A Supporting Platform for Heterogeneous Networks Management
Systems

Fouad GEORGES José NEUMAN (*)
email: fg@masi.ibp fr email: jn@masi.ibp fr

S. LALANNE J.P. CLAUDE
email: sl@masi.ibp fr email: jpc@masi.ibp fr

Laboratoire MASI
45 avenue des Etats Unis
78000 VERSAILLES
FRANCE

Abstract

Network management is characterised from other information processing systems by
their constant evolution and the load they represent on their hosting infrastructure. These
requirements lead to the definition of certain supporting functions, offering network managers a
suitable environment for the development and execution of their automated management tasks.
The TMN (Telecommunications Management Networks) standards describe a framework for
the management applications' implementation and integration into the network administration
process along with the neccesary utilities for the realization of such technique. Run-time
libraries, Precompilers, special interfaces and software systems are all examples of such
utilities. This paper treats the TMN needed environment and proposes a solution based on a
“supporting-platform" approach. In the following sections, the specifications for such a
platform are briefly presented. These specifications resulted from a requirements analysis for
the implementation of a performance management system for integrated networks. However, it
should be noted that they are equally applicable to other management domains.

Key Words: Network Management, TMN, MIB, Supporting Platform

Introduction

"It is clearly vital to all involved in the production of a TMN to understand the uses to
which it will be put” (1] i.e. the requirements imposed on such a system. In fact, there are
three factors that participate in a platform specification: functional requirements; non-functional
and technology requirements; and finally environmental constraints. The main goal of such
classification is to facilitate the design process, by the separation of crutial and less-crutial
issues. Thus, in contrast to the functional requirements, the non-functional ones are those
which do not (or are considered not to) have an impact on the main functionality of the system
(¢.g. cost, argonomy, etc..). Hence, these requirements are not taken into account during the
design phase. However, they intervene later by playing an important role as criteria for the
quality of a certain implementation of the design. It should be noted that requirements
classification is relative to the design context, e.g. cost might be considered non-fuctional
w.r.t. performance management but is a main issue for accounting management.

The role of TMN supporting platforms is mainly to provide for the engineering
mechanisms of network management systems. In fact, for a given system, we distinguish
between two categories of functionalities, namely computational and engineering ones, where
as the first concerns applications implementing the intended management activities, the second
is only about infrastructure mechanisms (i.e. those recognized and offered as basic, common or

* Supported by CNPq and BNB S/A .299.

112 Simpésio Brasileiro de Redes de Computadores

public to all management applications). This distinction leads to regarding the same
management system from two perspectives (or viewpoints). Thus, from an engineering
perspective, a management system view (fig. 1) is that of a set of cooperating applications
running on top of a supporting platform and controlling underlying network elements.
Management applications depend on the platform for supporting their access to the network and
their interactions. This view gives the functional requirements detailed in the following section
and which form the basis for the platform's specifications. The design of the platform structure
is based on an architecture proposed by the IDEA[2] methodology which was developed in the
MASI laboratory. Validation of the current specifications has resulted several prototypes in the
experimental stage in the same laboratory.

Performance Aipllcations
[] I

=l 1
(SUPPORTING PLATFORM)‘—HGTHER PLATFORMS)
X

CHE D) - ACHED GNED

fig I : The Platform’s Engineering View of Network Management Systems

Functional Requirements on the Platform

The following requirements concern the infrastructure mechanisms identified by
management applications designers. At the present stage, only basic requirements were treated
and the respective specifications represent the result of a first iteration in the platform's design
process. Further iterations allow the introduction of new requirements (e.g. security, second
order management, etc.), and the refinement of current specifications after their validation and
analysis. It should also be noted that requirements, at this level, are not necessarily specific to
performance management but are equally applicable to other management domains. Thus, the
resulting specifications might be considered general to network management as a whole.

Network Access Requirements

The diversity of network elements liable to be managed makes it necessary for the
management system (MS) to take into consideration the heterogeneity of these managed
objects. In fact, the problem of heterogeneity manifests itself when a set of networks are
connected together to form an infrastructure for communications. These networks along with
their components have different designs and technologies. Therefore, the supporting platform
must allow for the co-existance of these incompatible elements and must be capable of handling
such a situation. It should be noted that heterogeneity is not only about communications but
also about the different management solutions and capabilities provided by each element which
inhibits the possibility of managing all the network in a uniform manner. The main aim is to
hide the complexity due to heterogeneity from the developer i.e. to relieve him from dealing
with details related to the diversity of the systems within his environment.

In fact, some management systems exist and are efficient in managing locally their own
network components. But this management is inefficient when the network is connected to the
external world. A kind of unification m_%gism is required that offers the user an abstract

11° Simpésio Brasileiro de Redes de Computadores

view (where certain irrelevant details are masked out) of his underlying environment. In this
manner, this unification mechanism may be considered as one of the transparency facilities
offered to a user as it provides him with a virtually homogenous view of a heterogenous
system. On applying such a mechanism, the user is detached from the real system but deals
with it through the intermediation of the transparency support.

Storage Requirements

This is about the infrastructure mechanisms needed for information accessibility across
the system. The system must support the management information acquisition, storage,
retrieval and manipulation. In this specification, a conceptually single access point to the
system's information is given via the visible interface. Management information is recognized
to have two different natures, namely active and passive. Active data essentially signifies any
network parameters that must be provided on-line. Passive data, on the other hand, include any
information that can be kept in the platform information-bases. However, there is a unique
representation for these two data natures given by the platform. Applications are thus enabled to
handle all the system's information indifferently. The platform must include the necessary
mechanisms for the aquisition, storage, retrieval and manipulation of this information. It must
also assure the consistency and integrity of its data representation.

Communication Requirements

This is about the infrastructure mechanisms needed for information transfer across the
system. There are three recognized categories (types) of information transfer for a management
center:

Applications Communications

Performance management applications will need to inter-communicate with each
other as well as with the platform. The platform must provide an interface visible to these
applications and which they can use to transfer their management information. This
visible interface must support several communications modes e.g. connected
(association), non-connected synchronous/asynchronous.
Infrastructure Communications

As the platform itself will be implemented in a distributed manner, there is a need
for mechanisms enabling the physical separation of its building blocks. Since, the
possible internal messages are predefined, there will be need for a single communications
mode. In fact, this hidden interface is considered to be a sub-set of the visible one (to
keep level of genericity for the supporting mechanisms regarding internal/external
communications). However, there is also need to follow up the chaining of messages
inside the system i.e. when an external request results in multiple internal message. This
is done for the sake of the operations atomicity.
Interworking Communications

Interworking provides for two systems exchanging information in a meaningful
way. This type of communication essentially addresses the interoperability problem. The
performance management center should be able, via its platform, to interwork with
external management centers. In order to keep the openess objective of the platform, its
“interoperable” interface must support CCITT's X-interface using the CMIP [3] protocol.
Context negociation and authentification mechanisms also take part in the functionality of
the interface provider.

Interoperability Requirements

Management centers, built on top of different platforms will co-exist and must be
capable to interact i.e. they must mutually provide for information exchange while at the same
time maintaining a high degree of autonomy. The OSI/NM Forum defines the framework for
the interoperation of different management systems to manage the overall communications
network. The cooperation strategy is based on a Manager/Agent relationship where the
Manager role is to initiate cooperation by sending messages to an Agent of another

112 Simpésio Brasileiro de Redes de Computadores

management system which in turn is capable of performing management activities on behalf of
the requesting manager.

It should be noted that the above interoperations do not represent any supporting
mechanisms but are computational activities of the management system itself i.e. are performed
by management applications implementing the above Manager/Agent roles. However, they
imply that, for a conformant management system, its supporting platform must provide for:

« Interoperable Interface: set of protocols, procedures, message formats and semantics
used to communicate management information .

« Conformant Management Entity (CME): A CME is a real open system which supports
the OSI/NM Forum defined interoperable interface. Thus, two CMEs communicate
across the interoperable interface.

Inter-Processing Requirements

Management applications will have to cooperate together in order to coordinate and
complement their management activities. Meanwhile, applications should not have to bother
with where and how information or functionalities are implemented. The different
transparencies determine the extent to which programmers need to be concerned with, and have
control over certain system details. In a non transparent program the programmer has taken full
responsability for all aspects of distribution. On the other extremity, he has delegated all
responsibility for inter-processing to the support environment i.e. in a completely transparent
system the user "sees” only one abstract (or virtual) machine.

Some well known transparency mechanisms are location, access and replication
transparencies. The kind of a transparency defines its criterion of abstraction i.e. the type of
system information which is hidden from the user :

« Access transparency: provides identical invocation semantics for both local and remote
components.

« Location tranparency: hides the exact location of a program component from any other.

« Concurrency transparency: hides the existence of concurrent users of a service.

« Failure transparency: hides the effects of partially completed interactions that fail for
what ever reason.

« Replication transparency: hides the effect of having multiple copies of program
components.

» Migration transparency: hides the effect of a program component being moved from one
location to another.

The fact that transparency mechanisms hide some of the systems aspects from
applications essentially means that these applications do not have control over the system's
behaviour concerning this aspect. Thus, although transparency is desirable for most cases, it
should not be imposed by the system. A programmer must be given the capability to select the
kinds of transparency required when declaring an interface between two application
components. Two different styles of invoking a transperancy support can be distinguished:

» Imperative - the programmer must call lower-level libraries from the program source at
runtime to explicitly drive transparency mechanisms.

» Declarative - the programmer states distribution requirements in the program source;
tools can then be applied to the source to yield components which meet the
requirements.

The Supporting Platform Structure

The platform (fig. 2) is composed of several modules generated on top of a group of
TMN nodes. These modules interact by exchanging messages via the DISPATCHER. There is
a conceptually unique access point to this platform which is realised by the visible interface. In
fact the interface shown in the figure as well as the other modules might be replicated for
availability or reliability reasons. During the platform installation, one or more instances of the
different =odules are generated and conﬁé%ré‘:d across the system e.g. the shown INDB maybe

1)° Simpésio Brasileiro de Redes de Computadores

actually implemented using distributed or federated databases, Moreover, the whole support is
not intended to be implemented on one node. This implementation freedom is needed for the
optimization of the development efforts by maximally exploiting the capabilities of the
underlying systems (the INDB might profit from a specialised object oriented data base
machine). The module responsible for keeping the virtual image of one platform together is the
DISPATCHER, which is considered as the kernel. The description of the support's main
components is as follows:

&ﬂ VISIBLE INTERFACE

HIDDEN INTERFACE

A INTEROPERABLE INTERFACE o

s Manage§§ 5

Network

fig 2 : The Platform Structure

DISPATCHER: It represents the platform kernel. It controls the communications and the
exchange of messages between the platform's modules as well as between applications and the
platform.

INTEGRATOR: This component handles the functionality of interfacing to the manufactures
access points and representing them as a common virtual access point. In order to do this, it
provides a syntactic unification of the access methods (e.g. the translation of an incoming
request to the respective manufactures management commands) and a semantic unification of
the manufacturers management operations.

INDB: This component supports the integration and the manipulation of the platform's
information (those of the existing INTEGRATORs as well as the data bases). Any interogation
concerning management information must be directed to this module.

IOH: The Inter-Operability Handler is the component providing the possibility for the
platform's applications to cooperate with external management centers. In contrast to the other
components, it must support one or more interoperable interfaces (e.g. CMIP for ISO-based
and CMOT for internet-based management centers). It also controls the visiblity of management
information and maintains their correct semantics on top of the different interfaces.

FOH: This is the Functional Object Handler. It provides a repository of the management
services available on the platform. This allows applications to fulfill their needed activities by
invoking actions on shared (public) or imported functional elements [4].

Visible Interface: This is a set of primitives (offering 3 communication modes) used by the
platform's users (e.g. performance management applications) to communicate with it.
Management messages (which is CMIS [5] based) are encapsulated within a given structure
before sending it to the platform. Messages are first collected by the DISPATCHER and then
delivered to the proper module (or to another application).

- ah=

11° Simpésio Brasileiro de Redes de Computadores

It should be noted that such an architecture is suitable for network administration in
general. The orientation of the platform towards performance management concerns the
management information i.e. during the specification of the models of both the INDB and the
INTEGRATOR and also by the generic services that are represented in the FOH model.

The Platform's Interface Specification

In this section, the visible interface provided by the platform to the performance
management applications will be specified. This interface (fig. 2) is the conceptual unique
access point to the platform. Instances of this interface should be created during run time to
answer the applications demand for availability reasons. In order to specify this interface the
possible interactions i.e. the set of exchanged operations were identified. At the present stage,
the object manipulation operations have been identified and the interface specification will only
cover this part. Messages used for this purpose are based on CMIS operations primitives.
Other types may be identified later, e.g. to include functional elements invocations, and their
message formats should be specified then.

In contrast to the CMI Protocol which imposes an association between two CMI Service
Elements, the platform's interface, controled by the DISPATCHER, offers both connection-
oriented and non-connected possiblities. For the non-connected message transfer, the platform
allows for three modes for module interaction, namely, synchronous, confirmed asynchronous
and non-confirmed asynchronous modes. The synchronous mode is a blocking mechanism i.e.
the calling procedure will be disabled until receiving a return message from the DISPATCHER.
The confirmed asynchronous is a non-blocking mechanism where the procedure waits only for
the message delivery acknowledgement before continuing execution i.e. it does not wait the
answer to its invocation. Finally, in the non-confirmed asynchronous mode, the procedure
does not even wait for delivery acknowledgement. The three primitives to send messages in
one of the above three modes are respectively: CALLtoIDEA, CCASTtoIDEA and
CASTtoIDEA.

Besides the above non-connected modes, a connection-oriented one is provided, mainly
for applications having heavy interaction with a given destination (or that require frequent
access to the network across the platform, the case of statistical gathering applications). A
BIND primitive allows such applications to work in association with a designated block of the
platform. In this case, the DISPATCHER will initiate a special instance of the visible interface,
notifies the destinator of the new session creation and returns the interface reference to the
application. As from this time, the DISPATCHER no longer intervenes until the initiation of an
UNBIND primitive to demand the closure of the association. In this way, the application
enters in direct communication with the destination (normally a platform module) and will no
longer need to address via the DISPATCHER i.e. it will not need to pack its messages in the
IDEA_Frame. This also permits the platform to answer a request with multiple responses as
soon as they arrive (case of notification) or at determined intervals (case of data collect).

This diversity of modes, permits a developer to choose the appropriate one according to
the application's activities needs. This should not be confused with the operations
confirmations to invocations (discussed later) which can be collected with or without blocking.
It is evident that the actual inter-process synchronisation is up to the client applications 1.€.
these applications must be able to handle the proper protocol (a connection or a rendez-vous)
with another application, the platform's role being restricted to the transfer of the proper
protocol primitives.

The Message Format

The parameter to the communications primitives is the message to be delivered to one of
the platform's blocks e.g. the INDB, or to another application. This message (called
IDEA_Frame), shown in fig. (3), consists of a header (called IDEA_PDU), for the
DISPATCHER usage and the CMIS-based message body (called IDEA_Message) that should
be directed to the concerned block. A formal specification of the interface i.e. the primitives
along with there parameters is given in annex 1 using IDL (Interface Definition Language) [6].

-234.

112 Simpésio Brasileiro de Redes de Computadores

IDEA_PDU: Sender | Dest | Comm_Mod | Local_id

\
e,

IDEA _FRAME: IDEA-PDU IDEA-MESS

IDEA_MESS: OperationName | Invokerld | ObjectSelection Operands
ObjectSelection: B_O_Class | B_O_Instance Level | S_Context | Filter

Fig. 3: The Structure of an IDEA_FRAME

In the following, an enumuration of the basic operations provided by the platform'’s modules is
given, these are essentially the CMIS invocations plus a special one called COLLECT. This is
equivalent to sending a same GET request regularly i.e. it invokes the platform to return the
attribute(s) of one or more object instances every fixed interval and during a given period. As
this given period maybe infinite i.e. continuous monitoring, a CANCELCOLLECT is also
provided to abort this action. It should be noted that this invocation is used in association with
the BIND primitive i.e. it works only with the connected mode. The description of the
platform's set of messages (possible entries for the field "OperationName" is as follows:

CREATE To add a new managed object instance to the members of its class.
DELETE To remove an existing managed object instance from the set of its class members.

GET To retrieve management information from the INDB. CANCEL-GET is used to
stop the retreival process.
SET To request the modification of managment information from the INDB

COLLECT To gather the values of a given set of management information regularly and
during a given period. CANCEL-COLLECT is used to stop the data gathering
process.

ACTION To request the platform to perform an action.

EVENT_REPORT
To express interest in a certain class of notifications. CANCEL-
EVENT _REPORT is used to end the interest in the notifications.

Once the invocation's operation is specified, a set of instances should be identified as
the targets of this operation. The names of instances of managed objects are arranged
hierarchically in a management information tree. A specific object is selected for the execution
of a given operation by a pair of selecting mechanisms namely: scoping and filtering. Scoping
defines a context for scanning an ensemble of objects while filtering gives the criteria
(conditions) of the object selection from among the ensemble. The scanning of objects starts at
a base object which is the root of a MIT subtree and continues to a given n level. The simplest
scoping is that of the base object alone. Otherwise, the filter maybe applied to either a part of
the subtree root (i.e. all subordinates down to, or at, a given level) or to the whole subtree (all

- 2-?‘; -

112 Simpésio Brasileiro de Redes de Computadores

the subordinates). Following the scoping, a filtering mechanism selects the operation objects.
The assertions are based on testing for the presence of values of attributes in the scoped set of
objects.

The DISPATCHER

The DISPATCHER may be regarded as the kernel of the proposed platform. It offers
the access point to the platform i.e. it provides the visible interface via which the platform users
(e.g. performance management applications) intercommunicate with each other or with the
platform’s components. In addition to this interface, the DISPATCHER manages an internal or
hidden interface used essentially by the platform’'s components which are expected to be
implemented in a distributed manner (and which might even migrate from one machine to
another during the execution of the platform). In fact, a given module is developed with no
prior knowledge of the whereabouts of its partner ones. The ensemble of components base
their interactions on exchanging messages (via the hidden interface) irrespective of their actual
organization (local/remote). Location resolving is one of the main roles of the DISPATCHER.
There are four supported communications modes, of which three are connectionless and one is
connection oriented. Connectionless modes allow for synchronous, confirmed asynchronous
and non-confirmed asynchronous communications, while the connection mode implies session
establishment between two modules. Exchanged messages are CMIS-based requests together
with the indication about the desired component and communication mode. For the
DISPATCHER to undertake its role, it interfaces with the local operations supporting systems
and exploits their offered facilities (e.g. queues, sockets, rpc, etc.).

It should be noted that the information needed for the DISPATCHER operation is added
as a header to the sent request. To facilitate the packing of the request into an IDEA message, a
compilation-time library is provided. The applications have to fill a data-structure then call the
library function that takes care of communicating the request to the DISPATCHER (a process
commonly called marshalling/unmarshalling).

The INTEGRATOR

The INTEGRATOR is responsible for interfacing to the manufactures acces points and
representing them as a common virtual access point. In order to do so, the INTEGRATOR
groups whatever underlying local schemas into one set of objects defining the view of the
network elements for the management functions. In fact, the unification procedure is started by
partitioning the overall network into homogeneous domains, each having an access point
(provided by a proprietary system) through which management of the internal objects may be
achieved. The mapping between the INTEGRATOR model and the different domains is done
individually for each domain. That is, for each object's property (attribute or method) in the
INTEGRATOR's model there exists a per domain syntax and semantic interpretation functions.
The above partitioning is logical and is done with respect to a certain management aspect
(geographic, functional or other). That is several organizations for the same network may arise,
each consisting of domains to which an INTEGRATOR instance is assigned. As such it is
expected that more than one INTEGRATOR are needed to provide access to the network
information through one reference point. This reference point is realized by an interface that the
INTEGRATOR should offer to its clients and that defines the set of permissible operations on
the objects of its model.

In this section a brief description of the INTEGRATOR's internal structure is given.
Figure (4) shows the different building blocks needed by the INTEGRATOR to fullfill its role.
The INTEGRATOR has two kinds of interfaces :

The "ADMINISTRATION" interface

This interface is provided for the network expert that will feed the INTEGRATOR with
its knowledge of the underlying network. It is used for the instanciation of a specific
INTEGRATOR by creating its objects. The knowledge also includes all the operational

-236-

11° Simpésio Brasileiro de Redes de Computadores

information such as the mapping procedures of each attribute in the model to the specific
instances in the different domains. This block should undertake the necessary checks on its
input (e.g. lexical and syntax checks, model integrity checks, etc..) before representing it in the
form usable by the INTEGRATOR's shell. Presenting the knowledge includes stocking the
schema of the model, its population (instances) as well as the encapsulation of the mapping
procedures for the different attributes.

From/1o
DISPATCHER

USER
INTERFACE

il
N INTEGRATOR
H SHELL

|
Aee?
-F |\

CLASS Model | Knowledge

Hn—zZ=Z o>

Fig.4 : Internal Structure of the INTEGRATOR
The "USER" interface

It is to this interface that the INTEGRATOR's clients should import and use in order to

manipulate its objects. Its type is that of the hidden interfaces and the operations invoked via
this interface are CMIS based.

The INTEGRATOR's Shell

This is the main building block where the INTEGRATOR functionalities are supported

I.e. on reception of an external request to undertake the invoked operation on behalf of the
Manager. To achieve this some subfunctions are identified:

- Object Management

- Object Persistance Handling

- Syntaxic Interpretation and mapping according to the domain.

- Semantic Interpretation and mapping.

- Notification of abnormal events

-237-

112 Simpésio Brasileiro de Redes de Computadores

The INTEGRATOR Information Base

The remaining two-part block represents the information base of the INTEGRATOR.
This should not be confused with the INDB which is the repository to all the system's shared
information. In contrast to the INDB, this information base stocks the internal knowledge of
the INTEGRATOR i.e. its object descriptions, along with the different instances, their static
attributes as well as the code for the procedures that permits mapping the attributes (syntaxically
and semantically) to their corresponding real resources.

Integrated Network Data Base (INDB)

The purpose of the INDB is to provide a common view of all management networks in order to
permit users or management applications to interact with the elements of these networks via a
unique semantic ([7], [8]) . The INDB module is the set of mechanisms providing a unique
view of the real system which is composed of several networks to be managed. It is used by all
management applications to interact with the real Network Elements (NEs) and to store their
management informations (e.g. network and system configuration, customers and services,
current and historic performance and trouble logs, security parameters and accounting
information).

Management applications use the CMIS-based services to formulate their requests and send
them to the INDB module via the DISPATCHER. In case of reading or modifying the
parameters of real resources, the INDB must interogate one or several appropriate
INTEGRATORSs. The INDB also handles requests concerning the system informations which
may be held in one or several databases or in the management model itself. On the reception of
the responses to its interogations, the INDB processes the collected informations and returns
the results to the management applications. Return messages are either values of attributes for a
consultation or an operation confirmation for an action.

Functionalities

To ensure these roles, the INDB is concerned by three management functionalities (fig. 5) :

- to provide an INDB Global Conceptual Schema (GCS), i.e. a unique point of view of
the managed system, which allow management applications to have the knowledge about the
management informations of all the different NEs via Management Models (described in OSI
NM/Forum Templates [9], [10]), and their interactions between them via Management Trees
(Inheritance, Naming, Containment and Registration Trees [11]). The GCS gives an unique
homogeneous view of several heterogeneous environments.

- to provide an INDB Management Information Base (MIB), i.e. a conceptual
repository which contains all the management informations of the Network Elements,

- to provide INDB Management Information Services (MIS) based on CMIS, i.e. a user
interface on which management applications can manage (creation, deletion, manipulation)
NEs.

~ Integrated Network Data Base

1
=

anagement | :
Trees % :

Fig 5 : INDB Functionalities
-238-

11° Simpésio Brasileiro de Redes de Computadores

Logical Architecture

To ensure its functionalities, the INDB module has to manage three phases of treatment when
an INDB request sended by users is received (fig. 6). These phases of treatment are request
analysis, request treatment and reply generation phase.

Request Analysis phase

This first phase of analysis of the INDB request consists on its understanding by the INDB
module, that means, its control, its interpretation and the fashion to resolve it. A first subphase
of interpretation (research of selected instances in applying request scoping and filtering)
followed by the subphase of localisation (GCS Manager, INTEGRATORS, MIB Manager) are
realised to analyse the request.

Request Treatment phase

The second phase of treatment of the INDB request consists on its execution on the Network
Elements via INTEGRATORS. Several kinds of execution are considered which are Storage,
Collection, Modification and Activation of managed objects.

Response Generation phase

The last phase of generation of the response to the user consists on the collection of the results
generated by the treatment phase and on the design of the INDB response.

ODIFICATIO

e —
R

" ACTIVATION V.

!

Integrators ﬂj

Fig 6 : INDB Logical Architecture

-239-

11° Simpésio Brasileiro de Redes de Computadores

Physical Architecture

This section presents a brief description of the internal structure of the INDB which is
composed of the following modules (fig. 7).

The INDB supports the organisation of the Network Elements. Organisation means the
description and the relationships of these NEs throughout a Global Conceptual Schema (GCS)
plus the manipulation of their management informations throughout either a Management
Information Base (MIB) for static informations or existing INTEGRATORS for dynamic
informations. Any management application request concerning management information must
be directed to the INDB module.

The INDB Physical Architecture is composed of the modules :

Receiver

The Receiver module assumes the role of reception of messages from the DISPATCHER
module and realises the unmarshalling of a message structure into an exploitable structure either
for the Interpreter (Requests of management applications) module or for the Controller (Replies
of INTEGRATORS).

Sender

The sender module receives either the INDB response from the Replier to the requested
management application or requests from the Controller to a specific integrator and realises the
marshalling of the reply or request structure into a message structure to send to the

DISPATCHER.

Interpreter
The Interpreter module realises the functionality of the INDB requests analyser received from

management applications.

Replier
The role of the Replier module is to format the response of the INDB request from the replies
sended by the Controller which interrogates either GCSM or MIBM or INTEGRATORS.

Controller
The controller ensures the role of localisation of module (GCSM or MIBM or
INTEGRATORS) to treat requests and send replies to the Replier.

GCSM

The Global Conceptual Schema Manager (GCSM) module has to manage a Global Conceptual
Schema (GCS) i.e. the knowledge of the managed networks in terms of management trees and
management models.

MIBM

The Management Information Base Manager (MIBM) module manages the Management
Information Base (MIB) which is the repository of the management informations of the
Network Elements.

INDB MMI
The INDB MMI is a module which communicates with the INDB via the DISPATCHER and
ensures the role of GCS and MIB Browser.

Generator

The Generator module is a mechanism which permits to generate one instance of the INDB on a
specific site of the network.

-240-

11?2 Simpésio Brasileiro de Redes de Computadores

(Users)

Integrators 1 |

2
:
6
&)

Fig 7 : INDB Physical Architecture

Functional Objects Handler (FOH)

TMN platforms providers should not make early assumptions about the parts of the
management procedures which are to be automated. They should conceive network
management applications as continuously evoluting (e.g. with the availability of technology).
This vision also implies that management applications will be designed by reusing and
elaborating on available functions provided by existing applications. It is thus desirable that a
description of the functions implemented by applications and judged as public be provided to
the performance management designers. It should also be interesting that the designer be given
the capability of reusing the services of these applications during run-time. The goal of the
FOH is to provide an object oriented approach for the invocation of common services. In order
to achieve this, a model is needed for the description of the common management services,
their properties and their inter-relationships (in fact, a repository of shared services should be
provided which represents an extension to the definition of the MIB). Moreover, supporting
mechanisms should be incorporated in the platform so that applications may perform their
activities by invoking, on-line, operations on shared or imported service objects. The needed
model is subjected to the same modelling criteria as the management information model. This
means that it should provide the MAs with enough details, yet with the suitable abstraction,
about the existing functionalities. Enough details to allow them to be aware of the surrounding
offered services (in analogy to the existing elements to be managed) and at execution time to be
able to exploit these functions for the fulfillment of their own roles. In this section, the concept
of a functionalities repository, and essentially on its model, is presented. This work is still in an
investigation stage, therefore, no concernirg éﬁ)cciﬁcation is yet given.

11° Simpésio Brasileiro de Redes de Computadores

The Functional Objects

Similar to the managed objects, a Functionality Model (FM) presents its user with the
benifits related to the encapsulation of information and the interaction via interfaces (i.e.
modularity, reusability, etc..). Such aspects are interesting for the purpose of building
managment applications. A knowledge of the existing functions and their properties in such a
very complex environment is presented by the objects and their attributes (e.g. access rights,
allocated resources, etc.). This should help the developer in the estimation of such things as
dead locks, run-time. Moreover, a message-based development, encourages the upgrading of a
function without worrying about its effect on other applications (given that the downward
compatablity of the interface is kept).

The Management Systems View w.r.t. Authority Domains

This section identifies the viewpoint of network management developers on
management functions as compared to management information. In fact, the perception of
functionalities differs from the inside to the outside of authority domains. Network organization
according to authority domains (fig 8) is analogue to that of an entreprise. The administration
organization in both cases depends on a certain hierarchy. An entreprise president has a board
of department directors. In each department, directors have several divisions with staff
managers (and so on). For administring this entreprise the president draws the overall targets
and strategies. Each director manages his own department. For doing so, he needs services
offered by his or by other departments (e.g. the customer handling department may need the
services of the accounting department). Directors also have to cooperate together, to accomplish
the overall targets.

Domain _*_
v Domain
Management
System Management Managed
System System
:] -—-ﬂ v c ﬂ_b-[‘] g r

v : visible port
s : supplier port

€ : consumer port
r : recurring object

Fig 8 : A Simplified Domains Organization

A network administration domain is analogue to a department in an entreprise. Inside a
domain, management functionalities cooperate to achieve the overall target. They recognise
each other as potential providers of services. Some functions may offer themselves as "public"
or shared . Meanwhile, these functions look to a superior domain as objects to be managed (to
perform second order management). 970

11° Simpésio Brasileiro de Redes de Computadores

In summary, we may state that a functionality views other cooperating functionalities
differently from its superiors or subordinates ones. To it, subordinate functions maybe
regarded either as services (in which case they should be represented as managing objects) or
as functions to be managed (second degree management) i.e. managed objects. The same goes
for the superior's view of the given functionality. As for the cooperating functionalities, they
should be represented as "higher level” managing objects.

Migration of Functionality

While studying the different functionalities taking part in the management environments,
the standardization bodies accepted the fact that not all of these functionalities should be
automated. They stated that it is better not 1o make an early commitment to which functions will
be automated and which will not. By doing so they allow for the mi gration of functionality
from manual to automated (or human to computer). This situation must be allowed for in the
FM. An object present in the FM may represent a human intervention untill the time it should be
replaced by a management application (maybe without leading to changes in the FM).

Another type of functionality migration exists within the avtomated part itself. As higher
technology permits, NEs will be built with more management facilities. They will have a kind
of built-in automanagement. This situation is anticipated and allowed for in the TMN
architecture. The CCITT MDF block provides for those needed functionalities missing in the
NEF and which are anticipated for later incorporation. As NEs grow more and more capable
(by adding built-in diagnostics and mentainance), the MD will diminish until it eventually
disappears, leaving the OSs in direct contact with the NEs. This phenomenon should be
provided for by allowing objects to immigrate from the SM into their corresponding MIB
objects (as methods). In a layered model (detailed later) this may lead to the future
disappearance of the bottom SM layer.

SM Object Composition Mechanisms & The Layering approach

Object composition mechanisms increase reusability and concurrency. It is the means to
build new object types by making use of, and adding to the existing objects' functionalities.
There are several mechanisms to compose objects, the CSA [*] (Communications System
Architecture) provides three of them, namely Inheritance, Importation and Sharing:

Inheritance

This mechanism allows an object to inherit the operations (or a selected number of
them) of its "super class" type. The inherited operations are visible at the interface of the
inheriting object type. "The inheritance in CSA could be therefore considered as a means to
delegate a request for an operation to objects which provide a response to that request”.

Importing

In contrast to the inherited operations which are invoked at the super class on behalf of
the inheriting object, operations of imported object types are completely hidden and accessed
locally by their importing object. In this sense, imported operations may be considered as part
of the importing object's local variables. Static import is undertaken at the instantiation of the
importing object while dynamic import is assigned at runtime.

Sharing
Sharing is a means to declare public object types accessible by other object types i.e. a
shared object may be regarded as playing the role of a server for its client objects.

Layering in itself is not a novel approach. It has been already imployed in different
contexts. The merits of layering might be identified as:

* Flexibility in defining the interrelations between the two participating layers.

* Conceptual cleamess by removing redundancy and reducing the number of entities.
* Reusability of entities on one level to support several entities on the adjacent level.
* Economic implementation by utiljﬁigg_modulcs for several purposes.

11° Simpoésio Brasileiro de Redes de Computadores

Hence, by envisaging several SM layers to host the different management categories
(not necessarily a layer per category) these advantages might be gained. In addition, this should
give the possibility of refining the framework for each layer to accomodate its specifities. The
Jjuxtaposition of the different layers should give the totality of the managing objects. It should
be noted that if the frameworks of two (or more) layers are found identical (or could be
approached together), these layers may be eventually merged under one top. Actually, the SM
layers differ according to the criteria of classifying the management functions (implementation-
oriented, management-degree-oriented, etc.). A good criterion maybe the degree of elaboration
of management. Thus, functionalities tending to directly manipulate the managed objects
(resources) belong to one layer. Higher level management functions (e.g. configuration,
performance, etc.) go into the next layer up. Finally, a top layer might be envisaged to englobe
the "intelligent” functionalities (e.g. pilote system, man machine interfaces). The juxtaposition
of these layers should give the integral view of the surroundings.

Conclusion

The architecture of the supporting platform for heterogeneous networks management
systems has been developed continuously at the MASI laboratory. By now, the Integrator,
INDB and Dispatcher blocks can be found in its first prototypes versions so that the main
functionalities specified in the architecture are shown. These prototypes have been validated in
the real world using environment like ethernet and X25 networks, where, for instance, the
integrator block interacts actually with the Snmp and X25 integrators. This work has been
undertaken in several europeen projects that are interested in investigating the construction of
TMN platforms, like ADVANCE (RACE programme) and PEMMON (ESPRIT programme).
The results obtained from these projects have been used as a feed-back on the support platform
development. As a further work, we think to improve our specifications in order to have a
generic platform and investigate other aspects of the network management information like
security.

11° Simpésio Brasileiro de Redes de Computadores

ANNEX 1:

This annex describes the idl specification of the platform's interface:

-- Specification of IDEA Interface in IDL

IDEA_InterfaceTypes : INTERFACE =

BEGIN
I_BaseObject : TYPE = RECORD |
BaseObjectClass : STRING,
BaseObjectInstance : STRING,
1;
I_ScopeContext : TYPE = { BASE_OBJECT,
INDIVIDUAL_LEVEL,
BASE_TO_NTH_LEVEL,
WHOLE_SUBTREE };
I_Scope : TYPE = RECORD |
BaseObject : I_BaseObject,
Level : INTEGER,
ScopeContext : I_ScopeContext,
1
I_ObjectSelection : TYPE = RECORD [
Scope : I_Scope,
Filter : STRING
| b
| I_Oper: TYPE = { CREATE, DELETE, GET, SET,
ACTION, COLLECT, EVENT-REPORT,
| CANCEL-GET, CANCEL-COLLECT,
‘ CANCEL-EVENT-REPORT};
I Session : TYPE = [CALL, CAST, CCAST,BIND,UBIND };
I_Block : TYPE = { INT, FOH, MA, INDB, IOH };
1_PDU : TYPE = RECORD |
SenderName : STRING,
IDEA_Block : I_Block,
PDU_Size : INTEGER,
Session : I_Session
1
I_MESS : TYPE = RECORD [
OperationName : I_Oper,
Invokerld : INTEGER,
ObjectSelection : I_ObjectSelection,
Operands : STRING
);
I_FRAME : TYPE = RECORD [
IDEA_PDU :1_PDU,
IDEA_MESS : I_MESS
l;
END.

-245-

112 Simpésio Brasileiro de Redes de Computadores

References

[1] Working group 2 of project R1003 "GUIDELINE","An Architecture for the
Telecommunications Management Network”, Sept. 1991.

[2] J.P. Claudé et al., Unification of Heterogeneous Management by a Generic Object
Oriented Agent”, TMN Conf, Nov. 1990.

3] ISO/IS 9595, Information Technology - Open Systems Interconnection, Common
Management Information Service Definition, July 1991.

[4] M. TAG, "Developpement D'Applications Reparties Sur le Systeme Distribué Orienté
Objet CSA", Doctorat of the University Paris VI, June 1989.

[5] ISO/IS 9596, Information Technology - Open Systems Interconnection, Common
Management Information Protocol Specification, July 1991.

[6] Advanced Networked Systems Architecture, "ANSA Reference Manual”.
(7] Deliverable 17, "Description of the INDB", PEMMON Project, May 1992.
[8] Deliverable 18, “Documentation of the INDB", PEMMON Project, Nov. 1992.

[9] OSI/Network Management Forum : FORUM 003, “Object Specification
Framework”, Issue 1.0, September 1989.

[10] OSI/Network Management Forum : FORUM TR 102, "Modelling Principles for
Managed Objects Technical Report”, Issue 1.0, January 1991.

[11] OSI/Network Management Forum : FORUM 007, "Managed Object Naming and
Addressing”, Issue 1.0, May 1990.

