Experience with the Interoperability between
Telecommunications Management Network Systems
(TMN)

Mauro OLIVEIRA(*), Nazim AGOULMINE,
Neuman DE SOUZA(), J-P.Claude

barbosa@masi.ibp.fr

Laboratoire MASI (UA 818 CNRS)
Universite Pierre et Marie Curie
45, Avenue des Etats-Unis :
78000 - Versailles FRANCE

Abstract

Interoperability in TMN context is the ability of the network management products and services
from different suppliers to work together 1o manage communication and computer networks. The
interoperability problem between different TMNs is very complex.

This paper treats the interoperability aspects of the inter-TMNs communication. It presents a

description of the first prototype of the inter-TMNs communication that has been developed in the

ADVANCE Project of the RACE European Programme,

Key words: TMN architecture, interoperability, OSI/NM Forum, ODP viewpoints, ANSA
System, ISODE, ASN.1 notation.

1. INTRODUCTION

Telecommunication Management Network (TMN) is the term commonly used to indicate
the computer based system which supports all the operations of network management in
a telecommunication environment [1]. TMN functions are concerned with the transport
and the processing of the information related to the management of a single Network
Element (NE) or the whole telecommunication network, in special the IBCN (Integrated
Broadband Communication Networks).

IBCN due to its physical nature will be naturally distributed and will exhibit a

genuine parallelism between its components. IBCN Management Applications are likely
to be distributed as a direct consequence of the natural distribution of the IBCN [2).
The IBCN management system may well consist of a number of TMNs (possibly under
different control), which in turn consist of a number of network Management Centres.

The ADVANCE Project is one of the CEC RACE Programme. The ADVANCE

architecture was developed with two main goal in mind. The first was to provide a
framework which supported the design and test of network management functions in
form of Management Applications. The second was the definition of Telecommunication
Management Network Computer Platform (TMNCP). The ADVANCE's long term study

concerns the issues associated the options for implementation of TMNCP over a wide
area [3].

(*) Authors supported by ETFCe/ CNPq and BNB/CNPq
-247-

11° Simpésio Brasileiro de Redes de Computadores

This paper describes the work undertaken within this long term study. It treats
the interoperability aspects of the inter-TMNs communication and describes the
approach we have taken within the ADVANCE Project.

In the next section, we describe the architecture of the TMN introduced by the
CCITT. Afterwards, section we identify how the interoperability of TMNs can be
achieved and we propose an architecture of the functional block that permit the
interoperability between TMNs called CME and the mecanisms negociation between the
TMNs. In the last section we present a prototype that has been developed.

2. THE INTEROPERABILITY PROBLEM

In the real context of communication there is a set of organizations with there own
equipment, application and politic. Each organization has generally a set of networks
connected together to provide communication service inside and outside the
organization. In each organization, we find different levels of heterogeneity
technology, technique, etc.

In each organization we find one or several management sysiems that support the
management of the organization’ networks. But each management systems permit only to
manage a sub-set of the entire networks. In order to provide an overall management
their is a need to cooperate the differents management centers by permiting them to
interoperate

The Interoperability term is defined in [4] as the ability of the network
management products and services from different suppliers to work together to manage
communication and computer networks. In particular, a product from one supplier must
be able to manage or be managed by a product from a different supplier, or act in both
of these roles.

The interoperability between different TMNs is complex due to the management
policy of each organization, the security aspect and the heterogeneity of the
information and the underlying metworks' architecture and resources. If the problem of
communication between heterogencous networks were resolved, the problem of
cooperation between manufacturers administration systems would still exist.

2.1 TMN Functional Components

A TMN is used to manage and control services, customer and networks, then, the initial
situation supposes, also, several customers of each onme of the organizations, several
interconnected networks through several accesses, and several organizations working
together to provide and consume services and to manage and control both services and
networks. This means that each ome the organization has connected its TMN system to
its networks (public, PABX, LAN, MAN, etc.) and uses its TMN system to manage and
control both its networks, the services provided through it and the customer which use
them.

The figure 1 show the principal components (function blocks and reference
points) of the TMN Functional structure [1,5]:

(i) Functions blocks:

- The Operation Systems Functions (OSF) enabling the management of the
Managed Network Element Functions (MNEF);

-248-

11° Simpésio Brasileiro de Redes de Computadoies

- The Work Station Functions (WSF) enabling the user to interact the OSFs;

- The Mediation Function (MF) used for transfer of information between OSFs and
MNEFs.

Fig 1 - The TMN Functional architecture

(ii) References points:

- The q reference points connect the functions blocks for Network Element
Function (NEF) to MF, MF to MF, MF to OSF and OSF to OSF either directly or via
the Data Communication Function (DCF);

- The f reference points connect OSF to WSF;
- The g reference are points between the WSF and the user;

- The x reference points connect a TMN to other management type networks
including other TMNs.

The basic idea behind a TMN is 1o provide an organized network structure to achieve
the interconnection of the various types of OS. The OSF processes information
related to telecommunication Mmanagement to support and control the realization of
various telecommunication management functions. There are at least three functional
types of OSFs (i.e. basic, network and services). Basic OSFs and Network OSFs share
infrastructure aspect of a telecommunication network. Service OSFs are concerned with
service aspects of one or more telecommunication networks.

There is a vertical hierarchical communication on the one hand within a TMN,
from a lower layer OS to the nest higher layer OS, and there is horizontal peer to peer
communication involving management center t0 management center within a given OS
layer on the other hand. The wvertical communication is associated with the q
reference points and represents internal communication, while the peer to peer
communication is external with the x reference points.

-249-

112 Simpésio Brasileiro de Redes de Computadores

2.2 Interoperability Requirements

To achieve a global network management activity, there is a need to permit the
cooperation between different network management systems. This is realized by a TMN
to TMN communication which is necessary to effect a global integral view at the
international level. This communication between management centers must take place
over the X interface (x reference points), and must be standardized.

The inter-relations characterization among different cooperating TMN system
begin at highest level, defining both boundaries and requirements of each one of the
TMN systems: two or more organizations decide to cooperate among them to improve
their respective business. It means that, at the business level, the requirements of the
inter-TMNs cooperation will be decided in the scope of an inter-organization
cooperation and agree through contracts.

Before any cooperation between TMNs they must be some agreement about the
manner to exchange information. That means that the different organization should
agree at the politic level the kind of cooperation they want to do. After that they must
be an agreement about the manner to exchange information and the manner to represent
it.

When the TMNs interoperate, it is necessary for each TMN to have an
understanding of the management functions supported or required by the others. The
OSI/NM architecture addresses the problem of interoperable network management and
presents a framework for describing the various aspects of the problem and the
solutions [6]

3. A SOLUTION FOR THE INTEROPERABILITY

After highlighted some issues about the interoperability, we present in this section the
architecture of a component to be included in a management system in order to be
interoperable.

The approach presented is based on the OSI/NM FORUM (7] work. Two important
concepts were introduced in the Forum :

- Interoperable Interface: the interoperable interface is a set of protocols,
procedures, message formats and semantics used to communicate management
information between management systems.

- Conformant Management Entity: the CME is an open management system
that supports the interoperable interface. Thus, two CMEs communicate across
the interoperable interface.

The work undertaken by the OSI/NM FORUM gives some information about the manner to
permit t0 a management system to be interoperable, but it don't give any details about
the internal architecture of the management systems. This is the point we are trying to
resolve in this paper by proposing an architectural approach for the interoperability.

-250-

11° Simpésio Brasileiro de Redes de Computadores

3.1 The CME component

The proposal here is to extend the existing architecture of the ADVANCE platform
[15] by adding a new functional block called CME (Cooperation Management Entity).

The CME will be responsible for the support of the cooperation between the
different TMNs. Each TMN is realized on the ADVANCE platform. This definition of the
CME (functional block) is different from the NM/FORUM definition. In the NM/FORUM,
the CME is the management system itself [7].

Two aspects of the interoperability are identified in the CME proposed in this work:
- Information Aspect:

The information aspect is concerned by all the aspect of information exchange.
The information to be exchanged between the differert TMNs must be modelised.
The TMNs will cooperate with each other by exchanging a set of information for a
variety of purposes while at the same time they must maintain a high degree of
autonomy,

- Communication Aspect:

The communication aspect between the different TMNs : When the TMNs are
cooperating with each other they do so by means of associations (OSI meaning)
established between them. The protocol used and the message to be exchanged
must be a shared knowledge between all the partners before any cooperation can
be achieved. An organizational model must also be defined, determining the
role of each partner in the cooperation.

Therefore, the CME is composed of the two components (or layers): Information Entity
Block (IEB) and Communication Entity Block (CEB), shown in the figure 2.

OMMUN ON

Fig 2- CME Architecture

3.2 The Communication Entity Block

The Communication Entity Block (CEB) of the CME provides such a support for the
communication. This block permits to hide the complexity of naming and addressing
the target ADVANCE platforms. This is done by the X.500 directory [8] .

-251-

11° Simpésio Brasileiro de Redes de Computadores

The CEB component is an Engineering Object that provide inter-domains
communication capability to the CME, to offer a location transparent and access
transparent to the communication between Management Centers, in the same or in
different TMNs.

The architecture of the management centers (ADVANCE Management System) is
based on the ADVANCE Plaiform. The differents TMNs communicate to permit the
exchange of information necessary for the cooperation. We have agree the standard
protocol and service CMIP [9] and CMIS [10] as support for the management information
exchange between TMNs.

3.3 Information Entity Block

The Information Entity Block (IEB) is responsable for the effective realization of the
cooperation. This block uses the service provided by the CEB to communicate with a
different IEB. This block provides a service of the Context negotiation described below.

To participate a in cooperation, the different ADVANCE Management Systems
must be capable of performing the manager role, the agent role or both as defined in
the OS] system management. A Management System performing the agent role makes
managed objects visible to other Management Systems by receiving operations and
issuing notifications. The definition of these responsabilities permit to make clearer
the behaviour of each management system when cooperating.

3.4 Context Negotiation

An One important point in the cooperation between the Management Systems is to
define which information can be shared or exchanged them. Each Management System
has its set of management information about the users, the services and the network it
supports. Each one of these system constitutes the basic element of the cooperation and
has individual information that wish to share and exchange to satisfy a certain type of

a global management .

The context negotiation is a process that permits different ADVANCE
Management Systems to cooperate. It clearly before any cooperation may occur there
must be an agreement on the type of cooperation the different Management Systems are
willing to have [11]. This off-line phase permits the definition of the type of protocol to
use, the type of management class which exists, etc. This information constitutes the
shared knowledge that must be known by every partner of the cooperation.

The other process which is an on-line process of the context negotiation occurs
at the beginning of an association . This context differs depending on the requirements
of management applications or policy, etc.

Two schemas must be defined while a Management System want to participate in
a cooperation. The first, one called Export schema, defines the information that the
Management System is exporting to the other Management Systems and the import
schema that the Management System (depending on management applications interests)
is willing to import from the different partners of the cooperation. The export schema
and the import schema define the cooperation context.

After this phase the two management systems can cooperate by exchanging
management informations or providing services to each other depending of the role

there were assigned.
-252-

112 Simpésio Brasileiro de Redes de Computadores

4. PROTOTYPE

The previous section outlined requirements for cooperation among different TMNs and
described an architecture of a component to add to the ADVANCE platform [15] to meet
some of those requirements. In order to validate the concept and software structures, a
first prototype of the ADVANCE platform including the CME component was developped
o meet these requirements [20].

4.1 Scenario

The scenario (figure. 3) adopted for the first prototype is the cooperation between two
ADVANCE Platforms, one performing the role manager and the other one the agent
manager. The goal of this prototype is to realize the cooperation between the two
ADVANCE Platform's components by enabling to a management application supported
by the manager platform to access to management information represented by managed
object instances the agent platform. This cooperation will be realized through the CMEs
‘unctional blocks of the ADVANCE ADVANCE Platform.

Manager TMN Agent TMN
Appiltation Aspiaion
O 0. .0 .0
O O MIB O MIB
1y oo ey
I CME I

Fig 3 - Communication between TMNs

The scenario is composed by three phases (figure 4) :

* The first phase:

Each ADVANCE Platform will support a certain type of instances of managed object
class. In the first phase is the cooperation context negotiation where the manager
platform sends its import schema through the CME to the agent platform.

* The second phase

The second phase consist to share management information between the agent
management system and the manager one. The management application supported by the
manager system sends requests to the agent system through the CME.

* The third phase

The third phase corresponds to the dynamic cooperation context negotiation by

changing the export schema of the agent platform and/or the import schema of the
manager platform,

-263-

112 Simpésio Brasileiro de Redes de Computadores

4.2. Support technology

The implementation, is based on two environments which are presented below :

. ANSA distributed System: Each management system is realized by an
ADVANCE Platform. The distributed mechanisms are provided by ANSA System. |

. ISO Environment Development: This environment provides rge necessary
services that permit the peer to peer communications between management
systems of different TMNs.

4.2.1 ANSA distributed System

a- Overview

The scope of the Advanced Networked Systems Architecture (ANSA) is to provide an
architecture for distributed system. It is an architecture for building distributed
systems that can operate as a unified whole such that the fact of distribution is
transparent to application programmers and users.

ANSAware [12] is a practical realization of ANSA architecture. It provides a
specification language (IDL - Interface Definition Language) for defining the sets of
legal interactions (interface specifications) between pairs of components and a tool
(stub compiler) for generating the necessary code (called stubs) which facilitate the
interactions when the components are distributed.

The interaction model supporied by ANSAware forces all interactions between
components into a remote invocation paradigm; a client of a service invokes an operation
defined in the interface specification, with the server performing the operation at some
later time. Two forms of remote invocation are supported:

« Interrogation, (synchronous mode) in which the invoking client activity waits for the
server to perform the operation and return any results;

« Announcement, (asynchronous mode) in which the invoking client activity does not
wait for the server to perform the operation.

ANSAware supporis concurrency through the provision of a threads!

b- Applicatien programmer viewpoint
+ Operation signatures in IDL
All interactions between objects in ANSAware are based upon interface

specifications written in IDL for particular services; they are the only information
upon which the interactions are based.

1 A Thread is an independent cxecution path through a sequence of operations within a
capsule (the unit of autonomous operation within ANSAware); from the point of view of
the programmer, it represents the unmit of serial activity. A thread performs one logical
activity within a capsule, but threads can share data structures and can synchronise
with each other at significant points.

-254-

11° Simpésio Brasileiro de Redes de Computadores

A specification written in IDL has the following general structure:

TypeName : INTERFACE =
IS COMPATIBLE WITH TypeNamel:
NEEDS TypeName2;

BEGIN

-- interface-specific constructed
data types

-- operation signatures

TypeName, TypeNamel and TypeName2 are the interface type names that are
used by the trading syslcmz.

IS COMPATIBLE WITH and NEEDS are optional statements used to avoid the
rewriting process of types and operations already defined in others interface
specifications.

Each operation in an interface has a name, an argument list (possibly empty)
and a result list (possibly empty). Arguments and results are specified by position,
Arguments must be given formal parameter names; results can be named, if desired.
Arguments and results are passed by value. Consider the following examples:

BasicType : TYPE = [INT, STR }):

ValueType : TYPE = CHOICE BasicType OF |
INT => INTEGER,

STR => STRING

)i

Get : OPERATION [instance: STRING:; attribute: STRING]
RETURNS [INTEGER; STRING: ValueType |;

Addinstance : INTERROGATION OPERATION [
instance : STRING;
domain : STRING:;
class : STRING;
superior : STRING
]
RETURNS [INTEGER; STRING];

Syndl:ANPK)UNCEMENTOPERATTON[]
RETURNS [J;

An invocation of Get generates an interrogation (by default), passing the values of
STRING type and returning an integer, a string and a ValueType. An invocation of

AddInstance proceeds in the same way, with passage of parameters and the return of
results,

2 A trading system allows clients to find servers dynamically via a system-wide
directory structure for recording and determining the availability of services. The
architectural service which provides trading is implemented in ANSAware as an object
called the Trader. -955.

11° Simpésio Brasileiro de Redes de Computadores

« Operation invecation wusing PREPC language

The actual program source is wrilten using PREPC3 statements. All PREPC statements
begin with an exclamation mark ("!") in column 1 of the source program.

The generic syntax for an operation invocation is:
! [results) <- refSop (arguments) exceptions

where results is a comma-separated list (possibly empty) of results to be returned, ref
is an Interfaceld (a well-know reference or a reference received as an invocation
argument or result), op is the name of an operation to invoke in that interface,
arguments is a comma-separated list (possibly empty) of arguments, and exceptions is a
statement (possibly empty) of actions to take under specified exception conditions.

c- Aspects at the engineering support viewpoint

The network communications model used by ANSA and implemented in ANSAware is
based on remote procedurc calls (RPC). A clear separation is maintained between the
programming language aspects of RPC (which feature in the computational model), the
service primitives to the RPC protocol and the design of the protocol itself. This is to
permit alternative language representations of RPC and to enable the protocol to be
operated over widely differing kinds of network Communications in the ANSAware
engineering model is divided into three layers:

a) at the bottom are a number of Message Passing Services (MPS) that manage
connection and disconnection, and the transmission an receipt of messages
between nodes;

b) above them are Execution Protocols that map computational model invocations
onto message exchange through the message services. The REX (Remote Execution
Protocol) is a single execution protocols included in ANSAware, which is a
protocol for single endpoint to single endpoint communication;

¢) the third layer is made up by the Session objects which is responsible of the
coordination between protocols and threads; a session represents local state
about interactions with a remote interface; both the client and the server
maintain session information during an interaction; the function of a protocol,
in addition to transporting data is to maintain session state between the client
and server session objects.

4.2.2 1SO Development Environment (ISODE)

a- Overview

ISODE is a non-proprietary implementation of some protocol defined by ISO/IEC. The
purpose of making this software openly available is to accelerate the process of the
development of the applications in the OSI protocol suite [13].

3 The PREPC language provides a means for embedding invocations of interface
operations in C source files. A compiler called prepc translates PREPC statements into
invocations of the stub routines generated by stubc (another compiler provided for
automatically generating stub code for marshalling and unmarshalling the data types
specified by the IDL interface and for dispatching the appropriate service operation on
receipt of a operation invocation). -256-

11° Simpésio Brasileiro de Redes de Computadores

This software can support different network services below the tramsport
service access point (TSAP). One of these network services is TCP. This permis the
development of the higher level protocol in an internet environment. However, the
software also operates over pure OSI lower levels of software.

 Remote Operation

Remote Operation is a popular technique for building distributed applications. The
Remote Operation Services Elements (ROSE) is responsible for request and reply
interaction. OSI provides a powerful notation (RO-notation), for specifying the
external interaction of these systems. Then, to facilitate the development of the
application using ROSE, the ASN.l description of ROSE provide macros (RO-notation).

An objet model for programming follows the use of abstract data types rather
than concrete data structure. The use of operatioms, rather than direct manipulation,
provides an important level of indirection: data structure may be accessed without
regard to their local implementation.

An operation is a simple request or reply interaction. It is invoked by:

- an operation number

- an arbitrary complex argument

- an invocation identifier
Once an association is established, the initiator requests the responder to perform
remote operation. An association-descriptor is used to reference the association. Thig

is usually the first parameter given to any of the remaining routines.

When a request to perform a remote operation has been received by the
responder to an association, the responder either returns a result or am error.

* Naming & addressing

A collection of remote operations form only a partial definition of a service. Other
parts of this definition include naming and addressing information:

- abstract syntax: this describe the data structure being exchanged by the

Services;

- application context name: this describe the protocol being used by the
service;

- application-entity informatieon: this uniquely names an entity in the
network;

- presentation address: this locates an entity in the network; and,

- local program: this identifies the program on the local system which
implements the services.

The ISODE. Entitics Datal

The database isoentities contains a simple mapping between application-cmity
information and presentation address. This database is used by the slub—dircctory
service. The database itself is an ordinary ASCII text file containing infm‘matioﬂ
regarding the known application-entities on the network. This file replaces the "real”
directory services.

-257-

112 Simpisio Brasileiro de Redes de Computadores

The ISODE Obicqs database

The database isobjects contain a simple mapping between object descriptors and object
identifiers. The database itself is an ordinary ASCII text file containing information
regarding the known objects on the host.

The ISODE Servics Dajabase

The database isoservices contains a simple mapping between textual descriptions of
gervices, services selectors, and local programs. The database itself is an ordinary
ASCII text file containing information regarding the known services on the host. The
steps involved to defining new services in ISODE are simple:

- The application context and abstract syntax for the services is registered
in the isobjects file this allow 10 use the textual designator for these values
rather the object identifier form;

- An entry is created in the X500 Directory containing information indicating
where the service resides in the network, and, optionally, what UNIX program
will be invoked whenever there is an incoming connection for the service.

b- The ISODE Application Cook-book

The ISODE has an interesting package called "The Application Cookbook" [14] which
automates much tasks (code writing) involved in the implementation of a network
application in the OSI environment which was used in the prototype. Then, it provides
the utensils (programming tools) and various recipes (boilerplaies routines) which can
be used to cook-up OSI applications

« The rosy Compiler

The rosy (Remote Operation Stub-generator YACC-based) is a compiler for specification
of the remote operations. The rosy program reads a description of a remote operation
module and produce the corresponding C stubs and definition for use with the run-time
environment. Operations are defined by a name starts with a lower case character
followed by the keyword OPERATION:

L ARGUMENTS: defines the ASN.]l type which the operation expects as its
arguments.

= RESULTS: defines the ASN.1 type which the operation returns on success

L. ERRORS: defines the errors which the operation return on failure.

The rosy program will produce several files after reading its remote operation module:

- Abstract Syntax Module
. C Language Stubs (three separate stub files are produced by rosy)

« The pepsy Compiler

The pepsy is a new program that has been developed 1o replace both pepy (Presentation
Element Parser YACC-based) and posy (Posy Optional Structure generator YACC based).

The pepsy Pprogram reads a description of an abstract syntax module and
produces the corresponding C structures along with several tables that define the
mapping between the ASN.1 objects in the module and the C structures. The pepsy
program produces two files after reading its abstract syntax module:

- C languages Structures

- ing table
o -258-

11° Simpésio Brasileiro de Redes de Computadores

4.3 Implementation
4.3.1 ODP Computational and Engineering Aspects

A prototype of the ADVANCE Platform has been already developed [15]. It is based on
the ANSAware distributed environment. The goal here is to extend the existing
architecture of the ADVANCE platform by adding a new functional block called CME
(Cooperation Management Entity).

The communication between the CMEs will be realized using the ISODE
facilities. The IEB block of the CME uses the Remote Operation for request or reply
interactions and X500 directory to map the logical address of the ADVANCE Platform
components with their physical one.

» Computation Aspect
licati P s Interface:

This a primitive set used by architecture’'s components communicate to the Platform. It
is the only mechanism that enables components of ADVANCE Platform to interact with
cach other. The functions available for the MA developers are: Deliver, Call, Cast,
SrongCast, WeakCast, Reply, UserReject, Request, Collect and IncomingPDU.

This interface has been implemented in the ADVANCE Platform in two
environments: Prolog, SPOKE [16] and ‘C' [17]. It does not support transactions and
message is assumed to have one, and only one target.

The CME Protocol Data Unpit Struclures.:

The exchanged messages between CMEs are embedded into structures called CME
Protocol Data Unit (CME_PDU) [18]. Each CME_PDU contains the CME byte stream (CME
message itself) and any necessary control information that must also be transferred
with that byte stream. For the new scenario we have included a new field in the
CME_PDU that identify the target TMN The CME_PDU has the following structure.

typedef struct {
int PDU_Size;
int PDU_Type;
int ParsedOrNot;
char *TargetTMN;
int Context;
char *TargetName;
char *Source.Name;
int CMEBitstreamSize;
CMEBitstream I_CMEBitstream; | I_CME_PDU;

The Target TMN will denote a simple name for an end-system. It corresponds to a
Distinguished Name (DN) for the use of the Directory.

« Engineering Aspect
The CME Deli Mechanism (CME DM):

This component has the mechanisms to interpret the message and to deliver it to the
target. its purpose is to transfer CME messages and their associates response between
(the Visible Interfaces) the system's components (e.g. CIM, Management Application).

-259-

112 Simpésio Brasileiro de Redes de Computadores

An essential part of the CME_DM is identifying the correct target for any
messages, given a target name. The CME_DM is more discussed in [19]. We consider here
the cooperation two TMNs A and B.

CEB A Acting in a M Rol
This component in the TMN A, receives the CME message from the platform and send it
to the target block in the TMN B (which is the target TMN) through the different ASEs
(ACSE, ROSE, CMIS) provided by ISODE.

CEB B : Acting i \ Rol

This component in the TMN B, receives the message from the CEB A (in the TMN A)

The CME of a particular TMN export its service to the CME_DM :

! (er)<-traderRef$Export("CMEInterface”,
“JCME", Classes ['Customer”Service' 'Network'] Relations ('is_provided_to']", n).

The MAs can peruse this functional block CME for exchanging information with
another functional block of a different TMN :

! (ir] <-traderRef$SImport("CMEInterface”,
"/CME","'Customer’ in Classes")

CMEInterface is the only interface in ADVANCE Platform. It supports the
following operation:

CMElInterpreter: OPERATION [CMEMessage : String] RETURN([String]

« Synchromous call and asynchromous cast

A simple call and cast interactions are illustrated below (figure 5).

Client REX

— —.c.-:" e f
R iy dispacth

time

e

Fig 5 - Synchronous and zwnchronous Communications

11° Simpésio Brasileiro de Redes de Computadores

4.3.2 Structure of the cme Programs
* Defining the cme Service

We begin by defining the naming and addressing information for the
service:

abstract syntax: defined in the isobjects file as:
" isode cme pci ” 1.17.14.1

application context name: defined in the isobjects file as:
" isode cme " 1.17.1.4.2

application-entity information & presentation address:
defined in the isoentities file as:

" default cme" 1.17.4.0.13 #5222
local program: defined in the isoservices file as:
"tsap/cmestore” #3522 ros.cme
* Remote Operations Module

Aremote operation module dcfines the operations (and associated errors)
along the abstract syntax of the data description exchanged by the service.
It is placed in cme.ry program [20]:

cmeisode DEFINITIONS ::=
BEGIN

-

operations
call OPERATION
ARGUMENT Message
RESULT y
ERROR% { reject, congested)

.,
-

cast OPERATION
ARGUMENT
RESULT

Empty
ERRORS { congested)
= 1

-- efmors
reject ERROR ::= 0

- congestion at responder
congested ERROR::=1

types
Message ::= IA5String
Reply ::= IAS5String
Empty ::=NULL
END

-261-

112 Simpésio Brasileiro de Redes de Computadores

« INTERACTIVE INITIATOR
The interactive initiator of the service is placed in cme_i.c file. The main parts of this
file is shown bellow:

. CMEIL.C PROGRAM

I N S S SR ./
/I* cme_i.c ¢/
/* cme service --imitiator .J
F R R T 'y
/* ARGUMENTS */

int do_call(), do_cast();

/* RESULTS %/
int call_result, cast_result();

/* ERRORS ¢/
int cme_error ();

/* DEFINITION OF THE cme SERVICE */
char *myservice = " cme";
char *mycontext = " isode cme";
char *mypcy = " isode cme pci *;

main (argc, argv, envp)

(

/* GET THE INCOMING PDU FROM CME_DM (IPC QUEUE) ¥/
InitialiseIPC(...);

DM_GetIncoming(...,PDU);

/* SET OF THE INCOMING PDU TYPE (REMOTE OPERATION) */
argv(2] = PDU->type;

/* CALLING THE ISODE GENERIC INITIATOR */
ryinitiator (argc,argv,myservice, mycontext, mypcy,...);

}

/* ARGUSED */
do_call(...);
do_cast(...);

/* CALL RESULT %/
call_result(sd,...,result,...)

(
char *cp;

/* CONVERT THE qbuf (BUFFER-QUEUE FORM) INTO ONE STRING */
cp = qb2str(result);

/* SENDING THE INCOMING REPLY TO CME_DM (IPC QUEUE) */
DM_Reply(cp,-..);
)

/* CAST RESULT */
cast_result(...);

/* ERRORS */
cme_error (...);

-262-

112 Simpésio Brasileiro de Redes de Computadores

+RESPONDER

The responder of the service is placed in cme_r.c file. The main parts of this file is
shown bellow:

CMER.C PROGRAM

O e e e e sy Lo ./
/* cme_r.c o !
/* cme service -- responder */
S 5 E I Pip g e el L

/* OPERATIONS */
int op_call(), op_cast();

/* ASSIGNING THE cme SERVICE */
char *myservice = " cme*;
char *mycontext = " isode cme";

main(argc, argv, envp)

/* CALLING THE ISODE GENERIC RESPONDER 7 |
ryresponder(arge, argv, host,myservice, mycontext, dispatches,...);
)

/* CALL OPERATION */
op_call(sd,...,in,...)

{
char *cd;
char *res:

/* CONVERT THE STRING INTO ONE gbuf (BUFFER-QUEUE FORM) */
cp = qb2sir(in);

/* DO SOMETHING WITH cp HERE. FOR EX. RESULT = “reply” */

/* CONVERT THE qbuf (BUFFER-QUEUE FORM) INTO ONE STRING */
res = sr2qb("reply”);

/* IT RETURN A RESULT TO AN INVOCATION */
RyDsResult(sd, ... res,...);
]

/* CAST OPERATION */
op_casi(sd,...,in,...);

{
char *cd;
cp = gb2str(in);

RyDsResult(sd, ...,NULL,..)
)

The ryinitiator.c (generic interactive initiator) and ryresponder.c (generic idempotent
responder) routines are shown in the Appendices.

-263-

112 Simpésio Brasileiro de Redes de Computadores

5. CONCLUSION

This prototype constitues the first phase of the experimentation of the interoperability
between TMNs within the ADVANCE Project. It has permitted to handle some problems
about the communication aspect and to identify requirements at the informational level

The scenario used was the realization of a cooperation between a manager
management system and an agent one. Both are supported by the ADVANCE platform.
Each platform support a CME functional block that realize the X interface between the
conceptual TMNs that include the management systems.

The next step of this work is to handle the informational aspects we have
identified such as the problem of the translation of CME Message to CMIS Message and
CMIS Message to CME Message. This aspect can be generalized as the problem of protocol
and service translation and a specially in the case of interoperability as a translation
of a proprietary service and protocol to normalized CMIS and CMIP service and protocol.

6. REFERENCES

(1] CCITT M30 Recommendations "Principles for a Telecommunications Management
Network™

[2] 09/BCM/RD3/DS/C/002/A1. Initial User Requirements. Broadcom Eireann
Research Limited. Dublin. December 9,1988,

3] ADBC0735.MSW. Long Term Study Statements. Broadcom Eireann Research
Limited. Dublin. May 2, 1991.

(4] Information Processing Systems - Open Systems Interconnection, Systems
Management: Overview, 2nd DP10060

[s] An Implementation Architecture for thr TMN - CEC RACE Programme. Project
ADVANCE R1003. Docment 03/CAS/SAR/DS/B/001/bl. Dublin. Dec 88.

[6] OSI-NM/FORUM - Forum 003, Forum Architecture , Issue 1 June 1989"

(7] OSI-NM/FORUM, Forum 009 "Shared Management Knowledge", Issue 1,1990

[8] "X500: The Directory”, Overview of Concepts, Models and Services
Recommendation X.500, CCITT Blue Book, Volume VIII - Fascicle VIIL8. 1988.

9] Information Processing System, Open Systems Interconnection, Management
Information Protocol Specification, CMIP - 159596

[10] Information Processing System , Open Sysiems Interconnection, Management
Information Service Definition - CMIS - 159595

[11] Agoumine N., Oliveira M. A Solution for the Cooperation of TMN. Globecom/IEEE.
Orlando, 1992,

[12] ANSAware 3.0. Implementation Manual, Doc:RM.097.00, Cambridge, U.K.,1991.

[13] Rose M.T. "The OPen Book - A Pratical Perpective on OSI". Prentice Hall. New
Jersey (USA). 1990.

[14] Rose M.T. "The ISO Development Environment: User's Manual (version 7)"
-Volume 4: The Applications Cookbook. Palo Alto (USA). 1991.

[15] Oliveira M., De Souza N., Penna M., Celestino J. Uma Plataforma de Computagio
para Administragdo de IBCNs. X SBRC. UFPE. Recife (Br), 1992,

[16] D.Harkness. CP SIG Contribution. Roke Manor Research Lid. Sep9l

[17] Oliveira M. ADVANCE Project - ADDNO033. The Visible Interface for 'C’
Application Programmer (The User Guide & Installations Notes). october91.

[18] Harkeness D. The ADVANCE Platform Computing Platform: open issues & Roke
Manor contributions ADPL157. February 1991.

(19] M. Penna & al. ADVANCE Project - ADDN016 doc. The locating Problem in the
CME Deliver Mechanism. March 91,

[20] Oliveira M, Agoulmine. ADVANCE Project, ADDN45 doc. A Prototype for Inter-
TMN Cooperation.

-264-

11° Simpésio Brasileiro de Redes de Computadores

AFPPENDICE |
A e a ek so v e S e A i */
PRYINITIATOR.C s/
/*GENERIC INTERACTI VE INITIATOR®/
[S e S L R B .

ryinitiator (argc,argv.myservice, mycontext, mypcy,...)

(

/* CONTRUCTING A PRESENTATION ADDRESS*/
aei = str2aci(...,myservice,...);

pa = aciloid(aei);

/* MAPPING BETWEEN OBJ DESCRIPTORS AND OBJ IDENTIFIERS */
ctx = ode2oid(mycontext);
pci = ode2oid(mypci);

/* ASSIGNING THE REMOTE OPERATION (INCOMING PDU TYPE) */
ds->ds_name = argv[2];

/* A-ASSOCIATE.REQUEST */
(ctx,...,aei,...,pa,...,acc);

/* ASSIGNING THE ASSOCIATION-DESCRIPTOR */
8d = acc -> acc_sd;

/* SELECTING AN UNDERLING SERVICE =/
RoSetService(sd....):

/* INVOKING OPERATIONS *:
invoke(sd,...,ds,...)
(
/* IT PROVIDES AN ASYNCHRONOUS INTERFACE */
RySlub(sd.....ds-)dl_opcution..
ds->ds_result,...);
)

-265-

11° Simpésio Brasileiro de Redes de Computadores

APPENDICE II
I e e R SIS SRS B e e S ./
/* RYRESPONDER.C */
/* GENERIC RESPONDER */
P ey P A Pt ./

ryresponder(argc, argv, host,myservice, mycontext, dispaches,...)

(
/* RETURNS THE APPLICATION-ENTITY INFORMATION STRUCTURE ¥/
aei = str2aei(host, myservice,...);

/* ASSIGNING THE DISPATCH STRUCTURE USED BY THE INITIATOR*/
ds = dispatches;

/* IT REGISTERS A HANDLER FOR ANOPERATION */
RyDispatch(...,ds->ds_operation, fnx,...);

/* FNX: THE ADDRESS OF A DISPATCH ROUTINE TO BE INVOKED ¥/

/* GENERIC SERVER DISPATCH */
isoserver(argc, argv, aei, ros_init, ros_work,...);

]

ros_init (...)

(

int cd, result;

/* A-ASSOCIATE.INDICATION */
Aclnit(...,acs,...);

/* ASSIGNING THE ASSOCIATION-DESCRIPTOR */
sd = acs -> acs_sd;

/* A-ASSOCIATE.RESPONSE */
result = AcAssocResponse(sd,...);

/* SELECTING AN UNDERLING SERVICE %/
RoSetService(sd,...);

)

ros_work(fd)
int fd;
{

int result:
/* USED TO WAIT FOR SOME EVENT TO OCCUR ¥/

RyWait(fd,...);
)

-266-

