An Overview of IDEA Network Management Platform

Manoel Camillo Penna

Centro Federal de Educagao Tecnolégica do Parana
CPGEI

Av. Sele de Setembro, 3165
80230, Curitiba, Parana, Brasil
CEFETPR@BRFAPESP.BITNET

Abstract: This paper is an overview of the IDEA network
management platform. The goal of this platform is to provide a
general solution for constructing network management systems
over heterogeneous and distributed environments. IDEA platform
proposes an implementation architecture to integrate all aspects
of network management. The resulting platform corresponds to a
runtime system, a repository for storing the management mode|
and information for configuring the platform, and a collection of

tools for customizing the runtime modules and creating the
repository.

. INTRODUCTION

This paper presents an overview of IDEA' network management
platform. It is a sel of software tools that allows the
development of network management systems over distributed and
heterogeneous computing systems. This platform corresponds to
an IDEA support environment instantiated over a standard

distribution infrastructure conforming to Open Distributed
Processing (ODP). !

The support environment is an integrated repository of
management information; a collection of tools; and a runtime
system. Its goal is to provide the necessary means for
constructing network management systems according to IDEA
methodology. This methodology has been developed within MASI
laboratory at University of Paris 6, and its goal is to define a

B S

T Intelligence, Diagnostic, Expertise, Adininistration

-269-

11° Simpésio Brasileiro de Redes de Computadores

instances within a module, and the latter supports their execution.
The configuration manager is responsible for creating managed
objects within modules. Three IDEA modules and respective tools
are discussed in this paper: Integrated Network Data Base (INDB),
Proxy and Configuration Manager. The repository and the platform
construction tools are also discussed.

2. INDB

The INDB derives from the concept of "model-based network
management.* O This term describes network management systems
in which management applications are supported in their tasks by a
conceptual model. All shared management information is defined
in this model. |t also maintains the consistency and correctness of
shared information, and provides a single mean to access it. A
“shared conceptual schema" is the instantiation of a conceptual
model.

The INDB module offers three services: a schema management
service, a model updating service, and a notification service. Two
functions support these services: storage function and
representation function. They support INDB services by providing,
respectively, object persistence and control of interaction with
proxies (see Section 3).

The schema management service® provides a unified view of the
underlying managed system. Requests to this service are resolved
in two phases: the interpretation phase and the response phase.
The interpretation phase accepts common management information
service (CMIS)-compatible requests, translates them into simpier
requests, and targets them at the appropriate INDB support
function. The original request contains the necessary information
to identify the needed function. The response phase collects all
results and builds a response compatible with CMIS. The schema
management service relies on shared conceptual schema and the
storage function to perform its task.

-270-

11° Simpésio Brasileiro de Redes de Computadores

The model| updating service’/ monitors the state of real elements
and updates object information stored within the management'
model. An interface is offered that allows the monitoring of
managed-object states to be externally controlled. The model
updating service relies on both INDB support functions to
accomplish its task,

Event management is performed by the notification service. This
task includes the notifying management applications about events
and maintaining a log of those events. An interface allows the
registration of management application interest in notifications
coming from managed ob jects. Figure | depicts the INDB structure.

(T \

Notification
Service

Schema Model
Management Updating
Service Service

Shared Conceptual Schema
INDB

btorage Function | Representalion Function

Storage Network -
System Sy m

Figure 1 - INDB Structure

3. PROXY

A proxy provides a translation model for real resources within a
specific environment. It contains the code necessary to access the
real resources, unify the resource representation, and offer an
object interface for the represented real resources. Its task is to
interact with real resources by accessing information and
capturing unsolicited events and to make real resource information
available by an object interface. This object interface is
compatible with ISO SMI (Figure 2).

-271-

11° Simpésio Brasileiro de Redes de Computadores

Object Interface
Helerogeneily
Unification
= £8
Real Resource
Access

(Real Resources)

Figure 2 - IDEA Proxy

A proxy provides an object representation for real resources.
One managed-object instance representing a real resource within a
proxy is a structure composed of attributes and operations that
encapsulates an internal realization. Two object properties are
necessary at proxy level: encapsulation and spatial and temporal
independence. Polymorphism is also necessary to allow one object
model to be assigned to different realizations. Proxies are
strongly typed, which enforces a high degree of correctness during
compilation.

IDEA includes a method for unifying heterogeneous management
information. This method splits the unification process in two
logical phases: semantics and syntax unification. The construction
of a translation model is a three-step procedure based on the
definition of abstract data types: 8.9

Step 1: A unified access interface (semantics interface) is
specified as a set of attribute types and operation signatures. This
interface has existential type. Its type is defined with respect to
the existence of syntactical interfaces.

Step 2: The underlying heterogeneous information is structured
in sets of homogeneous information. Each set is named a
heterogeneity domain and has a syntax interface that is similarly
specified in terms of attribute types and operation signatures. The
definition of syntax interfaces depends on the information that is
available within the domain.

-272-

11° Simpésio Brasileiro de Redes de Computadores

Step 3: For each heterogeneity domain, the methods for
interacting with real resources and for processing the retrieved
information are coded by the expert's domain. Similarly, all
methods for accessing syntax interfaces and for processing the
semantics unification must be provided.

4. CONFIGURATION MANAGER

Dynamic configuration of IDEA platforms is performed by the
configuration manager. The platform includes objects in two
levels of granularity, leading to two major configuration functions.’
The first function provides for the creation and destruction of
modules, and second for the creation and destruction of managed
objects within modules. Each function maintains a hashed table
indexed by the object identifier that contains all necessary
information to control the object state.

The key element for interactions between objects is an interface
reference. Any object possessing an interface reference can
initiate an operation on the referred interface.! When a module is
created, it returns an interface reference that allows the creation
of managed objects within it. When a managed-object instance is
created within a module, it returns another interface reference
having an operation thal allows the creation of further interface
references pointing to the interface of this instance. These
references are stored in the corresponding configuration manager
table.

The configuration manager initiates all IDEA modules and
managed objects. Its bootstrap procedure starts the initial
configuration according to the repository information. Moreover,
an interface is provided allowing for dynamic creation and
destruction of objects at both levels. Another interface is
provided for monitoring which allows an external object (a

monitor) to obtain the control information stored within the
internal tables.

-273-

11° Simpésio Brasileiro de Redes de Computadores

S. TOOLS

Managed-object classes are defined by an object-oriented
specification language. Declarations of managed-object classes are
very similar to ISO SMI managed-object class definitions. The
IDEA platform includes pre-processor for helping the translation
from the model defined in the repository and the implementation of
managed-ob jects within INDB.

The input to the INDB pre-processor is a collection of
specifications of managed-object classes (e.g., the Circult class
defined in Annex 1). The pre-processor generates a runtime module
with the corresponding INDB services. Managed-object
implementations are coded in C++, and the INDB pre-processor
type-checks this code with respect to specifications. An option is
available to generate a C++ skeleton program containing only those
class declarations that are to be filled with the appropriate C++
code.

Semantics and syntax unification are expressed in a proxy
structuring language, which is an extension of the managed-ob ject
specification language. This language allows the structuring of C
functions in software templates that implement the operations of
a proxy class.

The compilation of a proxy software template produces a proxy
module. This module is able to produce managed-objects having
the specific knowledge necessary to implement the unification
mechanism. This knowledge is composed by the C functions
provided by an expert. According to IDEA unification method,
managed objects within proxies must perform the semantics
unification based upon several syntax unification functions. A
specific paragraph named SIGNATURES is provided for specifying
the semantics interface and a collection of syntax interfaces.

The semantics interface is specified by an OBJECT TYPE
declaration. The methodology relies on the organization of the

-274-

11° Simpésio Brasileiro de Redes de Computadores

Syntax unification functions in homogeneous groups, according to
some ad-hoc criteria (e.g., functions to interact with real
resources of a particular manufacturer). A group of functions is
Characterized by an interface type that is specified by an
INTERFACE declaration containing function signatures. Semantics
and syntax unification are implemented by collections of C
functions. A REALIZATION paragraph identifies the multiple files
containing these C functions. Annex 2 shows the code for both
SIGNATURES and REALIZATION paragraphs for the same Circuit
class defined in Annex 1.

6. REPOSITORY

The IDEA repository is a collection of structured files that
contain all entries necessary to define an IDEA network
management platform. Files are organized under three file
directories: CLASS, CONFIGURATION, and TEMPLATE.

A managed-object class is defined in CLASS subdirectories.
There is one subdirecltory per managed-object class, which
contains all entries concerning this class. The CLASS directory is
structured as shown in Figure 3.

A SPECIFICATION file contains the definition of an object class.
An example 1s given in Annex 1. The <Class Name>.cc file contains
the C++ implementation of this class within the INDB. If a class is
represented by a proxy, it must include a subdirectory named
PROXY.. The SIGNATURES file contains the signatures of syntax
interfaces (see Annex 2). Each object instance matching the proxy
type corresponds to a subdirectory that includes a REALIZATION
file, i.e, an OBJECT entry in the REALIZATION paragraph (Annex 2)
and both the SEMANTICS file and SYNTAX files containing the C
functions that implement the unification process for this object.

The TEMPLATE directory contains software template
specifications used by the "extractor” in building input to pre-
processors. An extractor is a utility that is responsible for

-276-

117 Simpésio Brasileiro de Redes de Computadores

constructing proxy software templates from repository entries. A
proxy software template is described by a special repository entry
containing a selection criterion. This criterion permits the
extractor Lo build a file structure corresponding to a proxy
software template.

—C_ SPECIFICATION)

@blﬁ.’l Name>.ce :)

| PROXY |
SIGNATURES

| OBJECTSI
clo:

dirce

{

Figure 3 - Class Directory

The criterion can be specified either as the enurneration of all
objects regrouped within the template or according to the CONTEXT
entries founded in REALIZATION declarations. For example, the next
two declarations specify two proxy templates. Templatel contains
exactly the objects unixCpul and myCpul, in contrast to
Template2, which includes all objects having an internal
representation that offers UnixCpu interface (unixCpul and
unixCpu?2 in the example).

PROXY TEMPLATE Templatel ::=
BEGIN

OBJECTS

(unixCpul, myCpul)
END [PROXY TEMPLATE Templatel]

-276-

11° Simpésio Brasileiro de Redes de Computadores

PROXY TEMPLATE Template2 ::=
BEGIN

INTERFACE UnixCpu;
END [PROXY TEMPLATE Template2 |

The CONFIGURATION directory contains the information for
configuring the platform. Two major kinds of configuration entries
describe the configuration of modules and managed-object
instances. Examples of both cases can be found in Annex 3.

7. CONCLUSION

The current version of the IDEA network management platform is
implemented over ANSAware!.0. In this implementation, IDEA
modules correspond to ANSAware capsules. The IDEA configuration
manager relies on factory functions to perform instantiation. It
corresponds to approximately 3000 lines of code (C, DPL, and IDL).
The proxy pre-processor was developed with lex and yacc, and its
grammar contains 153 production rules. The code contains
approximately 6000 lines of C code. We have advanced prototypes
for the following INDB components: schema manager,
representation function, and model updating.

IDEA concepts and tools have been validated in several research
co-operations. Two European research projects have made
experiments involving IDEA concepts and tools: ADVANCE (RACE
Project 1009) and PEMMON (ESPRIT Il Project 5371). The former
applies Advanced Information Processing (AIP) techniques to
building Network and Customer Administration Systeins (NCAS). In
this project, the IDEA unification technique is used to access
heterogeneous real resources. The IDEA network management
platform is the basis of the latter, whose goal is to construct a
performance management platform over X.25 and Ethernet
networks.

-277- .

11° Simpésio Brasileiro de Redes de Computadores

REFERENCES

I International Standards Organization, ISON6080 Open
Distributed Processing - Basic Reference Model (Part 3).

2. J. P. Claudé, Proposition d'une Spécification d Administration
de Réseaux Hétérogenes, Thése d'Etat de 1'Université Paris 6,
Paris, France, September 1987.

3. J. P. Claudé et al., Unification of Heterogeneous Management by
a Generic Object Oriented Agent, Proceedings of 4th RACE TMN
Conference, Dublin, Ireland, November 1990.

4. International Standards Organization, 1SO10165 Open Systemns
Interconnection - Management Information Model.

S. K. Manning and D. Spencer, Model Based Management Network,
Proceedings of 4th RACE TMN Conference, Dublin, Ireland,
November 1990.

6. PEMMON ESPRIT Il Project S371, Definition of a Performance
Data Model and Environment Support - Deliverable 15, November
1991,

7. N. Agoulmine et al., Intelligent Model Updating System in
Heterogeneous Network, Proceedings of International Conference
on Communication Technology, Beijing, China, September 1992

8. M. Penna, Mandataire Générique: Un Concept pour i'Intégration
d'Environnements Distribués, Thése de Doctorat de I'Université
Paris 6, Paris, France, June 1992

9. M. Penna, The Design of IDEA Network Management Platform,
International Journal of Network Management, accepted for
publication.

10. Architecture Projects Management Limited, ANSAware 3.0
Implementation Manual, January 1991.

-278-

11° Simpésio Brasileiro de Redes de Computadores

Annex 1
SAMPLE SPECIFICATION FILE

CLASS CPU:= AlarmReport ::=
BEGIN SEQUENCE OF
DERIVED FROM (top) RECORD
CHARACTERIZED BY | (
ATTRIBUTES severity: Severity,
MUST CONTAIN { severitytrend:
state, SeverityTrend,
bust_time: READ ONLY backedUpStatus:
) BOOLEAN,
OPERATIONS (backedCpulnst: STRING,
CREATE, DELETE, eventld: INTEGER
ACTIONS)
{ Activate, Deactivate) State ::=
) ENUMERATED
NOTIFICATIONS [(
alarm_report, preService(0),
change_report inService(1),

) outOfService(2)
))
]
LOCAL TYPES |

AttributeChange ::= ATTRIBUTE state
SEQUENCE OF WITH ATTRIBUTE SYNTAX State
RECORD (MATHES FOR ORDERING
attria: STRING, SINGLE VALUED
oldval: ANY DEFINED ATTRIBUTE busy_time
BY CpuAttributes with SYNTAX ATTRIBUTE REAL
J MATCHES FOR ORDERING
Severity .= SINGLE VALUED
ENUMERATED |
cleared(0), ACTION Activate
informational(|), ACTIONARG NULL
minor(2), ACTION Deactivate
major(3), ACTIONARG NULL
)
Severitylrend ::= NOTIFICATION change_report
ENUMERATED { EVENTINFO AttributeChange
lessSevere(0), NOTIFICATION alarm_report
noChange(1), EVENTINFO AlarmReport
moreSevere(2)

| END [CLASS Cpu]
-279.

11° Simpésio Brasileiro de Redes de Computadores

Annex 2
SAMPLE SIGNATURES AND REALIZATION FILES

SIGNATURES Cpu ::=
BEGIN
OBJECT TYPE ::= |
CREATE : (STRING)—>(FD, FD);
DELETE : (STRING)->(),
EVENT REPORT:
(FD, NotifyType)->(BOOLEAN),
ACTIONS := (
Activate: ()->(),
Deactivate: () —>()
)
ATTRIBUTES := (
state (
GET: ()-> (State),
SET: (State) —>
(BOOLEAN)
%
busy_time
(GET: ()->(REAL))
)
)

INTERFACES := {

INTERF ACE UnixCpu ::=
BEGIN
Login: (STRING)->(FD),
Logout: (FD)->(),
UserBusyTime:
(FD)->(REAL),
SystemBusyTime:
(FD)->(REAL),
Reset: ()->()
END [INTERFACE UnixCpu]

INTERFACE MyCpu ::=
BEGIN
MyCtrinf: SEQUENCE OF
OCTET,

Connect: (STRING)->(FD),

Disconnect: (FD)->(),

Ctrlinfo: (FD)->(MyCtrinf),

END [INTERFACE MyCpu]
)
END [SIGNATURE Cpu]

REALIZATION Cpu =
BEGIN
OBJECT unixCpul ::=
SYNTAX ::= (
INTERFACE UnixCpu,
METHODS
unicCpul.SYNTAX
J
SEMANTICS
unixCpul . SEMANTICS;
END [OBJECT unixCpul]

OBJECT unixCpu2 ::=
SYNTAX ::= (
INTERFACE UnixCpu,
METHODS
unixCpu2. SYNT AX
]
SEMANTICS
unixCpuZ SEMANTICS;
END [OBJECT unixCpu?2]

OBJECT myCpuZ2 ::=
SYNTAX = {
INTERFACE MyCpu,
METHODS
myCpu2.SYNT AX
]
SEMANTICS
myCpu2 SEMANTICS;
END [OBJECT myCpu2]

END [REALIZATION Cpu]

-280-

11% Simpésio Brasileiro de Redes de Computadores

INDB MODULE indb1 ::=
BEGIN
HOST (aramis)
BACKUP HOST (athos)
END [INDB MODULE indb]

INDB MODULE indb2 ::=
BEGIN

HOST (portos)

BACKUP HOST (milady)
END [INDB MODULE indb?2]

INDB MODULE indb3 ::=
BEGIN
HOST (dartagnan)
BACKUP HOST [richelieu)
END [INDB MODULE indb? |

PROXY MODULE proxy 1 :=

BEGIN
TEMPLATE [templatel)
HOST (treville)

BACKUP HOST (milady)
END [PROXY MODULE proxy |]

PROXY MODULE proxy?2 ::=
BEGIN

TEMPLATE (templatel)

HOST {richelieu)

BACKUP HOST (milady)
END [PROXY MODULE proxy2]

PROXY MODULE proxy3 ::=
BEGIN
TEMPLATE (template?2)
HOST (richelieu)
BACKUP HOST (athos)
END [PROXY MODULE proxy3]

Annex 3
SAMPLE CONFIGURATION ENTRIES

-281-

PROXY MODULE proxy4 ::=
BEGIN

TEMPLATE (template3)

HOST (dartagnan)

BACKUP HOST (trevilie)
END [PROXY MODULE proxy4]

INSTANCE xyzO7B ::=

BEGIN
CLASS (Circuit)
INDB (indb1)

PROXY (proxy 1)
OBJECT (X2518M)
END [INSTANCE xyz07B]

INSTANCE xyz08B ::=
BEGIN
CLASS {Circuit)
INDB (indb 1)
PROXY (proxy1)
OBJECT (UnixX25)
END [INSTANCE xyz08B]

INSTANCE xyz09B ::=
BEGIN

CLASS (Circuit)

INDB (indb1)

PROXY (proxy1).

OBJECT (UnixEth)
END [INSTANCE xyz09B]

INSTANCE xyzOI1C ::=
BEGIN
CLASS (Circuit)
INDB (indb2])
PROXY (proxy2)
OBJECT (X251BM)
END [INSTANCE xyz01C]

