122 Simp&sio Brasileiro de Redes de Computadores 175

A Language for Generic
Dynamic Configuration of Distributed Programs

Markus Endler
Departamento de Ciéncia da Computacao,
IME. Universidade de Sao Paulo,
Caixa Postal 20.570, 01452-990 Sao Paulo
endler@ime.usp.br

Abstract

Distributed systems are being increasingly used for applications demand-
ing dynamic changes in their functionality and interaction structures. Ex-
amples are applications with requirements for high availability, such as in
telecommunication, online information services, and process control, and ap-
plications with inherently dynamic structures of distribution and parallelism,
such as in network management and parallel processing. In this paper we
present the reconfiguration language Gerel and its current implementation.
Gerel allows for the programming of generic scripts for dynamic reconfigura-
tions which can be used in different applications. The major novelty of Gerel
is the provision of powerful precondition and selection mechanisms, which are
used to check 1 the current connguration has the required properties, and to
apply the reconfiguration commands only to the objects satisfying these prop-
erties. In this paper we show how Gerel is used for defining dynamic reconfig-
urations in distributed programs implemented according to the master-slaves
paradigm.

Keywords: Language, Tool, Dynamic Reconfiguration, Distributed Systems

1 Overview

Distributed systems are being increasingly used for applications which require the
ability to dyvnamically change the system’s functionality and communication struc-
tures. Such applications either require a high availability. i.e. it is either impossible or
very costly to stop the entire program for maintenance. or have a problem-specific
dynamic structure of their distribution and parallel processing. This leads to a

growing interest on languages and tools that support dynamic reconfiguration of
distributed programs.

176 122 Simpdsio Brasileiro de Redes de Computadores

Essentially, dyvnamic reconfizuration can he classified according to the kind of change
it produces, and to the moment it is defined. In the first case, we distinguish
between functional and structural changes. Functional changes, also called module
implementation changes(9], are reconfigurations where new code is added to the
program, thus modifying its functionality. Structural changes are reconfigurations
which only change the interdependency relation between the system’s parts. or create
new processes from already available code.

According to the moment of its definition, we distinguish between programmed
and ad-hoc changes. [rogrammed changes are reconfigurations which are defined
at system design time (and may be compiled to machine code together with the
actual application proeram), and are triggered by the program itself. Due to the
possibility for an efficicnt implementation, programmed changes arc well suited for
automatic, program-driven modifications, such as dynamic load balancing or fault-
recovery mechanisms. Ad-hoc changes, on the other hand, are reconfigurations de-
fined only when the application program is already in execution. They are usually
supported by tools that allow the user to interact with the system in order to query
the current configuration and to execute simple reconfiguration commands. Ad-hoc
changes are necessary for software maintenance, and can be of both functional or
structural type.

When all kinds of dynamic reconfiguration, and in particular, when ad-hoc and
programmed dynamic changes are to be supported together, new requirements for
the reconfiguration language and its execution mechanism arise. They come from
the problem that the two kinds of reconfiguration have to be coordinated, and that
programmed changes must be specified for a dynamically evolving configuration, i.e.
a configuration which cannot be predicted at system design time.

In this paper we present the reconfiguration language Gerel, which satisfies these re-
quirements by supporting the implementation of generic dynamic reconfigurations.
The major novelty of Gerel is the provision of powerful precondition and selec-
tion mechanisms, which allow for querying the current configuration about required
properties. and applying the reconfiguration commands only to the objects satisfy-
ing these properties. Gerel’s execution model further guarantees that programmed
reconfigurations are performed only if their precondition is satisfied, and that they
are executed in mutual exclusion with other reconfigurations in a same program.

The original goal in the design of Gerel was to have a language supporting the imple-
mentation of programmed changes for evolving configurations (i.e. of configurations
also manipulated by ad-hoc changes), which is possible due to Gerel’s precondition
and selection mechanisms. It turned out, however. that these mechanisms also favor
the implementation of generic schemas of reconfigurations. which can be used in
many application programs. This second benefit of Gerel will be the main concern
of this paper. '

This paper is structured as follows. Section. 2 defines the basic concepts underlying
Gerel. In section 3 we present a simple example requiring programmed changes. In

122 Simposio Brasileiro de Redes de Computadores 177

section 4 we introduce Gerel and show how it is suited to implement the programmed
changes of the example. Section 5 explains our current implementation of Gerel, and
section 6 summarizes related work. Finally, in section 7 we evaluate our work and
point to future directions.

2 Basic Concepts

We view a distributed application as a set of interacting components. A component
is a run-time object encapsulating part of the application’s state and interacting
with other components by sending and receiving messages through its communi-
cation interface. It is created dynamically from a component type, which is the
program describing the component’s functionality. The communication interface
of a component consists of a set of ports, each of which specifies a message type
(which also says whether it is for synchronous or asynchronous communication) and
the direction of message flow. Two components can only communicate if they have

compatible ports (i.e. with same type and opposite direction), and if these ports are
connected.

Essentially, in Gerel we adopt the Configuration Based Approach[4], where a dis-
tributed program is implemented at two levels: the programming and the configu-
ration level. While at the programming level one describes the implementation of
the components, at the configuration level the interconnection structure between
the components of a distributed application is described. Another characteristics of
Configuration based approaches is that all kinds of dynamic reconfigurations are de-
scribed only at the configuration level, e.g. as the creation or removal of components
and their interconnections.

3 The Master-Slave Example

Many computational intensive problems have a parallel solution based on the master-
slaves paradigm. This paradigm advocates that a problem be decomposed into
independent subproblems which are solved in parallel. The configuration implied by
this paradigm is shown in figure 1. It consists of two types of components. A single
master component is in charge of decomposing the problem, allocating subproblems

to slave components, and putting together the partial results received from the
slaves.

Some solutions require only a single decomposition, and thus make it possible to
determine the number of required slaves at program start. However, other parallel
solutions adopt a recursive decomposition of the problem, and therefore require the
ability to change the number of slaves while the problem is being solved. Typical
examples for such evolving solution structures are Divide-and-Conquer and Branch-
and-Bound algorithms. In such cases, the master component must be able to create

178 122 Simpo&sio Brasileiro de Redes de Computadores

/ sy
master fr_slaves <

o

.
L
.
s
*u

Figure 1: Master-slaves Interconnection Structure

new slaves whenecver it decomposes a new (sub)problem. In addition, it must be
able to remove all its slaves when the entire problem is solved.

These two extra functions of component master are naturally expressed as pro-
grammed changes to the Master-Slaves interconnection structure, which are de-
scribed by Gerel change scripts add_slave and rem_slaves. presented in section 4.4.
As suggested by figure 1, component master is capable of invoking these changes

since it is logically connected to them. In section 5 we will explain how we imple-
mented this capability.

Figures 2 and 3 show the general structure of the algorithms for the master and
slave components. For the interaction between master and its slaves, we adopt a
communication protocol similar to the one described in [5]. In this protocol, a slave
first announces its availability by sending a ‘null’ result to master. This message, as
well as all subsequent messages containing a result of a subproblem computation,
are also requests for new subproblems. The identity of the slave is contained in the
message sent to master, and is used as the destination address for the reply message.

This arrangement has the advantage that master does not need to know the identity
and number of available slaves.

In master’s algorithm, update_set_subpr is a function which updates the set of open
subproblems, based on the receipt of result r. This function will typically remove
from open_subpr the subproblem for which r is a solution, and eventually add new
subproblems described by message r. We further assume that update_set_subpr does
not modify open_subpr when requals ‘null’. After updating the set of open subprob-
lems, function allocate selects one subproblem, which is then sent to the idle slave.
After this, function requ_slaves computes the number of extra slaves required, based
on the number of open subproblems (#open_subpr) and the number of available
slaves (#slaves). These additional slaves are created by repeatedly calling the pro-
grammed change add_slave. The main loop terminates when all open subproblems
are solved. After this, master calls change rem_slaves to delete all its slaves.

The slave’s algorithm consists of an infinite loop, where subproblems are solved

122 Simpdsio Brasileiro de Redes de Computadores

179

component master;
entry frslaves: slave_request;
begin
initialize; #slaves:=0; open_subpr:= global_problem;
repeat
receive r from slave;;
if r#null then record(r)
else #slaves:=#slaves 4 1;
open_subpr:= update_set_subpr(open_subpr, r);
sub_prob:= allocate(open_subpr);
reply sub_prob to slave;;
for 1:= 1 to requ slaves((#opensubpr—1), #slaves)
call add_slave(slave_path, fr_slaves);
until #open_subpr=0;
finalize;
call rem slaves(fr_slaves);
end;

Figure 2: Master Algorithm

by function compute. results of these computations are sent to master, and new

subproblems are received.

4 The Reconfiguration Language Gerel

Gerel, which stands for Generic Reconfiguration Language, is suited both for the
programming of change scripts and for performing ad-hoc reconfigurations. The
main advantage in the use of Gerel is the capacity to describe generic reconfigura-
tion scripts which are based on queries of the current configuration. Gerel scripts
are generic in the sense that they can be specified in terms of type and connec-

component slave;
begin
result:= null;
loop
send result to master wait sub_prob;
result:= compute(sub_prob);
end;
end;

Figure 3: Slave Algorithm

180 122 Simpdsio Brasileiro de Redes de Computadores

tivity properties of the elements of a configuration (e.g. components, component
types, ports. etc.) rather than in terms of their concrete names. Due to this pos-
sibility, such scripts are fiexible, and can be applied to all configurations where
its constituent elements satisfy the specified properties. Therefore, Gerel allows
implementing programmed changes that maintain their validity despite ad-hoc re-
configurations. Moreover, it is possible to implement change scripts which can be
used in different applications, as we will show later.

In the following we present Gerel by first introducing its (basic and structured)
commands, and describing the concept of reconfiguration variable (generic sym-
bol). Then we explain Gerel’s powerful query language Gerel-SL, and finally we
describe the general structure of Gerel scripts by presenting the scripts add_slave
and rem_slaves, of our example.

4.1 Commands

Gerel has two sorts of commands: basic and structured commands. Basic commands
are used to create and remove components and the connections between their ports.
These commands define reconfiguration actions. and can be used both in change
scripts and for ad-hoc changes.

create component of comp_type ["(” arguments ”)" | [at location |
delete component

link port port

unlink port port

In the above commands component, comp_type, location and port are so-called con-
figuration expressions, which either denote the name of an existing configuration
object or a generic symbol. A generic symbol (section 4.2) is a sort of reconfigura-
tion variable which has only names of configuration objects as its values. When a
generic symbol is used, the corresponding command is applied to the configuration
object that is the current value of the generic symbol.

Gerel has three structured commands, which define the control flow of reconfiguration
programs. Commands select and forall furthermore implement Gerel's selection
mechanism and establish the link between the basic commands and Gerel-SL. which
is used for writing the selection formula (formula).

select gs ":" formula do commands end
forall gs ":” formula do commands end
iterate 7 in "[" low ":” high *]” do commands end

Select and forall define the assignment (or binding) of one or more configuration
objects to the generic symbol gs. Whenever gs appears in any Gerel-SL formula or
basic command within commands, the objects currently bounded to gs are used in its
place. In select, the statements in commands are executed for only one (randomly

122 Simpédsio Brasileiro de Redes de Computadores 181

chosen) object satisfying formula. In forall, commands is executed for every object
satisfying formula. If the set of selected objects is emply, then commands is not
executed. The evaluation of formula is done only once, before the first execution of
commands, which guarantees the termination of all forall commands. The iterate
command is a simple for-loop, where 1 is the loop variable, and low and high are
integer expressions holding the lower and upper iteration bounds. This command is
needed for specifying reconfigurations on arrays of components or ports.

4.2 Generic Symbols

Gerel supports the definition of reconfiguration variables, called generic symbols.
They are used to relate the configuration property expressed in a Gerel-SL formula
with the reconfiguration actions to be applied to the objects satisfying this property.
Generic symbols have configuration types, and their values are only names of config-
uration objects. For every kind of configuration object, there is an associated type
of generic symbol, e.g. type inst (component), type (component type), port, etc.
Additionally, the range of a generic symbol of type inst and port can be further
constrained to a specific object type, as shown in the declaration of the following
symbols.

symbol
n: inst abc; /* components of type abc */
; : * -
s: port controlT; /* ports of type controlT */
i: inst; /* components of any types */
l: location; /* any location */
m: type /* any component type */

The first two are called specific configuration types, and the latter are called generic
configuration types. The language defines that all specific configuration types are
compatible to their corresponding generic type, and that specific types are only
compatible if their generic and specific parts are equal. Gerel’s programming-in-the-
large types not only allow for strong type checking, but also enhance the efficiency of
its selection mechanism, since only the objects of a given type have to be considered.

Besides configuration types, Gerel has also data types, such as integers, booleans,
strings, etc. These may be used for defining the script’s formal parameters, which
in turn can be used as indexes for port or component arrays, or as the arguments of
the create command.

4.3 Gerel’s Query Language

Gerel contains a powerful query language called Gerel-SL. It is a first order logic
language used to describe properties of configuration objects. Gerel-SL can be used
both for specifying selection formulas and reconfiguration preconditions. While the

182 12 Simpdsio Brasileiro de Redes de Computadores

evaluation of a reconfiguration condition produces a boolean result, selection formu-

las (which must contain at least one free generic symbol) bind this generic symbol
to the set of objects satisfying the formula.

Gerel-SL formulas are normalized first order logical formulas, where all universal
and existential quantifiers (keywords fa and ex) appear to the left of a quantifier-
free propositional formula. These are built by applying the logical negation (not),

the logical conjunction and disjunction, denoted by symbols & and | to simpler
propositional or atomic formulas.

In addition, Gerel-SL supports the use of an open set of primitive predicates and
functions (Gerel-SL primitives), each of which expresses a basic configuration prop-
erty or relation. Since many of these primitives are required for different kinds of
configuration objects, we use the prefixes c., ct_, p. and l. to denote, respectively, if
the primitive refers to components, component types, ports or locations. In the fol-

lowing list, the prefixes in square brackets describe all the variants of the primitives
that are available.

Predicates:
[e,p]dinked(oy, 03) objects 0, and o, are linked
[c.ct.p.]]exists(o) object o exists
[p]free(o) object o is available (not connected)
Functions:
invoker() the component calling the change script
[e,p]-type(o) the type of object o
[p]-owner(o) the component to whom object o belongs
[p]-def(o) the definition name of object o
[c,p]index(0) the index of the (array) object o
(1] Joad(o) the number of components at location o

The following 1s an example of a Gerel-SL formula:
fa C: ex P: not c_type(C)=def | clinked(C, P)
Assuming that C is a generic symbol of type inst, and P is a generic symbol of

type inst abe, this Gerel-SL formula expresses that every component of type def is
connected to at least one component of type abe.

4.4 Gerel Scripts

In Gerel, all programmed changes are defined in change scripts. These are a sort of
reconfiguration procedure, which may have parameters and define generic symbols
that are local to the script. One of the major characteristics of a Gerel script is
that it may contain a reconfiguration precondition, which is evaluated whenever
a script is invoked. Only if it is satisfied, the script is executed. QOtherwise, the
invoker is informed about the unsuccessful script execution. By specifying a change

122 Simp&sio Brasileiro de Redes de Computadores 183

precondition, one is able to design change scripts that are executed only if the
configuration to which they are applied satisfies the structural properties described
in the precondition. This allows the programming of change scripts that are robust
to all ‘exceptional’ configurations that do not satisfy the precondition.

In the following we show the Gerel scripts for the programmed changes of the ex-
ample in section 3. In the example, add_slave is invoked by master whenever this
requires a new slave for solving a subproblem. The script for this change is parame-

change add_slave(t: type ; masterport: port);
symbol |, m: location;

new: inst;

q: port;

condition ct_exists(t) & p_exists(masterport) & p_owner(masterport)=invoker()

execute
select I: fa m: 1Joad(l) < lJoad(m) do
create new of t at |;
select q: p_owner(q)=new & p_type(q)=p-type(masterport) do
link masterport q end
end
end.

terized with the component type (the name of the executable) for the slave and the
(address) of the master’s port, whose values are provided by the invoking compo-
nent (master). Its precondition (keyword condition) requires both that slave’s type
is available, and that port masterport really exists at the interface of the invoking
component. In the execute section (which must be present in every Gerel script),
first the machine with the less number of processes is selected and bound to generic
symbol L. Then a new slave is created (with the type passed as parameter) at the
selected machine. Finally, the port at the new slave which has a type compatible
with masterport is connected to this port, i.e. the master and the new slave are
connected.

change rem slaves(masterport: port);
symbol s: inst;
p,q: port;
execute
forall s: clinked(s, invoker()) do
select p: p_owner(s) & p.linked(p, masterport) do
unlink p masterport end;
delete s
end;
end.

184 122 Simposio Brasileiro de Redes de Computadores

In the script for change rem_slaves first all the components connected to master are
selected and bound to generic symbol s. Then, for every of such component, its port
is disconnected from port masterport, and then it is removed.

An important aspect hereis that both add_slave and rem_slaves define all their recon-
figuration actions only in terms of their formal parameters and of generic symbols,
and are therefore independent of names, types or the number of configuration ob-
jects. This independence from a particular configuration makes these scripts robust
to dynamic evolution. For example, both script are still valid if some new slaves are
arbitrarily added or removed. Moreover, because of their genericity, these scripts
can be used in any distributed program implemented according to the master-slave
paradigm.

5 Implementation

The current implementation of Gerel takes the form of a configuration management
tool. This tool, called gerel. was built on the top of the Conic|7] reconfiguration
support. and performs dyvnamic reconfigurations on distributed programs running
on a network of Sun Workstations under Unix. The main feature of this tool is that
it supports both the execution of programmed changes (Gerel scripts) and of ad-hoc
changes.

gerel

name-server

=B el
= - Recontig. Controller

_—\"u

0 a0
Gerel imerpretar
—

Figure 4: Architecture of gerel

As suggested by figure 4, gerel uses a nameserver for obtaining the location of the
application program components, and is composed of two interacting processes: an
interpreter for gerel scripts and a reconfiguration controller. The interpreter process
reads Gerel scripts from a file, parses them, performs the static semantic checks,
and evaluates the scripts upon requests. The controller process is in charge of man-
aging the interactions with the user, monitoring the current configuration of the
distributed application and coordinating the programmed and ad-hoc reconfigura-
tions.

122 Simpdsio Brasileiro de Redes de Computadores 185

Gerel scripts may be invoked ecither by the user or by any application process con-
nected to gerel. For the first case, the user must enter the command

exec scriptid | arguments]

where scriptid can be either the name of the script or its sequence number in the
script file, and arguments is an optional list of data type constants or configuration
object names. For the latter case, we have implemented a group of standard pro-
cedures which perform the connection to gerel and make the (remote) invocation
of a script and the synchronization with its result transparent for the application

component. These procedures have to be imported by every component which is
supposed to invoke any Gerel script.

Qur configuration manager gerel provides also a command by which the user makes
available new component types (i.e. executables), which are to be used for further
creation of components. With this, it is possible to do functional reconfigurations,
e.g. to add and replace component implementations in an executing program.

Besides its feature of guaranteeing the mutually exclusive execution of programmed
and ad-hoc changes, gerel also monitors all modifications to the configuration,
like changes in the availability of workstations, or termination of components. By
maintaining all information about the current configuration in local data structures,
gerel implements an efficient evaluation of the Gerel-SL formulas. Although Gerel-
SL formulas are evaluated by brute force, i.e. by testing all the objects of the specified
type on all the formula’s sub-formulas, it turned out that the major delays are due
to the network communication in executing Gerel’s basic commands.

6 Related Work

Some other projects have developed reconfiguration languages and support envi-
ronments. However, none of them has considered the problems of supporting both

programmed and ad-hoc reconfigurations, and of describing generic and reusable
scripts for dynamic reconfiguration.

Conic[7] was one of the first Configuration Based approaches to support ad-hoc
reconfiguration. Conic provides both a textual and graphical interface for the in-
teraction with a reconfiguration manager. However, its facilities for defining change
scripts are limited to Unix-shell programming features. Conic’s successor, Darwin|[6]
is a configuration language supporting only programmed changes. Change scripts
in Darwin are always shaped to the particular characteristics of the configuration
within a so-called composite component. Therefore, Darwin lacks the abstraction
mechanisms necessary for implementing generic reconfiguration scripts. For similar

reasons, Durra[l] is also suitable only for implementing program-specific dynamic
reconfigurations.

Polylith([9] provides a library of primitives for performing dynamic reconfigurations.
Since these primitives are called from within the program components, this approach

186 122 Simpdsio Brasileiro de Redes de Computadores

is only suited for programmed reconfigurations. Moreover, because this library lacks
querying primitives, it is not possible to implement dynamic reconfigurations which
are adaptive to changes in the program’s configuration.

Meta[8] follows a rule-based approach for dynamic reconfiguration, and its reconfig-
uration language consist of guarded commands. Although Meta's approach has the
advantage of supporting an automatic change invocation mechanism, and provides
some form of ad-hoc reconfigurations, its language is not suited to implement generic
reconfiguration scripts.

7 Conclusions

In this paper we presented the language Gerel, which supports the implementation
of generic scripts for dynamic reconfiguration. Such genericity is needed when pro-
grammed and ad-hoc reconfigurations are to be supported together. In addition, it
is useful for defining scripts which describe common patterns of dynamic reconfigu-
ration, and therefore can be used in many application programs. This is the case,
for example. of scripts add_slave and rem_slaves in section 4.4. which can be used in
every program structured according to the master-slaves paradigm.

Since the evaluation of Gerel-SL formulas is exponential in the number of elements
of a configuration. the execution of Gerel scripts is only feasible for programs with
a small number of components, such as in coarse-grained parallel programs, multi-
service servers, and small scale process control systems. For large scale parallel and
distributed applications Gerel requires that the program be structured in a hierar-
chic configuration, where small groups of components are encapsulated in composite
components that can be manipulated as simple components. Actually, Gerel has
been defined for such hierarchic configurations[3, 2]. but our current implementa-
tion of Gerel is an interpreter which handles only flat configurations of distributed

programs. However, we are planing to implement a Gerel compiler supporting re-
configurations in hierarchic program structures.

Till now Gerel also does not support synchronization of program execution and

dynamic changes. and the preserving the program’s state across a reconfiguration,
but we plan to extend our approach in this direction.

References

[1] M.R. Barbacci. D.L. Doubleday, C.B. Weinstock. M.J. Gardner. and R.\W. Li-
chota. Building Fault Tolerant Distributed Applications with Durra. In Proc.
of the Int. Workshop on Configurable Distributed Systems, pages 128-139. IEE.
March 1992.

|

"~

122 Simposio Brasileiro de Redes de Computadores 187

(2]

3]

(4]

[5]

M. Endler. A Language for High-Level Programming of Dynamic Reconfigu-
ration. PhD thesis, Technische Universitat Berlin, FranklinstraBe 28/29, 1000
Berlin 12, Germany, November 1992. (published as GMD Bericht Nr. 210, by R.
Oldenbourg Verlag).

M. Endler and J. Wei. Programming generic dynamic reconfigurations for dis-
tributed applications. In Proc. of the Int. Workshop on Configurable Distributed
Systems, pages 68-79. IEE, March 1992.

J. Kramer. Configuration Programming - A Framework for the Development
of Distributable Systems. In Proc. IEEE Int. Conf. on Computer Systems and
Software Engineering (CompEuro90), Tel Aviv, Israel, May 1990.

J. Magee and S.C. Cheung. Parallel Algorithm Design for Workstation Clusers.
Sotware Practice & Ezrperience, 21(3):235-250, March 1991.

[6] J. Magee, N. Dulay, and J. Kramer. Structuring parallel and distributed pro-

[7]

grams. In Proc. of the Int. Workshop on Configurable Distributed Systems, pages
102-117. IEE, March 1992.

J. Magee, J. Kramer, and M. Sloman. Constructing distributed systems in Conic.

IEEE Transactions on Software Engineering, SE-15(6), June 1989.

(8] K. Marzullo, R. Cooper, M.D. Wood, and K.P. Birman. Tools for Distributed

Application Management. JEEE Computer, 24(8):42-51, August 1991.

[9] J.M. Purtilo and C.R. Hofmeister. Dynamic Reconfiguration of Distributed Pro-

grams. In Proc. of the 11th Int. Conf. on Distributed Computing Systems, pages
560-571. IEEE Computer Society Press, May 1991.

