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Abstract

The motivation of this paper results from an interesting observation that connects two
algorithms with different purposes : a checkpointing and rollback-recovery algorithm with another
algorithm to implement causal ordering of message delivery. Two of the causal ordering protocols
existent in the literature [Schiper 89][Raynal 91] require a rollback mechanism to work properly in
case of some subtle failures. We have already presented in a previous paper [Silva 92] a
checkpointng and rollback algorithm that can be used to provide that. However, we have observed
that while the causal order protocol needs some rollback support the rollback-recovery algorithm
itself also wins the integration. Making use of the information provided by the causal ordering
protocol we can obtain a domino-effect free checkpointing and an efficient rollback algorithm that
forces a minimal number of processes to roll back in case of failures. This observation emphasizes
even more the power of causal ordering in distributed systems.
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1. Introduction

In the absence of global time and due to the asynchronism of the communication channels
messages can be delivered in a way that violates the causal ordering. The first ISIS protocol
[Birman 87] implements causal order of message delivery at the expense of a substantial
information overhead in each applicaton message. To prevent that shortcoming two interesting
algorithms have been presented in the literature [Schiper 89][Raynal 91] that assure a bounded
information overhead and are easy to implement!. However, as was explained in the first paper of
[Schiper 89], some subtle site failures may lead to a deadlock situation in which messages are
prevented to be delivered. This is a clear disadvantage when compared with the first ISIS protocol.
To cope with that, some rollback mechanism is required. This means that a checkpointing and
rollback-recovery algorithm should be incorporated in the system to provide the continuity of the
application and the proper functioning of the protocol. If we include a rollback mechanism with the
causal order protocol (chosen) we overcome the only drawback that such protocol has against the
first ISIS implementation. The two algorithms can be running in separated, but as we will see,
both have to win if they are integrated. To illustrate that we are going to use a previous
checkpointing algorithm [Silva 92] and the causal order protocol presented in [Raynal 91], since
their authors claim that it is more easy to understand. The same exercise could be made with the
first protocol of Schiper and Sandoz. In our opinion the use of Mattern's Vector Time [Mattern 89]
is at least as powerful as the sequence numbers used in Raynal, Schiper and Toueg's protocol, and
an elegant solution could also be achieved, but it will not be presented here due to the lack of
space.

2. A Brief Overview of the Causal Order Protocol

To turn the paper self-contained we are going to present in a brief way how the causal ordering is
implemented in Raynal,Schiper and Toueg's protocol, but the reader is refered to the original paper
[Raynal 91] for more details.
Every site in the distributed system has to manage two data structures (where N is the number of
sites in the system) :

e DELIV : array[1..N] of integer; (Initially DELIV[i] =0.Vie l.N)

e SENT : array [1..N][1..N] of integer, (Inmitially SENTTi][j1=0,V ije 1.N)

! There is a third different approach presented in [Peterson 87] that achieves the causal ordering through the use of the
conversaiion abstraction.
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On site S; the vector DELIV;[j] represents the number of messages sent from S; and delivered to
S;. while the matrix SENT;[k][1] represents the current knowledge of S; of the number of
messages sent from Sy to S;. The causal ordering is implemented through the following rules :
(1) Emission of a message m from §; 10 §; :

* send(m,SENT;) to S;;

e SENT;[i][j] := SENT;[i][j] + 1;
(i)  Reception of (m.STy,) sent from §j to §; 2:

ewait (V ke 1.N , DELIV,[k] 2 STy[k][i]);

e DELIV;[j] :== DELIV[j] + 1,

e SENT;[j][i] := SENT;[jI(i] + I:

e (¥ kJle 1.N): SENTi[k][1] := max(SENT;[k.1],STn[kI[1]);
The problem with this and the other protocol has been pointed out by [Schiper 89] and it happens
when some subtle site failures happen. Let us take a look at figure 1.
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Figure 1 : The effect of the failure of site S;.

Message m; was sent from site S; to site S; before the emission of message m,. However, a
communication failure might prevent message m; from arriving at site S,, while message m»
arrives at its destination (site S3). Now, consider that site S, fails after sending message m, but
before re-transmitting message m;. If that happens, message mz will armive at site S; but it will
never be delivered since it must wait for the arrival of message m; : ms has to wait because (V k €
1..N, DELIV,[k] 2 STp3(k][2]) is not true. Worse than that, every site that receives a message
from site S3 will be prevented by the causal order protocol to communicate with site S;. To solve
that problem the protocol requires a rollback mechanism?. In this paper we are going to present a
checkpointing and rollback algorithm that can avoid that problem.

2 Where STy, represents the control information SENT; carried with the message m.
3 The impiementation of ISIS didn't require it because a message carries with it every message that preceds it
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3. Coordinated Checkpointing and Rollback-Recovery

In [Silva 92] we have presented a distributed algorithm to implement a coordinated global
checkpoint of a distributed application. There is one site which is called the coordinator that is
responsible for periodically initiate a global checkpoint of the application. Every site should take a
local checkpoint and the algorithm assures that the set of the local checkpoints must result in a
consistent recovery line, to which processes can roll back in case of failure. Some authors have
presented algorithms that are based on independent checkpointing [Bhargava 88][Wood 81]. In
case of failure the rollback of processes may lead to the well-known domino-effect [Randell 75].
Other authors assume that processes are deterministic and use message logging to avoid that effect
[Borg 83][Powell 83][Johnson 88][Strom 85]. Others assume that clocks are synchronized
[Cristian 91][Tong 92], which is not our case. Our approach is not based on such simplistic
assumptions, rather we assume that processes can be non-deterministic and there is no notion of
global time. It is based on a distributed coordinated checkpoint, like the one presented in [Koo
87]. In short, processes must coordinate their checkpoints in a way that all the set form a
consistent global state. According to [Chandy 85], a global state is consistent if no message is
recorded as received before it has been sent. This notion is presented in figure 2. The set of all
local checkpoints is designated by recovery line, since it is the place to which processes are
rewound in case of failure. To avoid the domino-effect the recovery line must be consistent.
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Figure 2a : orphan message.  Figure 2b : missing message.
The recovery line in figure 2a (RLy) is inconsistent since the associated global state (composed by
the checkpoints chkpi(x) and chkp;(x)) records the reception of message m; while that message
has not yet been sent. That message that crosses the recovery line from the left to the right is
designated by orphan message. Figure 2b represents a consistent recovery line (RLy ). The
message mj was sent before chkpj(y) and received just after chkpj(y). but there is no
inconsistency since it means the message was in transit and the state of the communication
channels also belong to the global state of the system. However, in case of rollback of both
processes that message will not be re-sent again from P; to P;. The message will be lost and for
this reason we call it a missing message. A coordinated checkpointing algorithm should be able 10
prevent the loss of missing messages, and should not allow at all the occurrence of orphan
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messages. The way to achieve that will be discussed in section 5. In section 6 we will present a
rollback algorithm that rolls back a minimal number of processes, and that is achieved thanks 10
the use of the information associated with the causal ordering protocol.

4. Model and Assumptions

The distributed system is composed by a number (N) of sites DS = (S1,52,....Sn}, that only
communicate through asynchronous messages. Every site can communicate with every other site.
Next, there are the assumptions made by our algorithm :

(i) messages can suffer arbitrary delays and nothing is assumed about the speed of execution of the
processes (this also means that clocks do not need to be synchronized);

(ii) we assume that processes can be non-deterministic;

(iii) processes are fail-stop. We do not consider any kind of malicious behavior in case of failure;
(iv) there should be a membership [Ricciardi 91] or a diagnosis protocol [Silva 93] responsible for
the detecton of site failures.

(v) every process has access to stable storage [Lampson 79], that can be centralized or distributed:
(vi) the communication channels can be non-FIFO;

(vii) messages can be lost, but the communication protocol must assure a reliable delivery;

(viii) messages are tagged with sequence numbers in order to detect duplicates;

(ix) the causal order protocol of Raynal,Schiper and Toueg is assumed;

(x) each site is composed by at least one application process, and one thread called the Recovery
Manager that implements the checkpointing and rollback-recovery algorithm.

(xi1) one of the sites is called the coordinator and it is responsible for initiating the checkpointing
algorithm. If it represents the weak point of the system there should be an election algorithm
[Becker 91] that elects a new coordinator in case of a permanent failure.

(xii1) at last, we assume that there is no network partitioning.

5. The Checkpointing Algorithm

There are two main attributes that we take into account in the design of a checkpointing algorithm:
first, it must be domino-effect free; second, it should be non-blocking. This last attribute means
that processes should be blocked just while the system takes a snapshot of its state, but after that.
processes may proceed their computations without being blocked by the algorithm itself. This is an
important figure of merit in order to assure that the algorithm does not degrade too much the
performance of the applications. In this point we depart from Koo and Toueg's proposal since
their checkpointing algorithm is blocking. To avoid the domino-effect the algorithm must assure
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that the set of checkpoints belonging to the same recovery line forms a consistent global state. The
same notion of Chandy and Lamport is here applied as follows :

Definition 1 : A global checkpoint (GC(n)) forms a consistent global state if :

(R1) For every message m;; sent from P;to P; and consumed before chkp;(n), then the sending of
that message must have happened before chkp;(n).

(R2) For every message m;; sent before chkp;(n) and consumed after chkpj(n), then that message
must be saved to be replayed if the processes have to roll back 1o that recovery line.

(R3) Processes can take another checkpoint (n+1) only if the previous global checkpoint is already
complete.

This last rule means that a global checkpoint contains only one local checkpoint for each process,
and each of those local checkpoints is identified by the same ordinal number.

In section 5.1 we are going to present our checkpointing algorithm, while in section 5.2 we show
how to achieve the same by using the control information of the causal ordering protocol.

5.1 Algorithm I

The checkpoint event is triggered periodically by a local timer mechanism at the coordinator site.
The associated Recovery Manager takes a checkpoint of the application process(es) running on its
site and then sends a message -chkp_reg(n) - 10 the other sites in the network. Checkpoints are
assigned ordinal numbers from a monotonically increasing number (CN), which is incremented
every ume a global checkpoint is created. That message - chkp_req(n) - contains the new value of
the Checkpoint Number, and that number (CN) is also piggybacked in each outgoing application
message that is sent after taking the local checkpoint. When each of the remaining sites receives
the - chkp_req(n) - message it takes a renzarive checkpoint # of its application processes and sends
an acknowledge message to the coordinator site - chkp_ack (n) . The application processes are only
suspended during the ume of taking a checkpoint of its state. Then, they proceed normally while
the checkpointing algorithm 1s still running. When the coordinaror site receives the
acknowledgments of all the other sites it transforms the renzarive checkpoints into permanent
checkpoints, by broadcasting a message -commit_chkp(n) - to the network. This means that every
process needs two keep two checkpoints in stable storage, and the need for this was already
demonstrated elsewhere [Koo 87]. Without losing generality, let us assume for the rest of the
paper that each site §; only runs one application process P;. Now let us see how the algorithm
avoids the so called orphan messages and identify the missing messages, in order to be saved.

Orphan messages may happen since we admit that communication channels are non-FIFO and due

4 The checkpoint also includes some system information, like the state of the causal ordering protocol.
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to the asynchronism of the network that may violate the causal order between messages. Missing
messages are simply in transit during the checkpointing algorithm. Let us take a look to figure 3.
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Figure 3 : Avoiding orphan messages and identifying missing messages.

Message m, was sent by process P, before taking checkpoint (n) and it is consumed by P, after its
correspondent checkpoint. This is an example of a missing message, and it is easily identified
since the message carries with it the CN of the sender process. In that case m;.CN = (n-1) while
P1.CN = (n). In order to replayed in case of rollback, that message is logged in stable storage at
the receiver in a placed called the Msg_Log. The other message, mj, is an example of a message
that violates rule R1 of definition 1. It is an orphan message since it was sent by a process after
taking its checkpoint (P2.CN = n) and it arrives at site S before taking the n® checkpoint (P3.CN
= (n-1)). Since message m, has a piggybacked CN higher than the CN of the receiver site, it
means that the checkpointing algorithm is already running, process P, has been taking its
checkpoint (n) but the message chkp_req(n) destined to site S3 did not arrived yet. So, the way to
avoid that orphan message is to take a checkpoint at site S3 before consuming it. Later, when the
proper message - chkp_reg(n) - ammves at S3 it will be discarded since the n'® checkpoint was
already taken and the message become redundant. The CN counter forbids the occurrence of
orphan messages and facilitates the task of detecting missing messages. Upon rollback, those
messages that were saved in the Msg_Log are introduced on the message queue of the application

Pracess.

Lemma 1 : The global checkpoint achieved by algorithm I corresponds to a consistent system
state.

Proof : derives directly from definition | and the explanation of the algorithm.

The three control messages used by the checkpoinung algorithm are not included in the causal
order protocol. but every chkp_ack(n) message should carry the SENT matrix of the sender
process at the time of its checkpoint to allow the construction by the coordinator site of the system
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state associated to the global checkpoint. That information is represented by the following data
structure :

e & :array [L..N][1..N] of integer;
That matrix represents the messages that were sent before the recovery line formed by the n'®
global checkpoint, and is constructed as follows :

e (¥ ikle 1.N):3[k][l] := max(SENT;[k.1]);
Matrix & will be broadcasted to all the other sites since it is piggybacked in the commit_chkp(n)
message, and as we shall see later, it will be used in case of recovery to determine the set of
processes that need to rollback.

5.2 Algorithm II

In this sub-section we will present another way of achieving a consistent global checkpoint, but
instead of using the CN counter as before, it just relies on the control information provided by the
causal order protocol. In this case, the chkp_req(n), chkp_ack(n) and commit_chkp(n) messages
are also included in the causal order protocol, i.e.. their emission and reception follows the rules
presented in section 2. The checkpointing aigorithm is also made non-blocking, by the same
reasons presented before. To facilitate the explanation of the algorithm let us take a look at figure 4.
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Figure 4 : avoiding orphan messages in algorithm I

To understand that figure the reader should know that a broadcast message using Raynal's protocol
should follow the next rule :

(1) Emission of a broadcast message m from §; to a set of sites (DEST) :
o for all j € DEST : SENT;[i][j] := SENT;[i][j] + 1:
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e forall je DEST: e SENT][i][j] := SENT;[i](j] - 1:
® send(m,SENT;) o S;;
* SENTI[i][j] := SENTi[i][j] + 1;
In the figure, we can see that message m; was a potential orphan message but it has to wait in site
Ssysince (VY k e 1..N, DELIV3[k] 2 STm[(k][3]). The causal ordering protocol assures that it will

only be delivered to the application just after the arrival of the chkp_reg(n) message from site S;.
This leads to the following interesting observation :

Observation 1 : every potential orphan message that violates the consistency of the global
checkpoint is at the same time a message that would violate de causal ordering.

So, in this simple way the potential inconsistency caused by the orphan messages is eliminated.
Now, let us see what happen with the missing messages. There are two different cases to be
considered : (1) missing messages at the coordinator site; (2) missing messages at a normal site.
In the previous figure, message my is one of such messages that according to rule R2 of definition
1 should be saved in order to be replayed in case of recovery. When the coordinator site receives
message m, the Recovery Manager has to know if the message it is or not delivered to the
application before the commit operation. If my is delivered before receiving the chkp_ack(n)
message of the same sender, 1t means that the message was sent before the n'® checkpoint of the
sender. In this case it should be saved on the Msg_Log. If any other message arrives but it has to
wait until the arrival of the correspondent chkp_ack(n) message this means that such message has
been sent after the n' checkpoint of the sender. This is not a missing message and do not need 1o
be logged. In figure 5 is presented another example’. We can observe that message chkp_req(n) is
not delivered as soon as it arrives at site S3_ since there is a previous message (m;) from site S; o
site Sz still in transit in the communication channels. This leads us to the conclusion that the
coordinator site does not generale any missing message at any other site. Now let us consider the
second case of a missing message. In the same figure, there are two messages m; and ms that
were sent from site S3 to site S;. Both messages are delivered to site S; and until the
commit_chkp(n) arrives there is no way for site S, to determine if the messages were sent before
or after the n'® checkpoint of the sender. One solution is to keep them in volatile memory of the
receiver site (Sz). Then, when the commir_chkp(n) message arrives it brings with it the global
state of the system associated to that recovery line, represented by the matrix  mentioned before.

So. a simple way to determine if a message m from site S; that had arrived at site Sy between the

5 For the sake of clanty, the evolution of the SENT matnix in each site is not shown. Il 15 an exercise left to the reader.
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last checkpoint of that site and the delivery of the commit_chkp(n) message is a missing message
or not is as follows :

o if (8[il[k] > STu[il[k]) — missing message.
Missing messages are saved in the Msg_Log, that is kept in stable storage.
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Figure 5 : identfying missing messages in algorithm II.

In short, we have two different rules to detect missing messages : one for normal sites, and
another for the coordinator site.

Lemma 2 : The global checkpoint achieved by algorithm II corresponds to a consistent system
slate.

Proof : Based on observauon | we conclude that if the coordinator site includes the chkp_req
message in the causal order protocol it may be sure that there is no orphan message. Also, by the
two rules explained before. the algorithm is capable of identifying the missing messages that are
saved in stable storage during the commit operation. The next checkpoint is only started after the
coordinaror commits the current one. Since the 3 rules of Definition 1 are followed we conclude

that the global checkpoint obtained by algonithm II also corresponds to a consistent global state.

Theorem 1 : Any rollback algorithm that uses any of the checkpointing algorithms (I or II) 1s
domino-effect free.

Proof : by lemma | and 2.

We said before that missing messages arrive between the local checkpoint and the delivery of the
commir_chkpfn) message, but we have to justify that.

Theorem 2 : Missing messages are never delivered after the dehivery of the commir_chkp(n)
message.
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Proof : suppose a message m, that was the last message sent before the nth checkpoint of site S;
and is received in site Sj after its n't checkpoint. As was told before, site S; cannot be the
coordinator sile since it does not originate missing messages. Then, the sending of message m,
causally precedes the sending of the chkp_ack(n) message at site S; : send(my) —
send(chkp_ack(n)). At the same time, the message commit_chkp(n) is only sent by the coordinator
just after receiving all the acknowledgments. This means that send(chkp_ack(n))—
send(commit_chkp(n)) and since the relation of causality is transitive we have that send(m,) —
send(commit_chkp(n)). Since both the messages have the same destination site (Sj) we conclude
that the protocol assures their delivery in the same order : deliver(m,) — deliver(commit_chkp(n)).

This means that all the missing messages are delivered before the commit_chkp(n) message. QED

A straightforward rollback algorithm to be used together with algorithm II is one that in case of
failure rolls back all the application processes to the last recovery line. Since that line represents a
consistent global state that algorithm is domino-effect free (by theorem 1). Just using the
information provided by the causal order protocol we have obtained a domino-effect free
checkpointing algorithm. The message complexity of both algorithms (I and II) is the same :
O(3n). This is an advantage when compared with Koo and Toueg's algorithm, which has a
message complexity of O(2n2). Furthermore, Koo and Toueg's algorithm is blocking while the
algorithms presented here are non-blocking.

6. The Rollback Algorithm

In some cases it is not really necessary to rollback all the application processes in case of a failure
to reach a consistent system state. It depends on the communication patterns. In this section, we
are going to present a rollback-recovery algorithm that minimizes the number of processes that are
forced to roll back. In fact, it 1s the opumum algorithm since it rolls back the minimal number of
processes. To achieve that, we need a way to keep track of the dependencies between processes.
and the information provided by the causal ordering protocol is just what we need. First of all we
define the relation of dependency that we represent by the operator (-»):

Definition 2 : A process P; is dependent on process P; (P -» P;) if : (a) it has received a
message from Pj; (b) or it has received a message from Py and P; -» Py.

If a process P; rolls back to a state before the sending of a message my consumed by process P,
then we say that the event send(my) is backed out due to the rollback recovery. If send(m,) is
backed out the message become an orphan and the correspondent event - deliver(m,) - should also
be rolled back. This means that process P; is dependent on process P, and if P; rolls back process
P; must do the same. We have also to think on those messages that were sent by processes that do
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not have dependencies on processes that are forced to roll back. For instance, what happen if a
process Py has sent a message my that is consumed by process P; and this process fails and has to
roll back ? (considering that (P; -» Py) i1s not true). If that message is not replayed again it becomes
a missing message during the replay of process P; . There are two approaches to solve that
problem : (1) we alter definition 2 in order to include the reception of messages also as a source of
dependency; (2) or we keep those messages in order to be replayed in case of recovery. If we
choose solution 1, as has been done in [Tong 92)], we are increasing the dependencies between
processes and this means that we are not going to obtain the optimum rollback algorithm. If we
choose solution 2, we must decide where the messages are kept. If they are kept on the stable
storage of the receiver site it certainly introduces a high performance degradation duning failure-
free execution. So. the best way is to keep those messages on the volatile memory of the sender
process [Johnson 87]. However, we do not need to keep all the messages that have been sent,
otherwise the processors would run out-of-memory. There is a bound which is established by the
following lemma.

Lemma 3 : if DELIV,[k] > 6(k][i] then site S; does not need to keep any more message that it
sends or has sent to Sy during the current checkpoint interval.

Proof : A message logged in the sender can only be used during recovery if the receiving process
Py rolls back but the sender P; does not. If both processes have to roll back those logged messages
will be discarded. The relation DELIV[k] > 8[k][i] means that after the last checkpoint site Sy has
already delivered at least one message from S; to process Pg. Therefore, Py -» P;, and process P;
will roll back too if process Py has to roll back. For this reason, messages sent from P; to Py do
not need to be logged at the sender. QED

Before describing the algorithm lets us describe what are the data structures needed for that :

e d:array [1..N][1..N] of ineger;

e V¥ :array [1..N][1..N] of integer;

e CC: array [1..N] of integer; (Initially CC[i] =0.Vie 1.N)
The array 0 is received by each site with the commir_chkp(n) message sent by the coordinator site
when the last checkpoint was commited and it represents the state of the system associated to the
last recovery line (n). The array ¥ will be used and constructed during the rollback algonithm. as
will be seen later. The vector CC, which is kept in stable storage, contains the crashcount value for
each process of the system. Every time a process P; crashes or has to roll back due to the rollback
propagation increments the CC[i] value. Every applicauon message sent by a site S; is piggybacked
with the current CC,[i] value. We assume algorithm I as the checkpoinung algorithm since
algorithm 1I includes the control messages in the causal ordening protocol and that introduces
dependencies between processes. Nevertheless, we assume the implementation of causal order
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protocol, and its data structures will be used to determine the set of processes that need to rollback.
That set is calculated by the rollback algorithm and is represented by R. Let us consider that a site
S, fails and then restarts®. After restarting it has to run the following procedure :
(1) It inspects its stable storage to see what is its the last permanent checkpoint (LPC) in stable
storage. Then. it sends a broadcast message to the other sites in the network - roll_req(i,LPC).
The purpose of this message is twofold : it notifies the other sites that have to execute the rollback
algorithm, and at the same time it is used to determine the last committed recovery line (LCRL). In
the meanwhile, site S; waits for the answers of the other nodes.
(2) Any of the other sites S; after receiving that message also inspects its stable storage 10 see
which is its last permanent checkpoint and sends a roll_ack(j,LPC, DELIV;) 7 message that
includes the current value of the DELIV vector on that site. This message is also broadcasted to all
the other sites. If there happens a failure that affects more than one site the other restarted sites
should send instead a roll_req(i,LPC) message, as in the previous case.
(3) Each site after receiving a message from each one of the remaining sites (i.e. (N-1) messages)
construct the array in the following way : ‘P[1][k] := DELIV k] (¥ Lk € 1..N). It should be noted
that the contents of DELIV; were lost with the failure, and it means that W[i][k] :=(?) (Vk e
1..N). However, those values are not needed for the execution of the algorithm. After that step, it
determines what is the LCRL. If all the processes have committed the last checkpoint then the
LCRL corresponds to the last global checkpoint. However, if there is at least one process that had
not committed its last checkpoint it means that the failure happened during the checkpointing
algorithm. In this case, the LCRL corresponds to the old global checkpoint that remains in the
stable storage. Every site S; discards its ntv checkpoint, and those messages in the Msg_Log
associated to that checkpoint. It also puts CN; equal to (CN;-1). After that, and in both cases.
every site executes the algorithm presented in figure 6.
1. R := {failed};
2. 1f there is any process Py such that : (Py ¢ R) and (W[k][i] > 8[i](k]. for any P; € R)

then R :=R v {P};

otherwise goto step 4;

3. goto step 2.

4. if (LCRL = old) then CCJ[i] := CC[i] + 1, (Vie 1..N)
else CCli] := CC[i] + 1, (V Pie K)

5. end.

Figure 6 : determination of the rollback set.

6 We are here considering just transient failures. The same algorithm of rollback can be used in case of permanent failures
but the system should be subjected to a reconfiguration strategy.

7 The control messages roll_req and roll_ack are not included in the causal order protocol.
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At the end of it, the vector R contains the set of processes that need to roll back. If site Py € R it
does not need to rollback. It re-sends the messages logged in its volatile memory to those
processes that are forced to roll back. Those messages are piggybacked with the updated CN and
CC values of the sender. Then it may proceed its computation normally. However, if Py € R then
it should rollback to the checkpoint associated to the LCRL. Its execution restarts from that point,
the messages contained in the associated Msg_Log are inserted in the message queue of the
process and the data structures of the causal order protocol (SENTy and DELIVy) are rewound 1o
the values they had when that checkpoint was taken.

The rollback algorithm will force to recover all the processes that have some causal dependencies
with the failed one, and those dependencies are determined from the first message sent after its
previous valid checkpoint. Those processes that have dependencies with the failed one may force
the rollback of others, as well. This is the rollback propagation phenomenon. To determine if a
process Py is dependent on any process P; (with P; € R) we just need to make a comparison of the
values of W and & : if (‘\W[k][i] > 8[i](k]) then Py is aiso included in the rollback set. To better
understand the algorithm let us look to figure 7.

LCRL 001 o1 [011]
s L [001] fo11]

2
m2 md
s2 1 (001} [001]
I
ml mS

|
53] { (010]

Figure 7 : A rollback scenario.

The failure of site S; forces the rollback of the process that was running on site S; ((‘Y[1](3] = 1)
> (8[3][1] = 0)). Message m, is a missing message and does not create any dependency between
process Pz and P,. In result, R = {P,P3}. Process P, does not need to roll back. It re-sends
messages ma and my 1o the others, and then proceeds its computation. Message ms was a message
that was sent by site Sy before it fails and that was in transit during the rollback algorithm. It
carries CC = 0, and when it arrives at site Sj that site already have CC[3] = 1. So, site S discards
that message. This rule can be stated as follows :
e if site S; receives a message my from Sy and M,.CC < CC;[k] then m is discarded.

This rule is needed to avoid the livelock-effect, described in [Koo 87]. Those messages that are in
the queue waiting to be delivered are also subjected to that filter rule.
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The distributed nature of the rollback algorithm adapts well to the case of multiple failures, better
than a centralized approach. In the case of simultaneous failures, there are more than one roll_req
message. Those processes that have sent a roll_req instead of a roll_ack are also included on the
rollback set R, before running the algorithm of figure 6. Other case to be considered is the
interference between the two algorithms : checkpointing and rollback. If some site fails during the
checkpointing algorithm some sites that were waiting for the commit_chkp message may heard
instead a roll_req message. Since that message has a higher priority the sites will immediately
abort the checkpointing operation and start the rollback algorithm.

Correctness of the Algorithm :

Theorem 3 : The re-execution after rollback achieves a consistent system state.

Proof : By lemma 1 there is at least one global checkpoint in stable storage which corresponds to a
consistent global state. However, we need to prove that the rollback operation will not introduce
any orphan or missing message. Four cases are considered : (1) the undoing of messages sent
from a process Py (Px € R) to other process P; (P; € R) does not cause any orphan message
since both sender and receiver are forced to roll back. The only missing messages are those kept in
the Msg_Log that are replayed by the receiver; (2) messages sent from a process Py (Py € R) to a
process P; (P; € R) are missing messages. During the recovery phase, those messages will be
replayed since they were kept in the volatile memory of the sender process (Py). However, the
replaying of those messages may generate some duplicates if the originals are still in transit in the
communicauon channels, but we have assumed that duplicates are detected by the communication
protocol: (3) messages sent by a process Py (P € R) to another process P; (P; ¢ R) would be
orphan messages, but by definition 2 and the execuuon of algorithm this sitwation is impossible:
(4) messages sent from Py (P € R) to P; (P; € R) are not replayed but none of those processes
are forced to rollback. QED

Theorem 4 : The rollback algorithm does not introduce any deadlock in the causal order protocol.
Proof : (by contradiction). The rollback operation undoes messages when processes are forced 10
roll back and discards messages that were sent by rolled back processes and were in transit during
the exccution of the algorithm. Assume that process P; € R and that there is a message my sent
by P; in the queue of a surviving site P;. That message cannot be delivered because it is waiting for
a message my (sent by Py e R) that was discarded by the algorithm. This may lead to a deadlock
on the protocol. However, if my cannot be delivered it means that deliver(my) — deliver(my), and
by the causality definition sent(m,) — sent(my) as well. Then we may conclude that process Py has
sent at least one message to process P or to other process Py and (P -» Py). In both cases, Py -»
P;. By definition I. process P; is also forced to roll back (P;e ) which contradicts our
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assumption. Thus, it is assured that the rollback algorithm does not introduce any deadlock on the
causal ordering protocol. QED
Theorem 5 : This rollback-recovery algorithm achieves the optimum set of processes that are
forced to roll back.

Proof : (By contradiction). As was stated in theorem 3, the re-execution state achieved by roll
backing the set of processes R is a consisient system state. Let us assume that it is also possible to
achieve a consistent system state by forcing the rollback of a sub-set of R, that we designate by
R' (R o R). This means that there is at least one process P; which is not forced to roll back in
this new case. However, P; has consumed at least one message M sent by one process P; that
belongs to the rollback set. Since P; undoes the sending of that message and P; does not undo the

delivery of M, it means that M is an orphan message and by definition 1 the result state is
inconsistent. This is a contradiction to our assumption. QED

At last, we should say that the message complexity of our rollback algorithm is O(n2) while the
equivalent algorithm of Koo & Toueg 1s (X2n2). Moreover, their algorithm also considers the

acknowledge messages as source of dependencies between processes which means that the
rollback set achieved is not the optimum.

7. Conclusions

In this paper we have presented an interesting combination of two algorithms that have different
purposes. The causal order protocol needs a rollback mechanism, and we have shown that with
such protocol we could design an elegant checkpointing algorithm, which is non-blocking and
domino-effect free. At the same time, if we use the information of that protocol within the rollback
algorithm we could obtain the minimum set of set processes that are forced to roll back. in case of
failure. In our opinion, the success of the integraton of those algornithms emphasizes even more the
need to have causal ordening in distnibuted systems.
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