Managing Heterogeneous Networks
- Integrator-based Approach -

Jose Neuman de Souza!

MASI Laboratory UPMC,
45, Av. des Etats-Unis,
78000 - Versailles, France.

Ahmed Patel?2 and Bharat Bhushan?

Computer Networks and Distributed
Systems Research Group,
Department of Computer Science,
University College Dublin,
Belfield, Dublin 4, Ireland.

Abstract

This paper discusses an object oriented approach for network management. The
goal of this paper is to explain, in brief, a real example of an Integrated Network
Management (INM) system. One of the major requirements when looking at
information transfer between the managed network and the management system
is to mask the heterogeneity of the underlying resources. As an example of the
unification of heterogeneous networks, a system called Integrator has been built
and is operational. The Integrator is a mechanism that provides an object
oriented interface to the user (human or network management application
programs) in order to offer a homogeneous view of a world (set of
heterogeneous domains) through a model (depicting a formal information view).
The Integrator uses two agents to communicate with underlying network
elements: an SNMP4 agent accessing TCP/IP parameters for an Ethernet
network through a SNMP daemon and an X.25 agent’ doing the same for X.25
parameters through proprietary management software. The concepts of the
Integrator have been applied in the EC project PEMMON.

Keywords

Integrator, Capsules, Controller, Semantic knowledge, Syntactic knowledge, Attributes,
Model, Instance, Domain, Manufacturer Access Points (MAPS).

1. Introduction

Network Management can be defined as the co-ordination, monitoring and control of the
distributed resources in a network. Various issues must be addressed when connecting
different networks with different topologies, protocols, and networking models.

Interconnection of different protocol results in a heterogeneous network. The
heterogeneity problem manifests itself when networks are connected to form an
infrastructure for communication. Sources of heterogeneity include[1]:

I desouza@masi.ibp.fr 2 apatel@cevax.ucd.ie 3 bharai@cevax.ucd.ie
4 Simple Network Management Protocol 2 Aglég wrilten application running on an X.25 node

112 5impésio Brasileiro de Redes de Computadores

Different Data Representations;

Different Data Communication Networks;
Different Protocols for Interaction; and
Different Naming Domains.

In this paper we discuss some of the basic aspects, related with networks management,
such as:

. how to mask the heterogeneity in managing a heterogeneous network?

. how to present the components of a heterogeneous network in an object oriented
way?

. what methods should be adapted for the functional design of a Network
Management system?

. how to specify the user and functional requirements for the design and
development of an Integrated Network Management System; and

. how to access heterogeneous networks without getting involved into their
complexity.

As an answer to above questions, we present an Integrated Network Management system
called Integrator. An Integrated Network Management (INM) system is an application
system which allows end-users to integrate, control, and manage heterogeneous
networks involving a multiplicity of vendor processing and communication products[9].
The purpose of INM is to provide a single set of tools for administering all the network
resources. For the functional design of an Integrated Network Management system,
mainly three kinds of approach are considered.

. Translator-based approach

One of the proprietary systems is taken as reference. It offers standardized interfaces to
which other management systems may be connected. In this case, the integration of the
management systems is done within every sub-system that needs to adapt to the
referential proprietary systems. This approach is the most widespread among
manufacturers.

. Standards-based approach

In this case, all the network elements and management systems should use the same
language and one common set of functions. This approach unifies the two previous ones.
However, it is still far being completely established.

. Integrator-based approach

This uses a super-system which integrates the different underlying network management
systems. It is the most common approach among users and service providers. In the
paper we discuss about this approach. The Integrator is based on this approach.

The Integrator accesses two different networks, namely a X.25 network and a TCP/IP
network. The Integrator integrates the two networks, accesses statistical information, and
gives the information obtained to the user. The user may be an end-user or a set of
performance management applications. The Integrator hides the heterogeneity of the
networks and gives a single view to the user. The Integrator is based on a methodology
called IDEA (Intelligence, Diagnostic, Expertise, Administration)[8]. IDEA is a method
in which the different command syntaxes of many manufacturers are translated into a
single view. We also discuss the tasks we have performed to implement the Integrator,
i.e. from requirements gathering to SNMP and X.25 agent support. The Integrator is
already operational and accesses statistical parameters from a TCP/IP network and an
X.25 node.

-286-

112 Simpésio Brasileiro de Redes de Computadores

2. Problems involved in managing networks

2.1. Context of management problems

The number of local, national, and world-wide communications networks is continually
expanding. The facilities and complexity of these networks increase with technological
progress. The user is confronted with problems in managing a network environment
composed of these different networks and different services. Moreover, because the
network is the nervous system of the communication structure, it is very important to
plan, operate, control access to and maintain the networking system with dedicated
management tools. Present management systems tend to operate only with the network
equipment of a single vendor. Because of the variety of vendors, there are different,
parallel, and mostly incompatible management systems in heterogeneous networks.

2.2. Problems due to heterogeneity

Problems due to heterogeneity arise in several specific areas.

. Interconnection: How should heterogeneous systems communicate with each
other? How can systems and languages with different data representations be
accommodated?

. Naming: How is naming provided in a heterogeneous environment? What

objects can be named across systems? How are they named? How does the

environment evolve as new systems and naming approaches are incorporated?

These questions suggest the need for a Management Information Base (MIB).
. User interface: What kind of user interface should be provided? How would

the user interface solve the problems? How would the interface represent

the heterogeneous network (preferably with object class and attributes)?

2.3. Reasons for solving the problems
Resources are distributed.

The distribution of the network resources and software requires local as well as remote
management.

The trend has changed.

In the early days of managing networks, vendors looked at network management in very
narrow terms: diagnostics, testing, or control. The current situation is that network
management does not simply mean management of computer networks by modems,
multiplexers, PBXs for diagnostics, testing, and control, Network management involves
accounting, performance, security, fault, and configuration management (as described in
the OSI NM model)[5].

NM systems should not be protocol or vendor dependent.

Most networks and network services currently in use are managed by vendor-supplied
management systems. These systems provide a large number of network management
functions within the vendor domain. The systems are based on proprietary management
protocols and management information.

A NM system should provide diverse services.

Users require a system that is able to provide diverse services. For example, such a
System can greatly reduce the expertise needed to administer the diversity of networks.
Some additional benefits that a system may provide are:

-287-

1 12 Simpésio Brasileiro de Redes de Computadores

. a single user interface for network administration;

. a single set of common management functions for all networks;

. automatic translation between managed object definitions in different
networks, reducing the expertise needed for network administration; and

. automatic maintenance of the relationship between managed objects.

3. Aspects of Performance Management

The term performance management may be interpreted in many ways. The simplest
interpretation is to collect statistical and monitoring information about a network and
assess it for measurement of performance.

3.1. Statistical information

This could be interpreted as general accumulated information about a network. The
accumulation continues until the whole network is reset. During the time of accumulation
the information is accessed and used for day-to-day or long term planning. Typical
statistical information is packets received by a network node since some date.

3.2. Monitoring information

Monitoring information presents the status of a network. It includes alarms, network
usage, and other similar information. Typical monitoring information would the number
of calls in progress.

3.3. Performance Management - OSI view

OSI system management standards provide mechanisms for monitoring, controlling, and
co-ordinating all the managed objects within open systems. The OSI NM Forum
specifies performance management in the following manner[5].

. Performance Management (ISO/DIS 7498/4-N/2673)

Performance management provides the set of facilities needed to evaluate the behaviour
of OSI resources and the effectiveness of communication activities. Performance
management provides facilities to:

(1) gather statistical data; and
(2) maintain and examine logs of state histories.

. Common Management Information Service (ISO/DIS 9595)

Common Management Information Service (CMIS) is an Application Service Element
(ASE) which is used by an application process to exchange information and commands
for the purpose of system management. Basically, this standard defines a set of 10
service primitives that constitute the ASE, as well as auributes passed in each
primitive[6]. The following 10 CMIS primitives form the basis for virtually all OSI
management activities.

(1) Confirm-Event-Report
(2) Event-Report

(3) Confirmed-Get

(4) Confirmed-Set

(5) Set
(6) Confirmation-Action
(7) Action

(8) Linked-Reply
-288-

112 Simpésio Brasileiro de Redes de Computadores

(9) Confirmed-Create
(10) Confirmed-Delete

4. Requirements for the Integrator

We define the requirements from the point of view of performance management of a
network. The user of accessed statistical information may be either an end-user or a
performance management application. The main requirements are as follows.

. The ability to access all the subnetworks and statistical information in the
network, regardless of the OSI protocol suite used.
. The ability to access information from a wide range of network resources,

from low-level devices (e.g. repeaters, modems) to intermediate systems.
(e.g. bridges, gateways) to end systems (i.e. systems with full protocol stacks)

. The ability to maintain error log reports about a network or a component of a
network.
. The ability to give traffic control information and routin g information about a

network or a component of a network.

The Integrator not only gives us facilities to monitor the performance but also gives
facilities for network administration in an object oriented way. The administration of a
network requires detailed knowledge of the managed network and the tools that help in
maintaining the resources. The Integrator classifies the managed network into object
classes. So, in addition to the requirements defined above, we have the following
requirements.

. The ability to create and modify object classes in specified domains (e.g. the
X25 and the IP domains)

. The ability to create and modify instances of an object class

. The ability to create and modify the knowledge part in the model for the object
classes

. The agents must support the application. The SNMP agent and X.25 agent
must access statistical parameters from a X.25 and a TCP/IP network

. The network management tools should decrease the network administrator's work
load, providing a single set of tools for all networks to be managed.

5. The IDEA architecture

IDEA is an innovative architecture that proposes a methodological approach for handling
heterogeneity when accessing manufacturer-dependent network management systems,
The IDEA Integrator is a technique that offers means of interfacing to heterogeneous
management functions and entities. It provides semantic and syntactic unification, thus
achieving a single user interface([8]. Figure 1 shows the main functional components of
the IDEA architecture. They are defined below.

5.1. Model

The Model is an abstract representation of the world under consideration. It provides the
formal view of user information. The first step towards building the prototype is to build
the model of the world.

5.2. World

The World is a heterogeneous collection of domains. It is a set of real, potentially,
heterogeneous, elements to be handled. The two domains in the Integrator are X25 and
Internet.

-289-

112 Simpésio Brasileiro de Redes de Computadores

5.3. Domain

The Domain is the unit of heterogeneity. Within a particular domain all the information is
homogeneous. Within a particular domain internal information is named and accessed in
a unique manner.

5.4. External Attributes

These are the world's information entities as represented by the model, i.e. the external
attributes enable access to the internal information of a domain without knowledge of
their specific characteristic such as localisation and access methods.

5.5. Internal attributes

These are the domain's information entities as provided by a given MAP (Manufacturer
Access Point), i.e. the field in the internal information that can be named and attached to
the mechanism that knows how to access them.

5.6. Semantic module and semantic unification

A Semantic module is responsible for the semantic unification (unification of meanings of
different commands). Semantic unification is a mechanism that performs the translation
between a formal view of the information and a real view of the information. The
semantic module unifies the different semantics (commands that are accepted by different
management systems) to provide a single homogeneous view at the application level. In
semantic unification a translation of the different internal attributes to one external
attribute is done. A mapping between them is provided by the semantic knowledge which
covers one of three situations for a given domain.

e An external attribute exists as an internal attribute, i.e., there is a one to one
relationship between them.
2 An external attribute corresponds to several internal attributes whose values are

combined before in order to provide its value, i.e., it is a function of several
internal attributes.
3. There is no mapping between an external attribute and any internal attribute

5.7. Syntactic module and syntactic unification

A Syntactic module translates from the particular syntax used to access each real domain
to a single and homogeneous syntax to be used by the semantic module. This unification
process generates real commands from user’s request to drive or control a real network
resource or to perform an operation on a network resource. At the same time, through
syntactic unification, real responses are carried out to the semantic unification which in
turn give the responses to the application level. In syntactic unification mapping of an
internal attribute to a field of the internal information is done. The mapping between them
is provided by syntactic knowledge. In syntactic unification, two possibilities may occur.

1. An internal attribute is directly mapped to internal information from a real access
method, i.e., there is no need to parse the results from a command.

2, An internal attribute is part of internal information resulting from a real access
method, i.e., the results from an access method must be parsed to mask
something and provide only the field that corresponds to the internal attribute,
based on the syntactic knowledge.

-290-

112 .Simpésio Brasileiro de Redes de Computadores

r A

View given to User

Model (formal World)
nterne

Domain Object class

Hiding Complexity
of the underlying
Network 7,

Figure 1 - Functional Components of IDEA
Architecture

To validate the concept and software structure, the first prototype Integrator has been
built. This prototype permits homogeneous access to statistical parameters of a
heterogeneous network, through the integration of the respective agents. The
heterogeneous network is composed of TCP/IP and X.25 elements. A SNMP agent and
a X.25 agent allow access to the parameters.

In this example we see that the world is made of a heterogeneous network running over
TCP/IP and X.25 protocols and X25 and IP are the domains that correspond to a X.25
and TCP/IP network respectively. The Integrator accepts get_requests in the form and
syntax defined in the CMIS (without scoping and filtering for now)[6).

According to the chosen example, a model is created that describes the real world and
provides the formal view of the user's information. This model is defined using the
TIM1.5 Modelling Guidelines, adapted to our modelling requirements. The prototype
has been implemented using the ANSA (Advanced Networked Systems Architecture)[3]
architecture module and testbench facilities for the intercommunication. As a result, a
module is implemented as a set of ANSA capsules. The information required from this
model concerns object classes, their instances, and attributes. This information is
accessed by two agents running over an X.25 switch and a TCP/IP network.

A controller module, shown in figure 2, manages a set of object instances. The
controller, when handling a request, validates the request, finds the class of the referred
instance and invokes the respective operation in the appropriate class. The set of
supported instances is saved in persistent memory and loaded into a hash table during
execution. There is an independent ANSA capsule for each class in each domain of
heterogeneity. This module contains knowledge of how to perform operations in a
homogeneous environment at a specific (semantic or syntactic) level.

-291-

112 Simpésio Brasileiro de Redes de Computadores

~

- ontroler

Object-class

Figure 2 - Controller and knowledge part of heterogeneous network

The Integrator, basically, provides two kinds of interfaces: a CMISE request interface
that permits external access to the managed objects; and an administration interface for
tasks such as adding and deleting instances, However, other kinds of interfaces may also
be provided (see figure 3).

Jser Application process

Admin| [Controller m

!

|

i

|

i

!

|

: Admin| [Controlleq[CMISE]
i emantic controller process
i

i

i

{

i

i

— AR S YRS SRR S s WYY S s WY WS AR e e AR —

Kernel
Syntactic controller process
Controle

SNMP class processe X.25 classes processe
1 snmpgei Value of stat <controller-npme> Value of 1
i paramete parameter |
i —
ot SNMP Agent interface|- - - - | X.25 Agent interface[)

-

Figure 3 - Interfaces provided by the Integrator

6. Functional design of the Integrator

The design of the Integrator has the following functional requirements. Functional
components of the Integrator are illustrated in figure 7.

-292-

11° Simpésio Brasileiro de Redes de Computadores

. Definition and selection of semantic and syntactic level attributes

. Definition and selection of the attributes which determine the behaviour of
respective object classes

5 Selection of MAPs and their properties (since the properties selected are the
attributes of managed object classes)

. Type of correspondence between syntactic level and semantic level attributes, i.e.
the correspondence may be one-10-one or one-to-many

. Correspondence between object classes' attributes as defined in the MIB,

and MAPs selection and parameter definition
6.1. Specification of the object classes and instances

When building the Integrator, the first thing to do is to specify the system model
composed of a set of classes according to TIMI templates. This specification will be
used to construct the semantic and syntactic ANSA capsules. These capsules represent
the implementation of the objects. Afterwards, we need to list the semantic attributes. In
the X25 domain there are four object classes. They are listed below.

> INSTANCE OF X25_HDLC_LINE
25
SUPERIOR root

)
{ IPprotocol001 IS INSTANCE OF IPprotocol
DOMAIN INTERNET

SUPERIOR root

Figure 4 - A TIM1 template defining the instances

. X25_HDLC_Line object class

The X25_HDLC_Line object class describes the packet level of a link between two
X.25 nodes inside the X.25 network. It may contain one or more HDLC lines. The
X25_HDLC_Line object class contains an instance named X25_HDLC Line001.

. X25_Network object class

The X25 Network object class describes the packet level of the X.25 wide area
network. The X25_Network object class contains an instance named X25_ Network001.

. X25_Link object class

The X25_Link object describes the packet level of a link between an X.25 node and a
DTE on the X.25 network. X25_Link object class contains an instance named
X25_Link001.

. X25_Node object class

The X25_Node object class describes the nodes inside the X.25 network. The
X25_Node object class contains an instance named X25_Node001.

The way in which we define the object classes for an X.25 network in the existing
scenario is given in figure 15. In the Internet domain there are three object classes. They
are listed below.

. IPprotocol Object class
-293-

11° Simpésio Brasileiro de Redes de Computadores

The IPprotocol object class describes the Internet Protocol. The IPprotocol object class
contains two instances named [Pprotocol001 and IPprotocol002.

. TCPprotocol Object class

The TCPprotocol object class describes the Transmission Control Protocol. The
TCPprotocol object class contains two instances named TCPprotocol001 and
TCPprotocol002.

. UDPprotocol Object class

The UDPprotocol object class describes the User Datagram Protocol. The

UDPprotocol object class contains two instances named UDPprotocol001 and
UDPprotocol002.

8 o

/ Instances

(Object classes O\ < IPprotocol(001
D : IPprotocol & IPprotocol002
omains \ |
Internet TCPprotocl — <‘TCPprotoc01001
[T upPprotoco] —_| TCPprotocol002

Root

B = UDPprotocol001
X25_HDLC|Linet—_ ~ UDPprotocol002
[X25_Network ~{ X25_HDLC_Line001

| X25_Node X25_Network001
\ X25_Link X25_Node001
_ X25_Link001 9
N /

Figure 5 - Relationship between Domains, Object classes, and Instances

6.2. Attributes and their syntax

The term "syntax" is applied to the type of value an attribute can have. In the Integrator
an attribute can have either type "string" or type "integer". This means that at the time of
realising an attribute, the process that realises the attribute returns a type string value or
type integer value. Two attributes are explained below.

X25_HDLC_Line OBJECT CLASS
MUST CONTAIN (Line_speed)
Line_speed FUNCTIONAL_ATTRIBUTE
WITH ATTRIBUTE SYNTAX STRING

)

{
IPprotocol OBJECT CLASS
MUST CONTAIN { iplnReceives)
ipInReceives FUNCTIONAL_ATTRIBUTE
WITH ATTRIBUTE SYNTAX INTEGER

Figure 6 - A TIMI template defining attributes and their syntax

-294-

11¢ Simpésio Brasileiro de Redes de Computadores

. Line_Speed
The attribute "Line_Speed" is one of the attributes of the X25 _HDLC_Line class. It
has type string. On execution, process Isp() (see the section "X325 agent") realises this

attribute and accesses the value of the line speed of a HDLC line. It returns the line speed
(a string) to the syntactic level.

. ipInReceives
The attribute "ipInReceives” is one of the attributes of the I Pprotocol class. It has type
integer. On execution, the agent SNMP (see the section "SNMP agent") realises this

attribute and accesses the total number of packets received by the TCP protocol. This
value (an integer) is returned to the syntactic level.

/ B

TIMI Part N\

(ANSA Part
m Gyntactic Attributes)

@mantic Am-ibut@
@cmantic Controller)

(oD
@rmactic Controller 0
) G -/

Individual capsules for
object classes

/

0e

J

Figure 7 - Functional overview of the Integrator

6.3. Correspondence between semantic level and syntactic level
attributes.

Figure 8 shows the correspondence between a semantic level attribute and a syntactic
level attribute. The correspondence may be either One-to-one or One-to-many.

-295-

112 Simpésio Brasileiro de Redes de Computadores

(c Syntactic)
i level
Semantic calls
level /@ connected

LY
.......
=

Availability(D X.25 Switch

. . N : vhe
Line speed{> ogical ‘*h‘m“"_lf
\ _______
Line speed
ine speed 9600
calls connected 9 /
o.of LC 15

Figure 8 - Correspondence between semantic and
syntactic level attribute

. One-to-one correspondence

In this case each semantic level attribute has one and only one syntactic level counterpart.
This implies that the attributes selected are not further processed or manipulated at the
syntactic level. As shown in the figure 8, the "Line speed" attribute of the
"X25_HDLC_Line" at the semantic level has One-to-one correspondence with the "Line
speed” at the syntactic level.

. One-to-many correspondence

In a one-to-many correspondence two or more syntactic level attributes correspond to a
single semantic level attribute. In one-to-many correspondence the further processing of
parameters at the syntactic level 1s transparent to the user. The processed parameters
constitute a semantic level attribute. As shown in figure, the difference between two
values, i.e. the number of calls connected with a link and the total number of channels
associated with the link, shows the availability of the link.

7. Implementation Experience

7.1. The controller

The controller manages the set of instances. The semantic module and the syntactic
module assist the controller to provide a homogeneous view of the network. As the
controller comes into existence, it sublets its tasks to the semantic module and the
syntactic module. These two modules appear in the form of two ANSA capsules:
semantic controller and syntactic controller. For managing the heterogeneous
environment, these modules require necessary information on domains, object classes,
instances, attributes, and agents. This information is given as a knowledge to the
semantic and syntactic modules. We divide the knowledge in two parts. The part of
knowledge, which is used by semantic module, is known as the semantic knowledge.
Similarly the part of knowledge, which is used by syntactic module, is known as
syntactic knowledge.

7.2. The semantic knowledge

-296-

112 Simpésio Brasileiro de Redes de Computadores

The semantic knowledge is a collection of processes that realise various attributes at the
semantic level. The semantic knowledge is used for semantic unification. Each process in
the semantic knowledge contains information about a semantic attribute. It, in turn, calls
corresponding syntactic level process. Two examples of the semantic level processes are
given in figures 9 and 10.

The semantic controller obtains the following information from the process
se_X_Line_speed (see figure 9).

. Domain X25

. Object class X25_HDLC_Line

. Instance X25_HDLC_Line001
. Attribute Line speed

. Type String

int
Line_speed_process(instance, result)

) (

BasicType = STR;
return get_syntax(instance, "Line_speed", type, result)
|

Figure 9 - Process se_X_Line_speed

Another example of semantic level process is given in figure 10. The information
obtained from se_i_ipInReceive process is given below.,

. Domain IP

. Object class IPprotocol

. Instance IPprotocol(01
. Attribute ipInReceive

. Type Integer

mnt
ipInReceive_process(instance, result)

BasicType = INT;
return get_syntax(instance, "ipInReceive", type, result)

Figure 10 - Process ipInReceive at semantic level

7.3. The syntactic knowledge

The syntactic knowledge is a collection of processes that realise various attributes at the
syntactic level. The syntactic knowledge is used for syntactic unification. Each process in
the syntactic knowledge contains information about a syntactic attribute. It, in turn, calls

corresponding agents. Two examples of the syntactic level processes are given in figures
11 and 12.

The syntactic controller obtains the following information from the process
sy_X_Line_speed (see figure 11),

Domain X25

Object class X25 HDLC Line
Instance X25_HDLC_Line001
Attribute Line speed -297.

. + a

11° Simpésio Brasileiro de Redes de Compuiadores

. Type String

[int

Line_speed_process(instance, result)

result = Isp();

Figure 11 - Process sy_X_Line_speed

The lIsp() process is the lowest level process and realises the "Line speed” attribute. It
connects the Integrator to the X.25 switch, accesses the "Line speed” attribute, and
returns the value of the HDLC line speed from the X.25 switch. The functional diagram,
given in the section "X,25 Agent", shows how the Isp() process works,

The information obtained from sy_i_ipInReceive (see figure 12) process is given below.

. Domain IP

. Object class [Pprotocol

. Instance IPprotocol001
. Attribute ipInReceive

. Type Integer

- FIchccive_proccss(instancc, result)

1 1

snmpget(instance, atirname, buffer);
result = mask(buffer);

Figure 12 - Process ipInReceive

This process calls the SNMP agent using the snmpget() command and accesses the
parameters from the TCP/IP network. The output is parsed and the required attribute is
chosen.

7.4. Capsules

Capsules are the managing processes. They realise the object oriented behaviour of the
Integrator in a real environment. To access an attribute, ANSA instanciates the following
capsules to manage various jobs.

. Controller semantic
. Controller syntactic
. PERF/semantic/X25/X25 HDLC_Line/X25 HDLC Line

This capsule runs for the PERF agent which is the name of the agent for
the performance management applications. It manages the semantic level
processes for the X25 domain. It is assigned to manage the
X25 HDLC_Line001 instance of the X25_HDLC_Line object
class.

This capsule calls the corresponding syntactic level process and wait until the value of
"Line speed" is returned from the syntactic level.
-298-

11° Simpésio Brasileiro de Redes de Computadores

. PERF/syntactic/Internet/IPprotocol/ipInReceive

This capsule runs for the PERF agent which is the name of the agent for
the performance management applications. It manages the syntactic level
processes for the IP domain. It is assigned to manage the
IPprotocol001 instance of the IPprotocol object class.

The capsules at the syntactic level call the SNMP and the X.25 agents and wait until they
get the value of the attributes from the network. After receiving the values of the
attributes, capsules at the syntactic level return them to the corresponding capsules at
semantic level.

8. Interfacing with the Agents

There are two agents associated with the Integrator: an SNMP agent and an X.25 agent.
The SNMP agent is a proprietary agent while the X.25 agent is an application which runs
on an X.25 node. The agents are the parts of the Integrator that manage the managed
object within its local system environment. The agents perform management operations,
i.e. Cmise_get, as a consequence of the management operation communicated from the
Integrator.

The agents act as the lowest level functional component of the Integrator and provides
access to the TCP/IP network and the X.25 switch. The TCP/IP network consists of Sun
workstations and a gateway. The X.25 network consists of Sun workstations and an
X.25 switch. The model permits access to the TCP/IP network and the X.25 switch
components by using the SNMP and the X.25 agent.

The statistical information can also be obtained from the TCP/IP network and the X.25
switch. The X.25 switch has its own command language, which can be used to obtained
output containing statistical information about the X.25 node. The X.25 agent hides this
complexity from the user. The X.25 agent has been implemented using SunOS socket
based communications. As shown in figure 13, it uses the SunOS socket facility to
communicate with the X.25 switch. The main reason for the use of SunNet X.25 is that
it enables us to open a socket in the X.25 address domain.

8.1. The X.25 Agent

i Responsc quucsl
3

3

Socket (the communication point)

b L S ----.-.._._..--C-‘a.lling Side

L T TP

Called Side -

& X.25 Switch JStatistical Information)
Figure 13 - Functional components of X.25 Agent
3:1.1. Distinguishing between parameters and attributes

-299-

11° Simposio Brasileiro de Redes de Computadores

By definition the terms parameter and attribute differ from each other but we use them
interchangeably, depending on the context. For instance, if we discuss in the context of
object classes and refer to X25_HDLC_Line object class, we use the term attribute for
"Line Speed" (which defines the behaviour of the object class) but the same term "Line
Speed" is refereed to as one of the parameters of the HDLC line (which also defines the
behaviour of HDLC line). More explicitly, the value of parameter "Line Speed" of the
HDLC line is accessed by and determines the attribute "Line Speed" of the
X25_HDLC_Line object class.

8.1.2. Manufacturer Access Points (MAPSs)

MAPs are the memory blocks associated with physical components of the X.25 switch.
These memory blocks control the behaviour of associated components and give us
statistical information about the components. As shown in figure 15, PSO2 is the
memory block that controls a HDLC line, The X.25 agent accesses MAPs and passes the
information to the syntactic module, SunNet X.25 software provides functions that
enable access to a remote X.25 system by a user program.

Glannel 1

A ‘Ps'gl

X.25 Nod

Figure 15 - Manufacturer Access Points from X.25 Switch
8.1.3, Management Information Base (MIB)

Before selecting the MAPs we refer to the MIB specification[16] for specifying object
classes of the X.25 Network. The MIB is a collection of managed object classes for
performance models. The MIB:

. defines all object classes, their definition, and attributes; and
. divides objects for the X.25 network into 5 classes;

MAPs are selected according to the object classes as given in the MIB. Similarly, the
attributes chosen for each object class are the attributes defined in the MIB.

8.1.4. Selection and definition of attributes

. Attributes of X25 HDLC_Line object class
Line speed

Window size

Cyclic redundancy check errors
Retransmission

Characters received

. & & & @

11% Simpésio Brasileiro de Redes de Computadores

These are controller level parameters. For HDLC line parameters, controller PS02 is
accessed. The commands stat and exam are used to obtain the parameters.

. Attributes of X25_Network object class

Data frame received

Data frame transmitted

Total calls set up on the network
Retransmission

For the X.25 network parameters, we access the virtual port BASE and send the stat
command to it,

. Attributes of X25 Link object class

Link type

Packet size

Cyclic redundancy check errors
Retransmission

Characters transmitted

For X.25 network parameters we access the virtual port BASE and send the stat
command (o it.

. Attributes of X25_Node object class
. Administrative status

. Data frames received

E Data frames transmitted

. Retransmission

. Current calls

The X.25 node parameters are accessed from virtual port BASE, since we have only one
node, i.e. Switch, and so the parameters from the BASE port will be the parameters of
the X.25 node.

8.1.5. Queries which the switch understands

Whatever information we seek from the switch is requested in the command language.
We send commands to the switch and output of the commands is stored in a text file. The
text file is parsed for the required attribute. The attribute is chosen and sent back to the
syntactic module. We use the following commands to obtain the parameters.

. Stat: The Stat command is used to display the statistics and status
information of a controller or channel,
. Exam: The Exam command is used to examine the configuration of a file,

controller, or a channel,

CRC Errors/ 0 Retransmissions/ 300 Data In/ (435

-———

Channels/ 15 K-Level-3/2

Figure 16 - Example of commands and their output
-301-

112 Simpésio Brasileiro de Redes de Computadores

8.1.6. An algorithm for accessing parameters

We adopt the following algorithmic approach for accessing parameters. SunNet X.25
software provides logical access to the X.25 node.

. Open a connection (socket) in the X.25 address domain.
. Set the process group id for socket and signal handler
. Set the local address (host running the X.25 agent) and the remote address (the

X.25 switch),

Assign the address of remote host (as name) to the socket.
Pass the address of remote host to the socket.

Bind the address of remote host (as name) to the socket
Set the Q-bit for communication (The Q-bit is the qualifier bit and qualifies the
data in data packets.)

Go to the databases (files) of the X.25 switch,

Send a query (command(s) of the X.25 switch),

Receive the output.

Parse the output and chose the required parameter

Close the connection

.« @& = 9

8.2, The SNMP agent
Concerning the SNMP software, there are three public-domain packages available:

. the CMU SNMP distribution;
. the MIT SNMP development kit;
. the 4BSD/ISODE SNMP package.

In our prototype, we use either the MIT or the ISODE package. Figure 17 illustrates our
laboratory example for the SNMP case study. The MIT development kit is a set of
functions organised as a library to handle SNMP messages, SMI (Structure of
Management Information) and MIB (Management Information Base) objects addresses.
Using this library we can generate the following executable codes:

. snmpd - This command starts the SNMP agent that manages a sub-set of the
MIB-II objects;

. snmptrapd - This command starts up a Unix daemon that is responsible for
waiting for unsolicited messages (traps);

. snmpget, snmpset and snmpgetnext - These commands are used to send a

standard SNMP message to a precise agent. Functionally the action, create and
delete operations of the OSI CMIS can be performed by the single
snmpset operation; and

. snmptrap - This command enables the sending process of an unsolicited
message.

-302-

11° Simposio Brasileiro de Redes de Computadores

(" Milady host

J

Figure 17 - Laboratory example of TCP/IP network and SNMP agent

Using only the SNMP software, to get the attribute value of the MIB SysDescr variable
on the treville host from milady, we have to do the following:

snmpget -h treville.ibp.fr 1.3.6.1.2.1.1.1.0

The output of this command is:
Request Id: 0 Error: no Error Index: 0 Count: 1

Name: 1.3.6.1.2.1.1.1.0

Kind: OctetString

smxValueToText: Kind 2 Len 22
Value: "BSD Unix host treville"

We can see from the results of the snmpget execution that the field of interest is "Value:
"BSD Unix host treville". This means that there is a need to mask everything else
and return to the user only this line. In order to do that, using the integrator, we proceed
in the following way:

. Firstly, we construct a model defining classes, instances and semantic and
syntactic attributes. For instance, for the case above we have:
class Host instance Treville
semantic Attribute System Descriptor syntactic attribute SysDescr

. Secondly, we need to code at the syntactic level the real call to the SNMP agent

and pass to it the necessary parameters. At this point we are implementing
the real access. With the integrator running, the value of the SysDescr can be
picked up by

get(treville, System Descriptor)
After that the user will see only the last line of the snmpget output,
9. Conclusions

We have implemented a system which is based on the object oriented paradi gm. In this
system, components of a network are divided into object classes and the parameters
defining behaviour of components determine attributes of object classes.

By analysing our experience we can give guidelines for a Network Management System
which is based on object oriented dcsiéf,&?We can summarise these guidelines in the

112 Simpésio Brasileiro de Redes de Computadores

following points. These are some of the most basic points to be considered while
designing a system.

L

10.

How can various components of a network be represented as object classes?
How can statistical parameters of a network be represented in the context of
attributes of an object class?

What"type should be given to attributes and what are the effects of specifying
types’

Hgfv, and to what extent, does an agent of a network hide complexity of the
network?

How to identify the Manufacturer Access Points?

How to achieve level of abstraction (that we have achieved in the form of
semantic and syntactic level)

how to divide the requirements of performance management in the form of
attributes?

What information from the underlying network should be masked?

Acknowledgements

The authors would like to thank Ms. Olga Havel, Mr. Séamus O Ciardhudin (from
Department of Computer Science, University College Dublin, Dublin-4, Ireland) and Mr.
Mauro de Oliveira and Mr. Serge Lalanne (from MASI Laboratory UPMC, Versailles,
France) for their co-operation at various stages.

References

[1] Derok, H., "Information Transfer Within Advanced Logical Architecture”,
Roke M. Research Internal Document, June 1991.

[2] CCITT Recommendation X.25, "Interface between Data Terminal Equipment
(DTE) and Data Circuit Terminating Equipment (DCE) for Terminal
Operating in the Packet Mode", 1984.

[3] ANSA Reference Manuals, Architecture Project Management Limited,
Cambridge, UK, Jan, 1991.

[4] Rose Marshall T., "The simple Book - An Introduction to Management of TCP/IP
based Internet", Printice-Hall New Jersey, 1991,

[S] ISODIS 7498/4, "Information Processing Systems - Open System
Interconnection - Basic Reference Model Part 4 - OSI Management Framework”,
ISO, Geneva, 1988.

[6] ISO DIS 9595-2, "Information Processing Systems - Open System
Interconnection - Management Information Service Definition - Part 2:

Common Management Information Service", ISO, Geneva, Dec.1988.

[7] ISO DIS 9596-2, "Information Processing Systems - Open Systems
Interconnection - Management Information Service Definition - Part 2: Common
Management Information Protocol”, 1ISO, Geneva, Dec. 1988.

[8] Claude, JP et al "Management of Open Networks in a Heterogeneous
Context", Laboratoire MASI, 78000 Versailles, France, 1991,

[9] Patel, A, "Comprehensive Network Management-Issues, Requirements and a
Model" Proc IFIP TC6/WG 6.4a International Symposium on Management of
Local Communication Systems, Canterbury, UK (18-19 Sept.. 1990).

[10] Kolas, F., "Management of Different Architectures and Environments under
IBM's SNA", MIROR System Pty (Ltd).

[11] Paulisch, S., "Configuration and Performance management of LANs",
Computer Science Department, University of Karlsruhe, D-7500, Karlsruhe 1.

[12] Data Communication, "The Simple Network Management Protocol", Feb, 1990.

[13] Datapro Report On PC Communication, "Network Management Concepts”,

March 1990.
-304-

11° Simpésio Brasileiro de Redes de Computadores

[14]
[15]

[16]

Datapro ;lg%:on On PC Communication, "OSI-Based Network Management”,
March 1990.

Notkin, D., et al, "Heterogeneous Computing Environment: Reports on the

ACM SIGOP workshop on accommodating heterogeneity”, CACM, Feb. 1987
Vol. 30, No. 2.

ESPRIT II Project 5371, Performance Management and Monitoring of Open
Network, "Specification of a Performance data model.

-305-

