504 122 Simpodsio Brasileiro de Redes de Computadores

A SECURE PLATFORM SUPPORT ENVIRONMENT FOR TMN

APPLICATIONS
J.CELESTINO Jr. A.HUSSEIN N.MELO
jc@masi.uvsq.fr hua@masi.uvsq.fr melon@masi.iuvsq.fr

University of Paris VI
PRISM Laboratory
45, av. des Etats Unis
78000 - Versailles
France

ABSTRACT

The Telecommunications Management Networks (TMN) have been
evolving and becoming more sophisticated. Different technologies from
different vendors contribute to complicate the telecommunication
management so that the need for integration and interoperability is
growing. A general TMN computing platform architecture was proposed by
the TMN Computing Platform Special Interest Group (RACE programme)
whose main objective is to provide enough support for the contrasting
TMN management applications. This paper discusses the Secure Platform
Support Environment in the IDEA project (PRISM Laboratory) and its
relationship with this general TMN computing platform architecture. The
important services suported by both the implementation developed by the
IDEA project and the CP-SIG architecture are identified and discussed.

1. Introduction

The Integrated Broadband Communication Network (IBCN) is
composed of a multitude of Network Elements with different technologies,
from different manufacturers, which will be introduced at different rates
across Europe. This complex environment needs to be managed in an
efficient way, so that new applications and services are possible at a
reasonable cost. The complexity increases when, beyond the technological
aspects, one considers the regulatory and national environments, as well as
the interconnection with existing and near future networks like ISDN.

The TMN management systems represent diverse
telecommunication domains with ride ranging functionalities and
requirements. On the one hand TMN management applications have
different purposes, frequently employing different technologies, while on
the other hand there is strong need for application integration and
interoperability. In order to achieve this integration and realize open
solutions an underlying TMN computing platform must offer the necessary
support environments, connectivity and flexibility to allow management
applications to achieve their goals[1].

122 Simposio Brasileiro de Redes de Computadores 505

2. A General Computing Platform for TMNs

A Computing Platform is a set of facilities that provides a defined
infrastructure upon which management applications can be built. The
access point of these facilities and the underlying systems is an interface
provided by the platform that management applications should use to
intercommunicate and to access the network information.

A General TMN Computing Platform architecture, capable of
supporting a wide variety of TMN management applications have been
developed by the CPSIG group [1,2]. It consists of five layers, figure 1. The
goal of these layers is to abstract away the complexity and heterogeneity of
the underlying host systems and communications protocols. The layers also
provide transparencies for distribution, information access, and replication.
These five layers are (i) CP Kernel, (ii) Distributed Processing Support, (iii)
Computing Platform Interface, (iv) TMN Support Environment, (v) User
Generic Applications. CP-Kernel, Distributed Processing Support and
Computing Platform Interface layers are grouped in layer called Platform
Support Environment.

The CP-kernel consists of a number of components that mask
heterogeneity, and provides a common view of the world.

The Distributed Processing Support layer essentially provides
abstraction from the distribution of the applications.

The Computing Platform Interface provides the link between the
programs of the application developer and the underlying processing
support.

The TMN Support Environment provides the platform services that
are required by the TMN Management Applications and the User Generic
Functions to fulfill their respective roles in managing the
telecommunication network.

User Generic Functions perform key tasks which are required across a
range of TMN applications.

The PRISM Laboratory has a project called IDEA which has
developed its own Platform Support Environment. This project IDEA has
served as support in anothers European projects as : PEMMON /ESPRIT and
ADVANCE/RACE. The design and implementation of this Platform
Support Environment have spent two years and have followed several
phases.

506 122 Simpdsio Brasileiro de Redes de Computadores

5 P
ThiN armoement I TMN
arege ment Hanege me
Apphe st o Appic st 0N
c-l-lllr“ ey Confgurat v
Repont i ey Tester
Fancuors || oty (of Natwork) Library
e e o — e e e e = e = e E— E— — — — —
THN
Supoon
Ervsronme e Otyect Dwrectory
Marndst O g = Servce
Pmttorm
Suppon
Ervwonement
Compurng
Rur-Tera Pre—compssn & Tyos rercs Prgetorm
Litwrary Compdens Marager Mermger ierface Damtutes
Support
Tracer [PEcemant Strategy |Tramsaction 5 Irvocstion Rapic Cang
M oad Demrce’ Support Ot Marmger | Marmge
G >0 | Trae Storsge Threads Device
Haprclet Supgon [a1 imrwoe Drreeris) O i
Most P s Vet e <SS
Ermaronmants Oparating Operstrg Carmtes
System System System
. e

Figure 2.1 - The General Computing Platform

3. The Platform Support Environment

As shown above, the Platform Support Environment is composed by three
layers: Computing Platform Interface, Distributed Processing Support and
CP-Kernel. The aim in this section is to describe which components must be
included in each layer.

3.1. The Computing Platform Interface
The Computing Platform Interface would include the following objects:

Pre-Compilers and Compilers : The applications within a TMN may be
written in many languages. Access mechanisms to the platform facilities

must be provided by the platform, together with pre-compilers and
compilers.

Run-Time Libraries : The run-time libraries are those parts of the system
linked together with the application code to form an atomic system
component that may be added to that the system. The nature of the library
may vary widely, depending on the mapping from the platform
components onto the underlying host environment. The library may
contain all the platform functionality, or may only contain those routines
necessary to access the functionality of the platform and convert the ‘native’
data types and formats to the common format.

122 Simpdsio Brasileiro de Redes de Computadores 507

Type Management :The Type Management facilities have both an off line
and on line role, and may handle two independent set of types within the
system.

The first set of types is concerned with maintaning the common data types
(e.g ASN.1) in multiple programming languages and a common
interchange format.

The second set is the type or class lattice for computational objects within
the system. These computational objects may have many roles - e.g. they
may be part part of an application, an entry in an information base - and
may have a multiplicity of implementations within those roles. These
computational object types will be structered into a lattice to facilitate
trading, biding, code re-use and polymorphism. These object types may be
added, modified, versioned, or deleted.

Instance Management : The Instance Management facilities support the
creation and deletion of object instances within the system. These objects are
the realisation of the computational objects referred above.

3.2. Distributed Processing Support

The Distributed Processing Support components within the platform
essentially provide abstraction form distribution of the applications
supported by that platform.

Trading : The trader provides facilities for the identification and location of
the system and application entities. The entities are identified by their
properties. The trader also supports federation with other system traders or
directories. The Trader functionality is similar to the X.500 Directory and
the ODP Trader Function .

Binding : The Binding function provides a logical connection between two
application entities taht wish to communicate via the invocation
mechanisms provided by the platform.

Placement Management : It provides facilities for the initial placement of
newly created object instances on machines within the system.

Transaction Management : It is concerned with transactions involving a
number of potentially distributed entities. Transaction support is also
provided at the lower level for those parts of a transaction within
individual entities.

Invocation Management : It is concerned with ensuring that interactions
between system and application entities conform to the common
computation model supported by the platform.

Replication and Group Management : Replication Management is
concerned with maintaning a set of instances of the same type in the same
state. All the instances within the set may be visible outside the set, and
invocations applied to the set are applied to each member of the set.

Group Management is concerned with maintaning a group of instances
which appear as a single object to those objects outside the group. These
instances may belong to different object classes and may be configured in a
number of ways.

508 122 Simposio Brasileiro de Redes de Computadores

Dialogue Managemen: - This provides a link between the platform and
Human Computer Interface resources, and therefore the users, of the TMN.

3.3. The CP-Kernel

Communication Handler Objects : which present uniform interfaces to
communication protocols, network data representations, and inter-process
communication.

Processing Objects : which present uniform interfaces to the processing and
scheduling capabilities of computer systems. Also included are objects that
deal with intra-process concurrency (threads).

Storage Objects : which present uniform interfaces to file and database
systems.

Device Diver Access Objects : which provides uniform interfaces to access
devices on a system.

4. The IDEA Project

The MASI Laboratory of the University "Pierre et Marie Curie" (Paris VI),
has worked a project called IDEA [34].

In this project we have proposed an architecture for network administ-
ration that takes into consideration the set of heterogeneity problems
(manufacture's, architecture or data heterogeneity).

The purpose of the IDEA architecture is to provide, by a methodologic
approach, the design of a software environment for the development c:
management systems in a heterogeneous context. This environment 1s a set
of application layer modules which can be implemented on top of several
target hosts and which together form a run-time platform.

The adopted approach is based on handling the existing proprietary
management systems, without modification, to provide the user with a
unique view of their information. The IDEA framework is thus mainly
determined by the different functionalities needed to realize the
convergence of the manufactures’ access points to their management
applications (MAP) towards a user's unique access point (UAP). These
facilities comprise: a) interfacing with the manufacturers’ management
systems; b) unifying management information into an integ
information base; c¢) management of local and remote operations an
access control and user management.

To fulfill the above functionalities, the architecture defines a modular
structure of co-operating functional blocks. It is the intention of the
architecture that all the reference points between these blocks be identically
specified. The goal of such generic interface is to allow recursivity for the
sake of defining higher level functions (e.g. a meta-information base is
defined as a recursion to the simple database and has the same interface
specification) The main functional blocks are:

a) Manufacturer's Access Interface (MAI): provides an access to underlying
system's resources through an Object-Oriented Model.

122 Simpodsio Brasileiro de Redes de Computadores 509

b) Integrated Network DataBase (INDB): provides an integrated data base
with a unified interface to the shared network information (static and
dynamic).

¢) Local & Remote Operations (LRO): It controls the intra-IDEA interactions
and provides an API (Application Programming Interface) which is used by
an application to access the totality of the management system's
information.

d) Interoperable Functional Block (IFB): provides the needed mechanisms to
communicate extra-IDEA architectures i.e. between an IDEA architecture
and its peers (whether not conformant to the given architecture).

e) Management Applications Entities (MAE): provides an object oriented
approach to invoke common services. Applications are thus permitted to be
developed by regrouping and building upon existing functions. A repository
of functions implemented by applications and judged as public is kept in the
platform.

f) User Access Control (UAC): provides the authentication and access rights
control functions.

5. Describing the IDEA Platform Support Environment
The IDEA platform is a logical system resulting from the IDEA architecture.

All the modules contained in the architecture has been mapped directly in
the platform.

Figure 5.1: IDEA Supporting Platform

The IDEA Platform Support Environment is composed by two components:
the send /receive interface and the Executive [5].

Send/Receive Interface : This interface permits the Executive to dialogue with
all other components present in the network.

Executive : It is a distributed support platform prosed by IDEA project(]. The
Executive possesses the following modules: Naming Server, Session Server,
RPC Server and Kernel.

510 12° Simpdsio Brasileiro de Redes de Computadores

Naming Server : The Naming Server stores all the physical addresses that
belong to each process that has manifested its intention to offer a service to
the network.

Session Server : The Session Server possesses the actual state of all the
messages running in the system.

RPC Server : It is responsible of the communication between Executives
stored in different machines.

Kernel : The Kernel is the manager of the Executive and its main mechanism.
Its task is to manage all the internal blocs, to dialogue directly with the native
operating system as well as all applications that wish to use the network.

CP-Kernel : The IDEA project uses the UNIX as CP-Kernel.

5.1. The Send/Receive Interface

The API provides Send and Receive mechanisms for the two application
development environments: C and C*++. It is currently only intended to
support remote operation primitives as described below. It does not support
transactions (where a number of remote operation is grouped together so
those if one operation fails, the whole group fails and the target is restored
to its original state) and each message is assumed to have one, and only one
target.

5.2. The Executive

The Executive provides the functionalities needed to implement a
Distributed Processing Support.

Applications should not have to worry how information is stored.
Transparency determines the extent that programmers need to be
concerned with and have control over the distributed nature of the
system. In a fully transparent system the application developer delegates all
responsibility for distribution to the support environment provided (i. e
Computing Platform).

The model used has been based in the client/server model. The
Management Applications, clients, through the Executive Mechanism, use
the service offered by other components. The Executive Mechanism has the
task to locate the component searched for by the Management Applications
and must permit that the communication between the two entities can be
performed.

The Executive is responsible for the transfer of the information between the
various engineering components, while hiding the underlying complexity
of the communications network. Therefore, the design of the Executive
must provide support for the following transparencies:

Access transparency: is the property of hiding from a particular user the
details of the access mechanism for a given object, including details of data
representations and invocation mechanism.

122 Simpdsio Brasileiro de Redes de Computadores 511

. Location transparency: hides the exact location of a program component
from any other.

. Failure transparency: Applications must know or be informed of failed
interactions so that they can take the necessary actions. However it is
advantageous to provide transparent failure recovery and provide
limited feedback to the applications.

-Replication transparency: hides the effect of having multiple copies of
program components.

.Migration transparency: hides the effect of a program component being
moved from one location to another (not implemented).

.Concurrency transparency: the property of hiding from a particular user the
existence of concurrency in the system. The concern here is to mask the
details of synchronization and ordering mechanisms that ensure the
distributed system can support multiple users while reaching in a consistent
state (not implemented).

-Heterogeneity Insulation: The problem with the heterogeneity manifests
itself when a set of networks is connected together to form an infrastructure
for communications. These networks support a set of applications and are
composed of components that have different design and technology. The
Platform Support Environment must transform this heterogeneous
environment into a consistent and uniform processing model.

5.2.1. The Naming Server

As discussed above, the distributed processing support must provide the
localization transparency, as manner to abstract the network user of the
physical localization of the server process.

The Naming Server is responsible for this task, storing all the server
processes that are running in the machine. These server processes are called
local' server processes. The Kernel asks always the Naming Server to know
the physical address of a target application.

The role of the Server Name is to provide the correct destination for
the Messages or Replies. This is achieved by mapping the context and
target address of the message to its own directory service. Once the target
server has been located, the Executive binds the client and server. This
allows the transfer of the message across the platform and the return of a
reply where appropriate.

5.2.2, The Session Server

The Session Server has as task to manage all the communication that
circulates in the network. The message that arrives in Executive, through the
Kernel, will be controlled and registered by the Session Server.

It is responsible to maintain a control about the messages that must return a
response to users, signaling the Kernel if the responses have not been arrived
in previous delays.

In fact the Session is reponsible of providing a reliable message service. The
discussion above is attached to the problem of finding a timeout and

512 122 Simpédsio Brasileiro de Redes de Computadores

retransmission algorithm that takes into account the actual round-trip time
that can be measured. To provide this task we are implementing to the
Session Server an adaptative timeout with an exponential back-off function,
known as Jacobson's algorithm.

5.2.3. The RPC Server

As discussed so far, we have treated the problems concerning local processes.
It is possible that a client process asks for a service provided by a server
process (called remote process) that resides in another machine.

The communication between the Executives has been done using the RPC
paradigm. In this paradigm, the client applications can execute procedures on
other networked computers or servers. In fact, we use a only procedure to
send the messages that will be treated by the remote Executive. The services
offers by each server applications are viewed as local procedures for each
Executive.

5.2.4. The Kernel
The Kernel is the heart of the Executive system. It must control all the
internal blocs and all the communications with the external world and native
operating system.

The Kernel is responsible for managing the Executive, i. e, to initialize each
process that corresponds to the internal blocs, the queues and the shared
memories. Afterwards, the Executive can be accessed through the Kernel and
the RPC Server.

6. Security Aspects in IDEA

In this section we present our first effort to securise the IDEA platform. As
presented in the previous sections, IDEA is a distributed computing
platform for the network management applications. Being distributed, it
can not escape from the security threats of open systems and as a
consequence it must be reinforced by security measures against the threats.
In the following sections, we will see some of the threats to whom IDEA is
particularly vulnerable and the integration of some security services to
IDEA. The presentation will end by a short remark on further works and a
conclusion.

6.1 Security Threats and Security Services

For the sake of security threat analysis, the IDEA model can be simplified as
follows :

User IDEA Integrator

122 Simpdsio Brasileiro de Redes de Computadores 513

Fgure 6.1
Exc Exc
RPC
R R
P
C c
Exc e Exc
Figure 6.2

In figure 6.1, two interfaces are shown : the Visible Interface between
the users and the IDEA and the "Common Service Interface” between IDEA
and the Integrator. Figure 6.2 shows IDEA as a kind of network of
Executives that communicates to each other based on the RPC paradigm. It
is important to realise that the Executive nodes are not necessarily
physically neighbours.

This simplified figures allow us to concentrate on the relevant
components of the IDEA platform from the security point of view. In the
present architecture, the communication between the users and IDEA and
between the IDEA and the Integrator are local matters. As a matter of fact,
the needed security services can be offered using the available operating
system tools and/or within the application (IDEA) itself. The file protection
mechanism offered by SunOS can be used to protect personal files against
unauthorised access. This covers the illegal file modification threat and the
file privacy violation threat. For instance, IDEA needs to protect the queues
against unauthorised access. This can be achieved by creating a group (say
IDEA-users) and giving the write access to the queues only to it's members.
On the other hand, the usual authentication mechanism of the underlying

(password) operating system can be effectively used to authenticate the
IDEA users.

However the operating system doesn't cover all the threats or
precisely, the resource protection model of the operating system is not
sufficient for IDEA. For instance, the users' privileges with respect to the
IDEA's resources can not be modeled using the operating system'’s
protection model. This is partly because the protected resources (files, cpu,
memories) in the operating system and the protected resources in IDEA
(database entries,etc) are not the same objects. It is precisely for this reason
that IDEA anticipates an integration of a module called User Access
Control(UAC) in it's architecture. It's main function will be the
authentication of users and verification of their access rights. In this paper,

o4 127 oImposIO Brasileiro de Redes de Computadores

we are concerned only on the security threats due to remote
communication and hence the existence of the UAC module is assumed.

The only place where remote communication happened is between
Executives (fig 6.2).

As any distributed system, IDEA is vulnerable to many security
threats. Masquerade, illegal data modification, data privacy violation, denial
of service, and traffic analysis are some of these threats. Interested readers
can consult [13] for more detailed analysis of security threats in open
systems. In this discussion, we are interested only on the following ones :

- Masquerade / Authentication Service

In any computer systems, principals (users, servers, etc) are identified
with some sort of identification statements. Depending on the complexity of
the system, the identity of principals can be a symbolic name, a number, a
computer address or other statements. In general, a secret information is
attached to the identification statements so that only the principal capable to
supply this secret information together with the identification statement is
identified by it. The masquerade threat is a threat where a principal may
illegally takes the identity of an other principal for the purpose of malicious
activities. The masquerading process can be as complex as the identification
mechanism employed by the system. In networked systems where
principals need to establish their identity with a remote system, the
masquerade threat is critical as the principals' identification information
traverses all along the network to the target system thus by increasing the
entry points for the potential impostors.

We call an Authentication mechanism (or service), a mechanism by
which a principal proves his identity to a system or an other principal. An
authentication mechanism can be as trivial as the classical password
insertion or as complicated as the Kerberos authentication mechanism [7]
that uses cryptographic algorithms. The former is called Simple
Authentication and is usually used in autonomous systems while the later
is called Strong Authentication and is usually used in open systems [9].

In IDEA, the Executives are communicated remotely and in
consequence Strong Authentication mechanism must be used.

- Data privacy violation /Confidentiality Service and Illegal data
modification / Integrity Service

In open systems, the network is in general untrusted. This is a
judicial assumption as networks are covering more and more
geographically wide areas. In such situations, transit data can be illegally
read or even modified in intermediate nodes. We call the former Data
privacy violation while we call the later Illegal data modification threats.

122 Simpdsio Brasileiro de Redes de Computadores D15

Confidentiality service is a generic service that is used to counter the
Data privacy violation threat. Most confidentiality services are based on
cryptographic mechanisms. In this mechanism, the data is encrypted by the
sender using a key pre-arranged with the receiver. That way, only the
receiver who has the corresponding key is capable to recover the original
data [13]

A combination of hash function and cryptographic mechanism can be
used to detect whether data are modified or not in transit. The hash
function is used to calculate the digest of the data to be sent while the
cryptographic algorithm is used to encrypt the digest. If the data is modified
in transit, it's digest would not be the same as the digest sent by the sender
hence allowing the receiver to detect the modification. Integrity Service is a
generic name for such services [13].

In IDEA, both these threats are present. For instance, the users’
messages can be altered in transit. In some cases, confidential informations
such as security management parameters can be read by unauthorised body.
As a matter of fact, both the above services must be integrated in IDEA.

- The Problem of Key Management

Cryptographic algorithms are classified in two : Secret key algorithms
and Public key algorithms. In the former, the same key is used both for
encryption of the plaintext and for the decryption of the resulting
cyphertext. In principle, the key is shared only between the communicating
principals. Of course, the decrypting algorithm is the "inverse" of the
encrypting algorithm. In the later case, the encrypting key is different but
mathematically related to the decrypting key. One of the keys is private (not
even shared) while the other is public (known by any body). In principle, it
is mathematically infeasible to deduce one of the keys from the other. Data
Encryption Standard (DES) is a cryptographic algorithm of the first category
[3] while RSA (Rivest, Shamir, Adleman) is a public-key algorithm [11].

In the case of security services that uses secret key algorithm, a key
must be shared between the communicating principals before the proper
communication. If there are N potentially communicating principals in a
system, it necessitates each of them to keep N-1 keys, one for each other
principal. It is not hard to see that this does not work for large systems.
Beside, letting each principal (specially human users) keep and use these
much secret keys is not a good practice.

One common solution is to introduce a trusted component in the
system. This component, we call it Authentication Server, will exchange a
secret key with each of the principal in the system. In this arrangement, all a
principal has to do is to keep secret the only key he shared with the
Authenticating Server. The main function of the Authentication Server is
the generation and distribution of short-timed keys, called session keys,
among the communicating principals. The session keys are distributed

516 122 Simpdsio Brasileiro de Redes de Computadores

securely thanks to the shared secret keys. Once issued, a session key can be
used many times until its lifetime does not expire. It is not within the scope
of this paper to give a detailed presentation on this method. Interested
readers can consult [6,7]. At last, we will like to mention that one of the
disadvantages of this solution is the introduction of a critical component in
the system. It goes with out saying that, the Authentication Server must
run in physically secured room. Kerberos uses a variety of this method for
authentication and key distribution.

In the public-key mechanism case, the problem is some what
different. Here, each principal owns two keys; one private and the other
public. For secure communication, all one needs to do is to learn the public
key of his communication partner. Again, it is not wise for each and every
one to keep the public keys of the potentially large number of partners. One
can imagine the huge management work this would entail whenever a
partner changes his public key (well, the operation is not even acceptable
from a security point of view). One solution is to use a generic directory
service a la X500 for the distribution of public keys. However, this
necessitates as well two things : the directory must be trusted (as the
Authentication Server above) and a secured communication is needed
between the principals and the directory server. In particular, the
Authentication service and the Integrity service must be used. This is a
right solution as long as the scope of the system is limited geographically. In
a more general case, the problem is more complicated as we will be forced to
use a generic Directory Service (hence not necessarily trusted). This problem
is treated in [6,14].

In IDEA, all secured communication is done between Executives
(servers). As a matter of fact, they constitute the principals of the system.
Cryptographic keys will then be associated with them.

6.2. Secured Idea

This section treats the implementation aspect of the ideas discussed
in the previous sections. We recall that the security services we need to
integrate are the Authentication service, the Confidentiality service and the
Integrity service.

IDEA is implemented in SunOS environment [12]. In particular, Sun
RPC is used for the communication of Executives. Since RPC is the only
paradigm used for the communication between Executives, the integration
of security services in it will be enaugh to realise the needed security level.
SUN provides a secured version of it's RPC package that has integrated the
Authentication and Confidentiality services.

The Sun Secure RPC can be divided into two components : the key
management and the proper Secure RPC. In principle, one can use a
different key management mechanism on the top of the Secure RPC.

122 Simp&sio Brasileiro de Redes de Computadores 517

The Secure RPC is based on the DES algorithm. As we mentioned
above, this algorithm uses the same key both for encryption and decryption.
Civen that the two communicating principals are agreed on a secret shared
key, the Secure RPC transmits their data securely (in encrypted form). By the
mere fact that the shared key is known only to the two principals, this
process assures the authenticity of the sender as well as the confidentiality
of the data.

In Sun Secure RPC, each principal owns a private key and a public
key. Both these keys are stored in the NIS (Network Information Service)
database; the public key is stored in plaintext while the private key is stored
encrypted by the principal's UNIX password. When a principal
logs into his system, his record (his network name, public-key, encrypted
private-key) is retrieved from the NIS database. Then his password is used
to recover the private key; this key is kept in the memory of a special
process called keyserver (RPC Version 4.1).

Sun RPC uses a method called exponential key exchange to let two
communicating principals arrive at the same session key, without ever
broadcasting that key on the network. For this to be achieved, each of them
need to combine it's private key with the other's public key. Once a session
key is obtained, a client (the principal that initiates a conversation)
generates a random conversation key and sends it to the server, encrypted
with the session key. The Secure RPC uses this key to encrypt the
transmitting data.

To summarize, we observe two separate steps : the Key Initialization
step and the Secured Communication step. The first step is needed to
retrieve the public and the encrypted private keys of a principal from the
NIS database. Sun provides mechanisms to retrieve these keys. For the sake
of security, the private key is stored in the memory of the keyserver process,
after having been decrypted by the principal's UNIX password. The second
step is needed when a principal (client) wants to establish a secured
communication with an other principal (server). In this step, the client
retrieves the server's public key from the NIS, calculates the session key,
and generates a random conversation key. Then, he sends the conversation
key to the server encrypted by the session key, where after, the server
retrieves the client's public key and calculates a session key. If the server
arrives at the same session key as the client, he is able to recover the
conversation key. At last, this key will be used for the proper secured
communication between the client and the server.

Now that we have briefly exposed how Secure RPC works, it's use in
IDEA is almost straight forward.

The first thing to do is to use the Secure RPC version instead of the
originial RPC. Next the IDEA program code is to be modified so that it
incorporates the calls related to the exponential key exchange method.
Finally, the (Sun) key management infrastructure must be integrated to the
system. Although there is a number of options for real implementation of

518 122 Simpdsio Brasileiro de Redes de Computadores

IDEA in UNIX, we assume that the Executive, as a server, is started as part
of the bootstrap of the machine. In this assumption, the Executive is owned
by the superuser and hence it uses the superuser's keys. The Key
Initialization step is done by the superuser independent of the Executive
server. From the Executive's point of view, it's private key is assumed to be
kept by the keyserver before it initiates a secured communication.

As mentioned above, Sun Secure RPC provides the Authentication
and Confidentiality service but not the Integrity service. However, this last
service can be integrated with out much difficulty.

6.3 Remarks

The Sun Secure RPC is chosen to securise IDEA mainly because IDEA
is developed in SunOS environment. Obviously, this will save a lot of
working hours. However, this choice is not without it's price. This is
specially true in the key management infrastructure. In Sun Secure RPC,
the keys are associated not with servers but with UNIX users. The
association with the servers is done indirectly by allowing them to use the
keys of their owners. This creates two problems : first, keys are valid as long
as their owners remain logged. But, in general, servers last longer than the
users who started them. Second, a single user may own a number of servers
(eg. the superuser) which implies that different servers use the same key at
the same time. This is not acceptable from the security point of view. We
believe that a different key management that takes into account these issues
must be used. (In Kerberos, a single key is assigned to each server
independent of it's owner).

7. Correspondence of IDEA Platform Support Environment to the General
Platform Support Environment

Mapping to the CP Kernel

The Communication Handler: The IDEA CP platform supports
communication over System V Messages Queues and TCP/IP networks.
Threads: They will provide in the next version. In this version, the system
does not use the Threads.

Storage Handler: Which provides uniforms interfaces to file and databases.
This function is provided by the INDB.

Device Drivers: It provides uniform interfaces to access devices on a system.

Mapping to the Distributed Processing Support Layer

Trader: It is provided by the Naming Server.

Binder: It is provided by the Kernel of the Executive.

Invocation Manager: is concerned with ensuring that interactions between
system and application entities conform to the common computation
model supported by the platform (provide by the Kernel and Session
Server)

£~ QITIPOSIO DIUSHEN0O U IkEACs AEe LOMPuUuraaores ol i g

Mapping to the CPl Layer

Run-Time Library: The messages are exchanged using a Run-Time Library,
that contains the following components: The send/receive interface and the
parser.

Pre-compilers: It will be provided by the UAC component. The Interface
Description Language needs to be defined. They will produce C code which
is compiled with the appropriate libraries.

8. Conclusion

We have proposed in the CPSIG-RACE project a general architecture
for TMN applications. PRISM laboratory has developed a platform called
IDEA.

We are trying to securise the IDEA platform following the points
discussed above. The first and theoretical study is completed. This will
shortly be followed by the real practical work (hoping that we will have the
exportable version of Secure RPC).

With a suitable key management infrastructure, Sun Secure RPC is a right
solution for the IDEA project. We believe that this, together with the User
Access Control module, will give an acceptable security level for IDEA.

Finnaly, we try to show how the IDEA platform can be mapped in the
CPSIG-RACE platform.

Acknowlegments

The authors gratefully acknowledge Roke Manor Research Ltd (UK),
Britsh Telecomm (UK), Trinity College (IE) and Broadcomm(IE) for their
contributions. The first author has been supported by Banco do Nordeste do
Brasil (BNB) and CAPES.

References

[1] Wade, V.et all.: "A Framework for TMN Computing Platforms",
proceedings of the 5th RACE TMN Conference, London Nov. 1991.

(2] Wade, V., Donnely, W., Roberts, S., Harness, D., Riley, K., Celestino, J.,
Shomaly, R.: " Experience Designing TMN Computing Platforms for
Contrasting TMN Management Applications”, published in "The
Management of Telecommunications Networks", Ellis Horwood Limited,
1992, ISDN 0-13-015942-5.

[3] Claudé, J-P. et al.:" IDEA : A method for the unification of heterogeneous

network management", International Telegraphic Congress ITC, June 1991,
Copenhagen.

ozU 12= SIMpPOosIO Brasilieiro ade Redes de Compuraqaores

[4] Claudé, J-P., "Proposition d'une spécification d'administration de

réseaux hétérogeénes"”, These d'état, Université Pierre et Marie CURIE, 24
Sept 1987

[5]Celestino, J. - "A Distributed Processing Support for an Integrated
Network Management, IFIP Conference'93, WG 6.4, April 1993, France.

[6] W. Lu, M.XK. Sundareshan : "Secure Communication in Internet
Environments : A Hierarhical Key Management Scheme for End-to-End
Encryption”, IEEE Trans. On Communication, Vol 37, No 10, Oct 1989.

[7] S.P. Millen, C. Norman,].I. Schiller, and]J.H. Saltzer : "Kerberos
Authentication and Authorization System", Project Athena Technical Plan,
Section E.2.1, MIT, July 1987.

[8] National Bureau of Standards "Data Encryption Standard”, Federal
Information Processing Standards Publication 46, Washington D.C, 1977.

[9] R.M. Needham and M.D. Schroeder "Using Encryption for

Authentication in Large Networks of Computers" Comm ACM, Vol 21 No
12, Dec 1978.

[10] RACE Project R1009:"An Implementation Architecture for the
Telecommunications Management Networks", Mar. 1991.

[11] R.L. Rivest , A. Shamir, L. Adleman : "A Methos for Obtaining Digital

Signature and Public key Crypto-systems” Comm ACM, Vol 21, No 2, Feb
1978.

[12] Sun Inc : "Sun Operating System", Version 4

[13] M. Satyanarayanan : "Integrating Security in a Large Distributed
System”

ACM Transactions on Computer Systems, Vol 7, No 3, August 1989.

(14] A. Tarah, C. Huitema : "Certification and Routing Protocols", IPPS 92

