication needs of the runtime
system. Once those requirements have been defined, Section 3 describes the event-driven
protocol composition model and the structure of the intended composite protocol. Section
4 then provides the details of the implementation, with the important data structures and
the outline of micro-protocols. Finally, Section 5 offers some concluding remarks and
discusses possible future work.

It should be noted that the description of FT-Linda presented here was developed
as a short introduction to provide just the background necessary for the analysis of the
underlying communication substrate, the real focus of this paper. A detailed description
of the semantics and implementation can be found in [1].



132 Simpésio Brasileiro de Redes de Computadores 321

2 FT-Linda'

Linda basic concepts.  Linda is a language for parallel programming based on tuple
spaces (TS), a communication abstraction defined as a bag that can hold data elements
called tuples. These tuples are data aggregates that have a logical name and zero or more
values. The tuple spaces are, in essence, a specialized virtual shared memory, in which
the sharing of information is guaranteed by the runtime system.

Processes can use TS to communicate and synchronize with other processes by ma-
nipulating tuples. Such manipulation is done through a set of basic operations to deposit
and withdraw tuples from a TS. These operations are out, which deposits a tuple, and in,
which withdraws a tuple with specified characteristics if available and blocks otherwise.
Other operations are defined, like rd, inp and rdp, but these are basically adaptations of
in and out. Figure 1 shows how Linda can be used to implement @ worker process under
the bag-of-tasks paradigm [5].

process worker
while true do
in(work” , ?7subtaskurgs)
cale(subtask_args, var resultargs)
for (all new subtasks created by this suhtash)
out (“work”™, new_subtask_args)
out ("result” ,resultuargs)
end while
end proc

Figure 1: Bag-of-Tasks Worker

Problems with failures.  The standard definition of the langnage and its operations
does not address the effects of processor failures, however. There are essentially two
deficiencies in the model that make it susceptible to failures:

Lack of tuple stability: The language does not define how the runtime system
must store tuples in order to create the illusion of shared memory. Many cur-
rent implementations use some kind of signature to partition tuples among the
participating hosts. On these systems. the failure of a host may canse the loss
of an unpredictable subset of tuples in the I'S (8].

Lack of sufficient atomicity: Only the basic operations are delined to be atomic
in Linda, what means intermediate states during the execution of a series of
operations can be seen by other processes. If the processor on which the oper-
ations are being execnted fails before the completion of the task, the 'S may
be left in an indeterminate state. For example, in figure 1, no result would be
output to IS if the processor hosting the worker fails while executing calc.

FT-Linda extends the original Linda model with stable tuple spaces and atomic exe-
cution of sequences of operations to provide improved support for building fault-tolerant
applications. The model assumes that processors suffer only fail-stop failures (18], where
the runtime system provide failure notification by depositing a distinguished failure tu-
ple into TS, Currently it assumes that processors remain failed for the duration of the
computation and are not reintegrated back imto the system.

YA derailed description of the language and its implementation can be found i (1]




329 SBRC 95

2.1 Syntax and semantics

To address the deficiencies mentioned above, FT-Linda includes provisions for defining
stable T'Ss and a new syntax that allows a series of T'S operations to be defined as atomic,

Stable tuple spaces.  The original Linda language defined only one globally visible
TS that is shared by all applications. After that, many different studies have suggested
various features to allow multiple TSs to be defined under the control of the application
[8, 6]. That feature is incorporated in FT-Linda, and is further extended with attributes.

Tuple spaces may be assigned special attributes that define how they behave in the
presence of failures, among other issues. Currently these attributes are resilience and
scope. Resilience specifies the behavior of the TS in the presence of failures, and can be
set as stable or volatile: The first guarantees that the TS will survive processor failures,
while the second makes no such guarantee. The scope attribute indicates which processes
can access the TS, and can be shared (all processes may access it), or private (only one
process has access).

Stability is achieved by replicating tuples on multiple machines, which is also used to
implement a shared TS since processes on any host may require access to its tuples. On
the other hand, volatile private TSs may be implemented locally to the owning process,
providing a faster access to a local work area where temporary results may be stored. As
described below, new atomic operations are provided to move the contents of a local '1'S
to a shared /stable one when a complex series of operations is finished, providing one of
the ways to ensure atomicity.

One more semantic extension provided by F'I-Linda is that tuple spaces preserve the
order of insertion. That is, tuples in a given TS are always ordered in this way by the
runtime system, a guarantee that can be exploited to good effect by many applications.

Failure detection and notification  When the system detects a host failure, it an-
tomatically creates a failure tuple in a shared stable T'S available to all processes in the
application. Each application must define a process responsible for watching for those
tuples and starting the adequate recovery procedure.

Atomic guarded statements (AGS). An AGS is a new construct in the language
that allows a programmer to specify that a group of tuple space operations be executed
atomically, potentially after blocking to wait for a condition to hold. This provides all-or-
none execution semantics despite failures or concurrent access to ‘I'S by other processes.

The simplest case of the AGS is < guard = body >  where the angle brackets
denote atomic execution. The guard can be any blocking Linda operation or true, and
the body is a series of in, rd, out, move or copy operations, or a null body denoted by
skip.

A process executing an AGS is blocked until the guard snceceds, at which point. the
guard and body are executed as a single atomic step. Only the guard expression can
block: if the body has any in or rd operation that would block, an crror is reported.

A disjunctive case is also defined in which more than one guard /tuple pair can be
specified. A process executing such a statement blocks until at least one of the guards
succeeds, at which point one of the pairs is chosen to be executed atomically.

Atomic tuple transfer.  F'1-Linda provides primitives that allow tuples to be moved
(move) or copied (copy) atomically between I'Ss.



132 Simpésio Brasileiro de Redes de Computadores 323

An example. As mentioned above, these new FT-Linda features can be used to
guarantee that other processes see a given task as atomic. For example, consider the bag-
of-tasks application. After withdrawing a work tuple, a worker can generate a variable
number of new tasks by creating new work tuples, followed by creation of a result tuple.
In order to make these actions atomic, the description of the task can be removed from
the TS only in an operation that atomically deposits any new work tuples and the result
tuple. In this way, a failure while the worker is computing the result does not cause the
TS to be in an inconsistent state. A possible solution is shown in figure 2, where the
worker uses a local TS to create the new tasks and result, and then moves all the tuples
atomically to the shared TS when done. Due to the atomic nature of the move operation,
either all tuples appear in the TS at the same time, or, if the worker’s processor fails
before the last AGS can be executed, none do.

process worker ()
TSseratch := tscreate(volatile, private, my.lpmd() )
while true do

( in (TSmain, “subtask”, ?subtask.args) =
out (T'Smain, “inprogress”, my-hostid, subtask.args) )

calc (subtask.args, var res.args)

for (all new subtasks created by this subtask)
out(TSscrateh, “subtask”, new_subtask.args)

out (T'Sseratch, “result” ,resargs)

{ in(TSmain, “in.progress”, my.hostid, subtaskargs) =
move (TSscratch, TSmain) )

end while

end worker

Figure 2: Dynamic Fault-Tolerant Bag-of-Tasks

Another important aspect of this implementation is the replacement of the initial work
tuple by an in_progress tuple. This in_progress tuple can be used by a monitor process to
recreate the work tuple in case the worker fails before completion. Such a monitor would
execute in a loop waiting for failure tuples created by the runtime system when a host is
detected to have failed. When such a tuple is found, it provides the 1d of the failed host,
so the monitor can remove any in_progress tuples from that host and replace them by the
original work tuples. In this way, all interrupted tasks can be processed later by other
workers.

More details on this and other examples can be found in (1, 2J.

2.2 FT-Linda implementation

Given the semantics just described, the challenge is to provide a reasonable implemen-
tation of atomic execution and stable TSs. The choices for the second range from using
hardware assistance to approximate the failure-free behavior of stable storage to replicat-
ing the values (tuples) in volatile memory across multiple processors, so that failure of
some of them can be tolerated without loss of information. Since the situation at hand also
requires that tuples be shared among different processors, replication is a better choice.




324 SBRC 95

To implement replicated TSs we use the replicated state machine approach (SMA) [20].
In this technique, a fault-tolerant application is implemented as a state machine that
contains state variables and makes modifications in response to commands from other
state machines or external sources. Resilience to failures is achieved by replicating the
state machine on multiple independent processors and using an ordered atomic multicast
to deliver commands to all replicas reliably and in the same order. This ordered delivery
guarantees that all replicas execute all commands in the same order. Provided that
the commands are deterministic and executed atomically in relation to each other, state
variables of all replicas are kept consistent. The SMA is the basis for a large number of
fault-tolerant systems [4, 14, 17].

Achieving atomicity can be done by exploiting the characteristics of the SMA, since
each command is executed by a state machine atomically and the underlying atomic
multicast guarantees that all commands are executed in the same order. Hence, a simple
scheme is to treat the entire sequence of TS operations in an AGS as a single command to
the state machines. Operations are disseminated in a single multicast message, which is
executed by all state machines as dictated by the ordering realized by the atomic multicast.
Since all replicas receive and execute all commands in the same order, they keep the same
view of the T'Ss.

The implementation of FT-Linda is divided into four major parts:

* A pre-compiler, which translates a C program with F‘I-Linda constructs into C
generated code (GC).

® The FT-Linda library (FTlib), which is responsible for handling the communication
of the GC with the rest of the system and for implementing local TSs, improving
their performance.

» The TS state machine (TSSM), which handles replicated copies of the TSs on each
host using the SMA.

e The communication substrate, which provides the atomic multicast service to the
TS state machines in the system.

The relation among the components is shown in figure 3. Requests from the GC are
passed by the TSSM directly to the substrate to be distributed to all replicas. T'he state
machines execute TS operations based on the order provided by substrate, with the replica
on the same host as the process that initiated the request being responsible for handling
any return values.

In our design, the TS state machines and the communication substrate are imple-
mented as protocols in the z-kernel, a system for composing network protocols [12]. The
state machine can be implemented easily nsing the abstractions provided by the =kernel;
specifically, the arrival of a message causes the proper operations in the state machine to
be invoked. The reader is refered to [1] for a detailed description of this implementation.
The communication substrate, on the other hand, is much more difficult to implement
given that it incorporates a great variety of tasks on which the entire system depends.

One approach to implementing the communication substrate is to use an available
atomic multicast protocol, like Consul [14], and just provide an interface between it and
the TSSM. Another approach is to develop a new protocol specially tailored to the needs
of the system. This approach has the advantages of allowing a better customization of
the system, and if done in a modular way, can be altered and extended as necessary for



132 Simpdsio Braslleiro de Redes de Computadores 325

Figure 3: Runtime Structure

future extensions to the language. The remainder of this paper will show how we have
explored this approach.

3 The communication subsystem

A protocol providing an atomic multicast service can be abstractly decomposed in a set
of related tasks. The implementation can then be based on such a decomposition. As the
experience with Consul shows, this can make the development much easier to understand,
although the interaction among the parts can be difficult to model using the z-kernel
[15]. It was with these considerations in mind that a new approach for implementing
fault-tolerant services using micro-protocols and event-driven execution was developed.

3.1 Event-driven protocol composition®
A communication substrate with the required properties is realized using a model for com-
posing fine-grained software modules [9] and its associated z-kernel based implementation
platform [3]. The basic building block of this model is a collection of micro-protocols, each
of which implements a well-defined property. A micro-protocol, in turn, is structured as
a collection of event handlers, which are procedure-like segments of code that are invoked
when an event occurs. Events can be either user or system defined, and are used to signify
changes of state potentially of interest to the micro-protocol. For example, a commonly-
used event for building network protocols like RPC is “message arrival.” When an event
is detected, all event handlers registered for that event are invoked; events can also be
generated explicitly by micro-protocols, with the same effect. The invocation of event
handlers due to the occurrence of a single event can be sequential—performed sequen-
tially using one thread of control, or concurrent—performed concurrently with each event
handler given its own thread of control. The invocation itself can be blocking, where the
invoker waits until all the event handlers registered for the event have finished execution,
or non-blocking, where the invoker continues execution without waiting.

Event registration, detection, and invocation are implemented by a standard run-
time or framework that is linked with the micro-protocols. The framework also supports

2Text for this sub-section appeared previously in [10]




326 SBRC 95

shared data (e.g., messages) that can be accessed by the micro-protocols configured into
the framework. The object formed by the linking of a collection of micro-protocols and
associated framework is known as a composite protocol. Once created, such a composite
protocol can be composed in a traditional hierarchical manner with other z-kernel proto-
cols to form the application’s protocol stack. To accomplish this, a composite protocol
exports the standard z-kernel Uniform Protocol Interface (UPI), even though its internal
structure is richer than a standard z-kernel protocol.

An example composite protocol is depicted in Figure 4. In the middle is the framework,
which contains a shared data structure—in this case a table of pending RPC calls—and
some event definitions. The boxes to the left represent micro-protocols, while to the right
are some common events with the list of micro-protocols that are to be invoked when the
event occurs.

(_ Failure Detection (FD) o] Context graph:

(Membership Check MC) Jo— Message from Net [LMG"LFD

( Context Handler (CH) | Evens: | | Msg added 1o graph +{T0)
~{FD]

Timeout
Total Ordering (TO)
L = ]-. . Message Delivered (+{ CH]
4w Application

|

Figure 4: A composite protocol

The following operations are provided to micro-protocols by the framework for dealing
with event$.

o register(event_name,event_handler_name, priority), which is used to request that
the framework invoke handler event_handler.name when event_name occurs. If the
event is sequential, the event handlers registered for the event are executed in priority
order based on the priority value each supplied when they registered. If omitted,
the value defaults to the lowest priority.

e trigger(event.name,arguments), which is used to notify the framework that event
event_name has occurred. The framework will then execute all the event handlers
registered for this event, passing arguments in the invocation.

e deregister(event.name,event_handler.name), which is used to reverse the registra-
tion process.

® cancel_event(), which is used to notify the framework that the current event is to
be cancelled, i.e., the remaining event handlers registered for this event need not be
executed. This operation is mostly useful for sequential events.

The model also has a provision for events triggered by the passage of time. ‘Lo request
this, a micro-protocol uses the register procedure with TIMEOU'I" as the event name and
specifies the time interval as the priority parameter. With the exception of the TIMEQUT



132 Simpdsio Brasileiro de Redes de Computadores 327

event, event handlers remain registered for their event until explicitly deregistered, so that
each may be invoked any number of times. Event handlers registered for the TIMEOUT
event are executed only once after the timeout period has expired.

3.2 Design overview

A first version of FT-Linda used Consul as the communication substrate. Based on that,
we knew that the services it provides would be enough for the needs of the runtime
system, but we wanted to experiment with a more custom-tailored protocol. From the
early observations with the system, some facts were verified:

e In order to guarantee the proper operation of all non-failed copies of the TSSM,
atomic ordered multicast is mandatory.

e The TSSMs are responsible for generating failure tuples in case a host is found to
have failed, so failure detection and notification is necessary.

e The current FT-Linda implementation does not allow the re-integration of failed
hosts, so the membership protocol can be a simple one: Hosts can only leave the
group due to a failure.

e Once a message is passed to the TSSM, no new requests concerning that message
will ever happen, which makes message handling much easier than in Consul.

Given these observations, then, the tasks that need to be performed by the communi-
cation substrate can be described as follows:

Validity check: Messages that are not from members of the group must be filtered out.

Monitoring: In order to implement failure detection, each host with an instance of the
protocol must be able to detect when another host has been silent for longer than a
fixed interval.

Liveness: To make it easier for the monitoring task to take decisions about the silence
of a host, a micro-protocol must be responsible for ensuring that each host sends
some message from time to time, even if the application does not.

Membership check: Information about a host that has not been transmitting for some
time must be exchanged with other hosts before some agreement is reached about
the state of a host suspected to be down.

Context graph handling: As in Psync [16], the ordering of messages is achieved by
first determining their causal ordering [13]. That information is kept as a conlext
graph representing the causal dependencies between messages.

Reliability: The substrate may have to keep track of lost messages and be able to request
their retransumssion.

Ordering: The causal ordering represented by the context graph is not enough to guar-
antee that all messages will be delivered in the same order to all hosts, so this causal
order must be be extended to a total order.

Stability: As discussed below, stability is a key concept when defining a stronger ordering
among messages, since it determines which messages have already been received by
the application at all hosts.

The exact implementation of these abstractions is discussed in the next section.




328 SBRC 95

4 Implementation

The previous section detailed the communication service required by the F'I-Linda run-
time system. This section describes how such a service can be implemented using the
event-driven composition framework. When working with the framework, we can imple-
ment each of the tasks previously identified as a separate micro-protocol and use events to
define the relations among them. The algorithms involved are directly derived from those
developed for Psync and Consul, and are described only briefly. The reader is directed to
(14] and [16] for a more detailed discussion.

4.1 Data structures

The implementation is built around three main data structures, usually handled by spe-
cific micro-protocols, but of importance for the correct operation of the entire composite
protocol. The first is the context graph, which is used to keep track of the relative posi-
tions of the messages based on causality. It is the main structure to hold messages within
the substrate before their position in the ordering can be determined.

The second data structure is used to maintain the group of hosts currently taking
part in the FT-Linda computation. As might be expected, this is handled mostly by the
micro-protocol responsible for keeping track of group membership as execution proceeds.

Finally, we have the message data structure. It contains the message data itself,
which is usually opaque to the framework, and the message attributes, which represent
information related to the message used by the micro-protocols. These attributes are
transmitted between instances of the protocol as part of the message header, and are the
following in this case:

sender_id: The identification of the sender of the message.
msg.num: The number assigned to a message by the sender.

msg._direction: Needed to differentiate between messages traveling up and down the
protocol graph.

msg._type: Whether the message contains data from the application (''SSM), or liveness
and membership information, among others.

predecessors: The messages that precede a given message in the context graph. They
are defined as the most recent messages from each host in the local graph at the
time the TSSM passes a message down Lo be transmitted.

successors: Messages that immediately follow a given one in the graph. Such information
is filled in as the context graph is built and is used to determine when a message
becomes stable, that is, when all its successors are known.

pred_msg_num: When a message is received from the network, it carries the msg.num
of the predecessor message from each host. It is the job of one of the micro-protocols
to fill in the predecessors attribute based on this information.

predecessors_needed: Used to keep track of how many predecessor messages have al-
ready been received by the framework. This is used to determine when a niessage
can be added to the context graph.



132 Simpdsio Brasileiro de Redes de Computadores 329

successors_received: Similar to the above, this attribute is used to keep track of how
many successors to a message have been received in order to determine when a
message becomes stable.

stable: Whether the message is stable or not.

sorted: Marks messages whose position in the ordering has already been defined.

In addition, the framework provides the abstraction of a message bag, which holds
all messages currently within the composite protocol, and can be accessed by all micro-
protocols. Attributes are associated with messages right before they are entered into the
bag, although some attributes may have their values set only later by a micro-protocol.

4.2 Events

The main events used by the atomic ordered multicast are listed below; for simplicity, we
assume all events are blocking and sequential. Other events related to garbage collection
procedures are not represented here.

MSG_FROM_APPLICATION(msg): Triggered as soon as the TSSM requests that a mes-
sage be multicast.

BROADCAST_RECEIVED(msg): Triggered when a message is received from a lower level
protocol due to a multicast from another host.

BROADCAST_EXECUTED (msg): Triggered each time a message is passed to the lower
level protocol for delivery in multicast mode.

MSG_INSERTED_INTO_BAG(msg): Triggered by the framework each time a message is
added to the bag.

PREDECESSORS_NEEDED (msg): Triggered if a micro-protocol verifies that any of a
newly arrived message’s predecessors have not been received yet.

PREDECESSORS_RECEIVED(msg): Iriggered by the micro-protocol in charge of re-
transmission requests when the requested predecessors have been received.

MSG_ADDED_TO_GRAPH(msg): 'Iriggered for each message that is added to the graph.

MSG_STABLE(msg): Iriggered when an unsorted message becomes stable, enabling the
sorting process to proceed.

MEMBERSHIP_STABLE(msg): Membership messages may have a different criteria for
being declared stable, which makes a separate event necessary.

SUSPECT_HOST.DOWN (host): Triggered by the monitor micro-protocol when no mes-
sage from a host is received during a monitoring interval.

MEMBER_FAILED(host): ‘Iriggered by the membership micro-protocol to inform others
when a member is removed from the group.

There are also some events triggered by timer expirations, which are used when a
micro-protocol has to wait for some time before taking an action. Those are usually
private to a specific micro-protocol and will be mentioned when the micro-protocols using
them are described.




330 SBRC 95

4.3 Micro-protocols

We proceed now to describe the micro-protocols implemented for the atomic multicast
composite protocol. When necessary, the protocols are presented as pseudo-code, whose
features should be clear from the text. Some procedures may be mentioned without their
code being presented, but their semantics should be clear from their names and contexts.

4.3.1 Validity

Each message delivered to the framework must be checked to make sure it is valid. A
valid message must have a reasonable format and come from a host that is known to be
in the group of currently active hosts. The micro-protocol must also detect and discard
duplicate messages.

The action of this protocol is triggered by the events MSG.FROM_APPLICATION and
BROADCAST.RECEIVED, which provide notification about messages entering the frame-
work. Once a message is accepted as valid, its attributes are computed and it is in-
serted in the bag of messages provided by the framework. This in turn triggers the
MSG.ADDED.TO.BAG event in other micro-protocols.

micro-protocol liveness
var msg.sent: boolean;

event handler HEARTBEAT TIME
begin
if not msg.sent then
msg = build_message( type = HEARTBEAT );
insert.into._bag(mnsyg);
end
msg-sent = false;
end
event handler BROADCAST_ EXECUTED(C wnsg )
begin
msg-sent = true;
end

initialize: set_timer_event( HEARTBEAT T'IME, repeat, "interval length" );
end liveness

Figure 5: Liveness micro-protocol

4.3.2 Liveness

Each message actually passed to the lower level protocol for delivery is seen by this micro-
protocol when the BROADCAST.EXECUTED event gets triggered. Liveness keeps track of
the last time a message was sent. If more than a given time passes without any message
being sent, this micro-protocol is responsible for producing a heart-beat message in order
to let other hosts know that it is still alive. The pseudo-code can be seen in figure 5.
The detection of a timeout is done by means of a LIVENESS.TIMEOUT event that is
set and used by this protocol. The BROADCAST.EXECUTED event handler sets a flag
each time a multicast is executed, and a LIVENESS TIMEOUT cvent handler is triggered



132 Simpésio Brasileiro de Redes de Computadores 331

periodically to verify the flag. If no multicast is executed during a whole interval, it builds
a heart-beat message and adds it to the bag, which will trigger MSG_INSERTED_INTO.BAG
and make the message available to other protocols that may have to handle it before it
is actually multicast. That is done to ensure that each message sent carries information
about the current state of the context graph.

4.3.3 Monitor

This is, in a certain sense, the “complement” of the previous protocol. It must keep track
of all messages received from the lower-level protocol in order to verify which hosts have
sent messages during the previous monitoring interval. Each time a message arrives, a
MSGINSERTEDINTO.BAG event handler marks the sender host as alive for the current
interval.

A timer is set to trigger MONITORINTERVAL events periodically. The event handler
then verifies if there were any hosts from which no messages were received during the
last interval, and triggers a SUSPECT_HOST.DOWN event for each of them. This starts a
membership agreement round to reach agreement on whether the hosts have really failed.
This last task is perforined by the membership micro-protocol. ‘I'he pseudo-code for the
monitor is shown in figure 6.

micro-protocol monitor
var msg.received_fraom: array of hosts;

event handler MONITOR_INTERV AL( msg )
begin
for host = "all hosts in the group”™ do
if msg.received.from|msg.attr sender_id|

then trigger( SUSPECT_HOST.DOW N, msqg.attr.sender_id ); end

m..eg,,rf:nei:'mf_frmn{'m..sg_rrttr,sﬁnffﬂr_id] = false;
end
end
event handler MSG_INSERTED_INTO_BAG(msg)
begin
ms _r,r._rﬂr:a-n.-ﬂd_frnmi?n.sg.uttr.sen.eter_uil = true;
end

initialize: set_timer_event( MONITOR_INTERV AL, repeat, Tinterval length™ );
end monitor

Figure 6: Monitor micro-protocol

4.3.4 Membership

In this application, the membership protocol must be able to identify and remove failed
hosts from the group, but not re-integrate them. Given these requirements, the protocol
starts with an initial list of members provided at initialization time and just removes failed
hosts from it as appropriate. As far as detection and removal of failed hosts is concerned,
it implements the same membership protocol as used in Consul. This is, when a host
receives a suspect down multicast message stating that a given host is suspected to be




332 SBRC 95

down, it checks its monitor to determine if it has received any message from the suspect
host during the last monitoring interval. If so, it immediately multicasts a reply message
agreeing that the host is down (ack message); if not, it multicasts a nack message.

micro-protocol membership
var group.members, suspectedodown: list_of_parts;

event handler SUSPECT_HOST_DOW N(who)

begin
add_part( who, suspected.doum );
msg = build.message( type = SUSPECT_DOW N, suspect = wha );
insert_into_bag(msg) ;

end

event handler MSG_INSERTED_INTO_.BAG(msg)
begin
if ( msg.attrtype == SUSPECT_DOWN ) then
if ( heard_from_host(msg.attr.suspect) )
then reply_type = NACK_.DOWN ;
else replytype = ACK_.DOW N ; end
new.msg = build message( type = reply_type, suspect = insg.attr.suspect );
insert.into.bag( new.nsg );
end
end

event handler MEMBERSHIP_STABLE(msyg)
begin
delete_part( msg.attr.suspect, su .up:—.rf.;—‘r!_.rhm-'n )
if ( “all suceessors are ACK_DOWN™ ) then
delete_part( nsg.attr.suspect, grouwpnemnbers )
trigger( MEMBER_FAILED, wmsgatir.suspect ) ;
end
end

export method memberdist(): list_of_parts;
export method valid_host( host ): boolean;
export method group.member( host ): boolean;

initialize: "read list of group members from file”
end membership

Figure 7: Membership micro-protocol

A membership voting round is started by a host if the SUSPECT_.HOST_DOWN event
is triggered. The corresponding event handler assembles a suspect down message o be
multicast. When such message becomes stable for membership purposes, a MEMBER-
SHIP_.STABLE event triggers a handler that verifies replies. If all are ack messages, the
group has agreed on the failure of the host, which is then marked as down and removed
from the group. Otherwise, some host has received a message from it in the recent past
and it is considered alive.

The code itself is quite simple, since the decision about when agreement is reached is
transferred to the stability micro-protocol. Membership itself ouly gets activated when
a host becomes suspect and when agreement is reached. T'he pseudo-code is in figure 7.



132 Simpésio Braslieiro de Redes de Computadores 333

4.3.5 Context graph

The local view of the context graph is implemented by this micro-protocol. Its sole
function is to receive incoming messages and insert them in the graph if possible. If any
of the message’s predecessors is missing, it transfers the message to the reliability micro-
protocol, which is responsible for retrieving missing messages. When a pending message
finally has all its predecessors in place, it is added to the graph. The pseudo-code is shown
in figure 8

micro-protocol contexrt_graph;
var graph_leaves, oldest_not_stable: array of msg;

private method add_to_graph( msg );
begin
graph leaves|msg.attr.sender_id| = msg;
for host = “all hosts in the group”™ do
predecessor = msg.attrpredecessor s|host];
j'n'erier:essm.attr.sucﬂesmﬂslmsg.attr.sandar_&d] = msg,;

end
end
event handler MSG_INSERTED_INTO.BAG(msg)
begin
msg.attr predecessors_needed = “size of group";
if ( Hi..'.'g,rl.th’.dwil'hrm == UP )
then for host = “all hosts in group ™ do

masg.attr.predecessorslhost] = msg_get (msg.attr.pred_msgnumlhost]) ;
msg.attr.predecessor s.needed--;
end
else for host = “all hosts in group” do
masg.attr.predecessor s|host] = graphleaves|host]; msg.attr predecessor s.needed--;
end
end
if ( msg.attr.predecessors_needed )
then trigger( NEEDS_PREDECESSORS, msg );
else add_to.graph( msg ); trigger( MSG.ADDEDIO.GRAPH, msg ); end
end
event handler PREDECESSORS_.RECEIV ED(msg)
begin
add.msg.to_graph( msg ); trigger( MSG ADDEDITOGRAPH, mnsg );
end
event handler MSG_STABLE(msg)
begin
host = msg.attr.sender_id; oldestnot_stable[sender| = msg.attr successors|sender];
end
end

Figure 8: Context graph micro-protocol

‘There are also some event handlers responsible for removing messages from the graph
that have already been delivered to the application, but those have been omitted for
brevity.




334 SBRC 95

4.3.6 Reliability

Since the lower level transport protocol may not be reliable, messages may not be received
by a host. Reliability is guaranteed by means of a micro-protocol responsible for issuing
retransmission requests.

Each message has as a part of its header the list of its predecessors in the graph, that
is, the number of the last message from each host that had been added to the graph of the
sender before the message was multicast. When a new message is added to the bag, the
context graph micro-protocol identifies the messages declared to precede the new one in
the sender’s graph. If any of the predecessors are missing, a request is issued to retrieve
them.

micro-protocol reliability;
var pending.msgs: list.of_messages;
event handler MSG.ADDED TO_GRAPH( msg )
begin
sender = msg.attr.sender_id;
for pending = ‘“all messages in pending.msgs” do
if ( pending.attr.pred.msg.num|sender] == msg.attransgonum ) then
pending.attr.predecessors|sender] = mnsg;
pending.attr.predecessors_needed--;
if ( not pending.attr.predecessorsneeded ) then
trigger( PREDECESSORS.RECEIVED, pending );
end
end
end
end

event handler PREDECESSORS.NEEDED(msg)

begin
new-nsg = build message( type = RETRANSMIT, data = (wsg.id. leaves) ),
send._out_of_band( newonsg, msg.attr.sender_id ) ;
schedule_timer_event( REQU EST.TO.SENDER, msq );

end

event handler REQU EST_TO.SENDE R(msq)
begin
if ( msg.attrpredecessors.needed ) then
newansg = buildmessage( type = RETRANSMIT, data = (msg.d, leaves) );
send_out_of_band( newonsg, group.multicast.id );
schedule_timer_event( REQUEST_BROADCASTED, msg );
end
end

event handler REQUEST_BROADCASTE D(msg)
begin
if ( msg.attrpredecessors.needed ) then discardmsg( msg ); end
end
end reliability

Figure 9: Reliability micro-protocol

Psync combined the context graph handling and retransmission requests in a single
unit, but we decided to separate them because the policy used 1o retrieve miissing messages



132 Simpésio Bragielid de Redes de Cormputadores. _ _ | 33s

is ot dictated by the context graph-and can, n fact, assume various; forms. The corrent
1mplementa.tmn behaves. as follows:

e When some predecessors of a message M are found 1o be missing; & request is sent
directly to the host that originated M identifying M and the current leaves of the
context graphin the local host.

» Upon receipt of a retransmission request; a hiost retransmits all messages in its gmph
between the messages inentioned as leaves in the request and M. It is guaranieed
to have them all otherwme they would not be m the contexi graph and therefore,

éthe rctra.nsmlbsion abSU.lllt.‘b lt f a.xled mld nulticasts lhc rcquuat v bhc group.

. If after some fixed ti &0 ANSWeTs 10: this mualticast requast. are received, the message

M is, discarded, sirice there is 1o ‘other Fost that ¢an Py ovide its, predecessors

s. The reliability’ mwro-pmtocul st pay attention to new messages added to. the
_gra.ph i order todidentify those that may have been received die to retransmissions.

The pseudu-cade for thie pohcy just described is shown in figure 9.

It should be clear by now that this is Jnst one -of the posmble policies; for handling:
‘missing-messages. One of $he interesting featores of the toinposite protacal approach is
exactly that other policies may be tried. easily mnply by teplacing the unplumnmtmn of
"th_a,s_.ml_c_ro-pro.to_cal.

4.3.7 Stability

We decided 1o make stability ascparatermicro-protocol due to the:simplification schieved
:n the design of the other micro-protocols and because we can customize thé eriteria for

a message to be considered stable. This mmrw-pmtocol can, with. the same basic actions,,
1dent1fy as stable both geneml incssages and miesibersfip agreemem wessages, although
they have different. constraints.

As discussed p‘l"&V]OUbl}", @ message is considered 10 -boestable by a host wheit it TECRIVES:
messages from all other hosts thit were sént in the context of thal message (te., having
that message s @ predecessor), The lmplcmentatmn of the vask is lengthy due 1o graph
traversal operations, although simple to describe, There are twa.events that may make a
message stable:

» MSG_ADDED.TO_GRAPH: When ainessageisadded to the graph, its predecessors
‘have onemore successor defined.. Allmessages that complete tlieir set of successors
become stable:

‘o MEMBER FAILED: lf & message already has successors Teinit all-other hosts except
the one that failed, the renigval of that liost makes that niessage:stable.

 Tlie implenientation ol this :-.nnple ideis couplicated by thefact that many messages
from many hosts niay become stable @t the sanie thug. For the ordering enforced by
the z_ompomte pmtucol to hold across all hiosis in the. group, e conbext graph aunst be
traversed in a fixed Way by all instances of the prototol, so thak all of theii perceive
inéssages becoming stable in thie same order.




336 SBRC 95

As an example, one of the degrees of freedom for the implementation of stability is:
should we make all messages from a host stable in sequence before messages from others,
or should we try to make one message stable from each host in turn? This decision may
impact the behavior of FT-Linda applications in different ways, so we intend to explore
different approaches.

4.3.8 Ordering

The context graph provides only a partial order as defined by the causality relation among
messages. Since messages in the graph may arrive at each node at different times, each host
may see messages becoming stable in different orders. We need another micro-protocol
that will use the stability information in each node to derive a total order common to all
hosts. This is necessary since the partial order does not define relations between messages
sent at the same logical time, that is, messages which do not have a dependency relation in
the graph. In essence, then, we need a micro-protocol that imposes a topological ordering
on the graph. This protocol has to be able to determine when it is safe to sort a portion
of the graph available so far.

These requirements are achieved in the ordering micro-protocol by identifying the sub-
graph containing all non-commitied messages—that is, those that have not been delivered
to the application—that do not have a direct dependency relation to a message that has
just become stable, and then applying a topological sort to this sub-graph. A detailed
analysis of this algorithm shows that this guarantees that the same total order will be
seen by all hosts in the group [16].

Again, we intend to take advantage of the flexibility of the comnposite protocol model
to study how different topological sorting schemes will affect the performance of the FT-
Linda runtime system.

4.3.9 Other micro-protocols

There are a few additional micro-protocols that provide secondary aspects of the service.
In particular, these are used to isolate tasks like retransmission of messages, garbage
collection of data structures, and filtering of control messages (e.g., heari-beal messages)
from the sorted stream.



132 Simpdsio Brasileiro de Redes de Computadores 337

5 Conclusions and future work

This paper has described the development of a customized atomic ordered multicast pro-
tocol to be used as the communication substrate for a new implementation of F'I'-Linda
on a network. One of the most difficult issues when developing complex protocols like this
one in normal environments is how to implement the interactions among the various ab-
stract components. The event-driven protocol composition framework provides an elegant
way to achieve a modular implementation, where abstract elements can be easily mapped
into real code. This work provides a very good example of its capabilities. Although the
algorithms and policies implemented are derived from Consul, the resulting implementa-
tion as a composite protocol offers a much simpler structure, where interdependencies and
interactions may be modeled in a much clearer way.

Future work will include testing different policies for certain micro-protocols, such as
ordering, reliability, etc. in order to determine which ones adapt better to the F'I-Linda
system. Other studies will be coordinated with future research involving F'I-Linda itself.

As an example of the latter, it is our goal to add re-integration of failed hosts to F'1-
Linda, which will allow us to test even further the flexibility of the composite protocol
approach. Host re-integration will create stronger requirements for the substrate; since it
will have to be able to provide the reintegrated host with enough information to rebuild
a consistent internal state. General solutions usually rely on checkpoint and message
logging, both of which assume the existence of stable storage, so that failed hosts can
restore their state to a point prior to the failure and then replay all subsequent messages
in the system. It is our belief that a solution customized to FT-Linda can be implemented
without the use of stable storage by providing the reintegrated host with the most recent
view of the context graph and a copy of the tuple spaces at some fixed point in time.
Implementing these new features will certainly benefit from the modular structure of the
composite protocol framework.

References

(1] David E. Bakken. Supporting fault-tolerant parallel programming in linda. Technical
Report TR 94-23, Computer Science Department, University of Arizona, Tucson, AZ,
August 1994. Ph.D. Dissertation.

(2] David E. Bakken and Richard D. Schilichting. Supporting fault-tolerant parallel
programming in linda. /EEE Transactions on Parallel and Distribuled Systems, 6(3),
March 1595.

(3] Nina T. Bhatti and Richard D. Schlichting. Operating system support for configurable
high-level protocols. Technical report, Department of Computer Science, University
of Arizona, Tucson, AZ, USA, 1994. In preparation.

[4] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems, 9(3):272-314, August
1991.

[5] Nicholas Carriero and David Gelernter. How lo Write Parallel Programs: A First
Course. MIT Press, 1990.




SBRC 95

[6]
[7]
(8]

(9]

[10]

[11]

(12]

[13]

(14]

[15]

[16]

(17}

(18]

(19]

[20]

Paolo Ciancarini. Distributed programming with logic tuple spaces. Technical Report
UBLCS-93-7, Laboratory for Computer Science, University of Bologna, April 1993.

Flaviu Cristian. Understanding fault-tolerant systems. Communications of th,
34(2):56-78, ¢ ACM 1991.

Dorgival O. Guedes and Osvaldo S. F. Carvalho. Um niucleo Linda para o desenvolvi-
mento de aplicagoes distribuidas em uma rede unix. In Proceedings of X Simpésio
Brasileiro de Redes de Computadores, Recife, PE, Brazil, April 1992. SBC.

Maitti A. Hiltunen and Richard D. Schlichting. An approach to constructing modular
fault-tolerant protocols. In Proceedings of the 12th IEEE Symposium on Reliable
Distributed Systems, pages 105-114, Princeton, NJ, USA, October 1993.

Matti A. Hiltunen and Richard D. Schlichting. Constructing a configurable group
rpc service. Submitted to 15th Conference on Distributed Computing Systems, 1995.

Matti A. Hiltunen and Richard D. Schlichting. Properties of membership services.
In Proceedings of the 2nd International Symposium on Autonomous Decentralized
Systems, Phoenix, AZ, USA, Apnl 1995.

Norman C. Hutchinson and Larry L. Peterson. The zkernel: An architecture
for implementing network protocols. [EEE Transactions on Software Engineering,
17(1):64-76, January 1991.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Consul: A com-
munication substrate for fault-tolerant distributed programns. Distributed Systems
Engineering, 1:87-103, 1993.

Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Experience with
modularity in consul. Software — Practice and Ezperience, 23(10):1059-1075, Octo-
ber 1993.

Larry L. Peterson, N. C. Buchholz, and Richard D. Schlichting. Preserving and using
context information in interprocess communication. ACM Transactions on Computer

Systemns, 7:217-246, 1989.

David Powell. Deltu-4: A Generic Archalecture for Dependable Distributed Comput-
ing. Springer-Verlag, 1991.

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to
designing fault-tolerant computing systems. ACM Transactions on Compuler Sys-
tems, 1(3):222-238, August 1983.

Fred Schneider. Abstractions for fault-tolerance in distributed systems. In Proceed-
ings of the Tenth IFIP World Computer Congress, pages 727-733, Dubli, Ireland,
September 1986.

Fred Schneider. Implementing fault-tolerant services using the state machine ap-
proach. ACM Computing Surveys, 22(4):299-319, December 1990.



