A Fully Distributed Name Server for Reliable
Distributed Applications

Ferris, Claudia S.
Cardozo, Eleri*

Instituto Tecnolégico de Aeron4utica
Divisao de Engenharia Eletronica
12228-900 Sao José dos Campos - SP
E-mail: ITAQBRFAPESP.BITNET

Abstract

In a loosely-coupled distributed system, resources are spread among hosts con-
nected via network. If the system wants to appear as a single environment, it must
offer a location mechanism to every resource in the network. One way of doing so
is through the use of a name server.

This paper presents a distributed name server that offers three main services: a
global number generator, a clock synchronization mechanism, that builds a global
time base, and a location service, that does the mapping between resources and
their locations. The proposed name server reaches a balance between reliability and
availability by employing a scheme based on voting for the management of replicated
data.

Every service provides ways to deal with host crashes and network partitions.
Since the informations kept by the name server are distributed, a mechanism was
adopted to synchronize updates and queries. Another point is the permanence of
these informations that is obtained through a logging mechanism.

1 Introduction

The term distributed system has been applied to a wide range of multicomputer and
multiprocessor systems. In this paper, we consider a distributed system to be "a group of
multiple independent processors of different kinds. loosely-coupled, each one with its own

*DCA-FEE-UNICAMP, 13081-970 Campinas - SP.

-2165-

112 Simpésio Brasileiro de Redes de Computadores

private memory”. Processing activities may be divided among processors and processors
cooperate by exchanging messages over a network. The keyword here is transparency,
meaning that the system appears to its users and applications as a centralized one: a
virtual uniprocessor environment. So, it is important to notice that is the software, not
the hardware, that characterizes a distributed system.

Most of the existent distributed systems follow the client /server model, where the client
processes perform the system’s tasks with the aid of server processes that answer requests
from clients regarding accesses to resources’, execution of operating system services, etc.

One of the aspects that must be considered in the implementation of a distributed
system is naming. Each resource is identified by one or more symbolic names that map
the resource’s physical location. These names must be globally unique such that uttering
a given name, anywhere in the system, always references the same resource. Naming is a
key component of transparency. This implies that the users does not need to know the
location of a resource to access it. Its a system’s task to name resources in such a way
that both local and remote resources are referred in the same way.

There are two relevant points related to naming:

e Transparency: The name of the resource has no relation with its location.

e Independency: The name of the resource does not have to be changed when the
resource’s location is altered.

A scheme based on independency is more adequate because it allows automatic migration
of resources, but the vast majority of the existent systems implement a scheme based just
on transparency.

The simplest way of implementing naming is to add the location of the resource to
its name, but obviously this model has the disadvantage of not following both properties
cited above.

Another possible scheme is cache/broadcast that consists in maintaining a little cache
memory in each host to keep the locations of the last referred resources. Case a location
is requested and is found out that it is not in the cache or it is out of date, a message is
broadcasted in the network requiring the current location of the resource. Although this
is a flexible method, it can cause overhead in the network.

Forward location pointers may be used to enhance most location schemes. The pointers
serve as a reference to a new location of a resource. Each time a resource is moved from
one host to another a pointer is left in its original place. To find a resource, it is necessary
just to follow the chain of pointers. This method introduces an additional overhead to
keep the pointers updated besides being liable to faults, such as pointers’ lost due to
processor crashes.

1Memory, peripheral devices, files, processors, programs, etc.

-216-

11° Simpésio Brasileiro de Redes de Computadores

A fourth possible scheme is the centralized name server. The name server is formed
from the registers of resources that want their locations be publicly known. So, to locate
a resource the user sends a request with this name to the name server and the later replies
with the location of the resource. This centralized scheme becomes undesirable when the
system consists of many hosts that depend on just one name server and, in the case of a
failure, all the system is compromised.

The next step is to distribute or replicate the name server among the hosts in the
network, but not necessarily among all of them. There are two variations of this scheme.

In the first one, each name server maintains complete informations about the resources’
location in such a way that all of them are capable of answering any location request.

In the second variation, the name servers have partial informations and cooperate
among them to keep the informations consistent. When a name server receives a request
that it can not handle, it forwards the request to another name server. There is also the
possibility of each name server manage only unreplicated resources. To find a resource, a
request must be broadcasted and one of the name servers will return the answer.

The name server proposed in this paper follows a distributed scheme, where all the
name servers keep complete informations about the system’s resources. Two important
functions were added to the name server. A global number generator and a global time
base. The design and implementation details of this distributed name server will be
presented in the next sections.

2 Main Services in a Distributed System

2.1 Global numbering

In a distributed system, there can be many services being processed at the same time. As
these services share the same environment, it is necessary to have a way to distinguish
and order them, a sequential number that must be globally unique and generated in an
ascendent order. These numbers, called global numbers, are used to identify services
and maintain some event ordering. These numbers are useful, for example, in a logging
operation where the ordering of events is important.

Thereby, a global number generator must be created with the task of assuring the prop-
erties above. The proposed algorithm is partially based on the algorithm by [Daniels88]
that has a global number generator used to order log units. But different from Daniels’
algorithm, this one uses a simpler scheme to assure that two simultaneous requests will
be serialized.

The proposed name server is replicated among the hosts in the network and its com-
munication with users’ applications is done through an interface module. The name server
has two ports to which the interface must connect itself to access the available services

217-

112 Simpésio Brasileiro de Redes de Computadores

that are offered through datagrams or stream connections. So, the user makes his request
to the interface that has the task of accessing the right port and service in the name
server. A scheme based on voting is employed for reliable global number generation.

The distributed algorithm for global number generation may be explained as follows:
a user’s application requests a global number to the interface. The interface receives
the request and in order to guarantee that the number it will give is higher than those
already generated, it will make a kind of voting to collect the greatest number previously
generated by (N/2) + 1 hosts (all the name servers keep the last global number). Then,
the interface asks for a connection with all the chosen hosts, which correspond to the
participants of the voting process. Each name server answers with its global number
and the interface chooses the greatest among them. The current global number is added
one and all the elected hosts receive this new number. The name servers answer with
acknowledgements signals and the interface returns the global number to the application.

As two requests for global numbers can not be processed concurrently, ? the serializ-
ability of the process is guaranteed by the use of stream connections between the interface
and the name servers. To make the process atomic, all the hosts that initiated in the vot-
ing process must stay until it finishes. In order to assure this, if during the voting process
one of the name servers does not answer within a given time interval, the interface in-
terrupts the voting process and interprets it as an error situation. In this case, the user
requests again a global number until the request succeeds (it will succeed as soon as the
host that failed to respond will be detected as down and removed from the next votings).

Another fact that must be considered in a network with replicated data is partition.
This point will be better explained in the section 2.3. By now, it is sufficient to say
that as the global number is kept by every name server, it is necessary to guarantee that
if a partition occurs, there will be no chance of the same global number be generated
at different sites, yielding an inconsistent situation. The algorithm bases the choice of
participants in the voting process on the number of participants in the last voting, what
will assure that every operation will contain the majority of existent updated copies
and that only one partition will have the majority necessary. In order to distinguish
a partition from a simple host disconnection, every time a name server disconnects, it
performs a procedure that, among other functions, decreases the number of participants
in the global number generation process.

2.2 Global time base

In many distributed systems the notion of time is of great importance. But, maintaining
a global time base in an environment formed by multiple computers spatially separated
(each one with its own clock) is not a simple task.

?In order to avoid the generation of repeated numbers.

-218-

112 Simpésio Brasileiro de Redes de Computadores

The name server incorporates a synchronization method that results in a reliable
global time base. It is an implementation of the algorithm proposed by [Vieira91]. This
algorithm tries to be fault tolerant, have a low cost, being flexible and reliable. Different
from other time schemes like the one presented by [Lamport78], it does not use timestamps
to establish causal relations between two events. It exchanges messages and uses them to
synchronize physical clocks. Even if the propagation delay of messages can not be exactly
determined, it can be at least estimated, thus, all the messages will be guaranteed to be
delivered and received within a maximum time interval (dmaz). The internal precision
establishes that, at a given instant, two clocks will not drift more than a given time
interval.

Suppose a network with N hosts (and N clocks). Let R™ be the time interval between
resynchronizations, thus within every R™ time units, the clocks will be adjusted. This
adjust will be based on clock granularity, that represents the clock resclution or precision,
here called ng. So, a clock will be adjusted of 1 or 2 ng, according to some criteria. When
a host’s clock reaches the K** period (that is, K * R™), it broadcasts K, including to
itself, in order to advise all the others about this event. The hosts wait for the messages
from every other host and when a host counts f + 1 messages containing K, where
f is the maximum number of faulty processors, it adjusts its clock with 1 or 2 ng, if it
already reached K or not, respectively, and broadcasts a SY NC message. Every host that
receives this message synchronizes, too. Thereby, the first clock to synchronize signals
the rest to be synchronized within dmaz units of time. This algorithm is performed
concurrently by all hosts in the network, maintaining them synchronized within a given
precision. [Vieira9l] presents formal proofs of the algorithm’s accuracy. The algorithm
was designed to support failures, if the number of active processes is at least twice the

number of faulty ones (or N > 2f). Also, it avoids the backward effect, that is, a clock
be adjusted backward.

2.3 Mapping

The third service offered by the name server is mapping which is, generally, the most
common service offered by this class of system. The name server uses the informations
it has to map an object to its location. As the proposed name server is distributed, also
it is the information it maintains. This information is kept in data structures, like linked
lists and hash tables.

A number of advantages can result from replicating information. Among this ad-
vantages are the increase in data accessibility, improved response time and reduction in
network traffic, added to a system’s throughput improvement by the ability of serving
more than one request in parallel. These and other benefits must be balanced against
the additional cost and complexities introduced by replication. One problem that arises
is the synchronization of multiple accesses to copies of the same data structures.

-219-

112 Simpésio Brasileiro de Redes de Computadores

Data copies may not always be kept identical because some of them may not be
available at the time of an update or it is not desirable to apply an update to all of them,
being enough to update a certain majority.

The operations that access the data structures must guarantee consistency as far as
possible. This implies that a read operation must be based on a current copy and that
a write operation can be applied to any copy of the same data structures®, Thereby, the
name servers must be capable of determining which copies are current. This can be done,
for example, through the use of version numbers. Only the hosts that are up to date have
current version numbers.

The existing access control mechanisms can be characterized by the control disciplines
they utilize. There is a class that uses a kind of centralized control and another that
implements a decentralized control. This later presents more reliability and availability
but, by the other side, it is also more complex.

A good example of a distributed mechanism of access control is voting. The idea is to
assign some number of votes to read and write operations (read and write quorums) in
such a way that the sum of these quorums is greater than the total number of potential
voters. This ensures that there is a non-empty intersection between every read and write
quorums, what guarantees that a read will always be based on a current version of a
certain datum.

The read and write quorums may be chosen according to performance issues. Al-
though the write quorum may be reduced to increase the performance of the operation,
consistency must also be taken into account.

In a read operation, voting is necessary in order to assure that the data replied is the
most recent one. In the write case, voting assures that a given number of hosts will be
updated. Also, in the write operation, after each host performs updatings it has to send
an acknowledgment to the host that began the process. Not only at this time, but along
all the voting process, if one of the hosts does not answer, the process is stopped because
it is assumed that an error occurred and the atomicity of the process was broken.

As said before, another fact that must be considered in a network with replicated data
is partition. A partition occurs when the sites in the network split into disjoint groups
that can not communicate with one another, but with members of the same group. Each
one of this groups is called a partition. This can happen due to site or communication
link failures. In the case of data being replicated, a dangerous situation can emerge when
partitions occur: sites in one partition might perform updates in a datum while sites
in another partition might perform different updates to a copy of the same datum. If
this two updates conflict, it will be almost impossible to remedy this situation before
communication between the involved partitions resumes. Thus, the mechanism of data

3If the copy is out of date, the missing updatings must be carried out before the requested updating
begins.

-220-

[1° Simposio Brasileiro de Redes de Computadores

control access has to choose between permitting updates in more than one partition,
guaranteeing availability under the cost of inevitable conflicts, or permitting updates
in at most one partition, in which case consistency is ensured at the price of reduced
availability.

Algorithms in the first class are called optimistic because it is hoped that conflicts
among updates are rare, and once they happen they could be detected and corrected.
The second class of algorithms are called pessimistic because they consider consistency of
greater importance than availability. The drawback with pessimistic algorithms is that as
they permit update at just one distinguished partition, it is possible that failures occur in
such a way that no updates can be performed anywhere in the system until these failures
are repaired. Voting is the best known example of pessimistic algorithms.

The proposed name server tries to balance the need for availability and also the im-
portance of consistency. The proposed voting scheme is based on pessimistic algorithms,
specially, the algorithms by [Thomas79] and [Jajodia90] with some enhancements. Here
follows an explanation about it.

As all the name servers deserve the same priority, everyone have the same vote weight
that equals 1 (one), different from [Gifford79] that proposes a voting algorithm with dif-
ferent voting weights. During the initialization of the name server, it is established the
quorum necessary to read and write operations. The write quorum will be, initially, a
percentage of the active hosts at the instant of the voting and the read quorum will cor-
respond to the remaining percentage in relation to the write quorum, added by one. This
will guarantee a non-empty intersection between these two operations. As the response
time in a name server is of great importance, the idea is to have a big write quorum and
a little read quorum, thus, all the read requests can be attended reasonably fast and the
write operation will "pay the price” of keeping a considerably number of copies equally
consistent. Besides, as the choice for the quorums is made by the user, he has the chance
of adapting them to his needs. To guarantee that only one partition will be authorized
to make updates case a partition occurs, the read and write quorums will be dynamic
because they will change as the number of hosts up changes. When this later changes, a
partition may have occurred or a host may have disconnected itself from the system, case
this number diminishes, or, by the other side, more hosts might have come up. Thus,
these quorums will be recalculated for each data structure, either based on the number
of participants in the last voting process that updated this data structure (case it has
diminished), or based in the number of hosts up (case it has increased). Therefore, it is
guaranteed that voting can only be performed if the partition contains the majority of the
existent updated copies. As said before, this procedure, depending on how the partition
occurs, may lead to a situation when no updates can be performed anywhere. To reduce
the possibility of reaching this situation, the algorithm adopts the following procedure.
If it is verified that the number of hosts up has diminished, the number of participants
will be recalculated (quorum). Then, it is noticed that none of the partitions has enough

-221-

[1° Simpésio Brasileiro de Redes de Computadores

quorum to perform the voting. But it can be also verified that one of the partitions could
perform it if it had just one more updated copy. In this case, it is permitted voting (and
thus updatings) inside this single partition.

Initially, the number of participants will be equal to 1 (one) and, generally, this number
will be at most equal to the number of active hosts. This number will be kept by every
name server. Every time an update or a read is requested, the name server verifies if the
number of participants remains less or equal to the active hosts. If it notices that the
number of active hosts has changed, a new number of participants is calculated to see
if there still have sufficient quorum to perform the requested operation. It is important
to remember that it is possible to distinguish a partition from a voluntary disconnection,
as explained in the section 2.1. Also, when a name server is initialized it starts with the
most recent status of the existent data structures and variables, as well as the last global
number generated.

The requests for voting are passed in a token among the hosts. When a host receives
the token, it verifies if it is already participating in another voting process to the same
data. The host votes either positive or negative and passes the token to the next host.
This guarantees the serializability of the process. Each host verifies also if it is the one that
completes the quorum. If the case, no more votes are needed and the token is returned
to the host that began the operation.

For example, suppose that there are five active hosts in a network, A, B, C, D and E and
that the original write and read participants number is 1 (Table 1). The write quorum was
fixed in 70% and the read quorum in 30% + 1, what equals 4 and 2, respectively. Suppose
also that there are no partitions in the network and that every site can communicate with
each other.

Host | A | B
| Write Quorum | 1 | 1

Table 1: Initial situation

An update is requested to host B, and it verifies that it has the needed quorum to
perform the operation. Then the number of participants will be made equal to 4 (Table
2).

Suppose now that a partition occurred and divided the network into two partitions
A, B and C, D and E. Then, two update requests in the same data structure previously
updated, are produced in both partitions, by C and D. The name server in C verifies
that the number of active hosts (3) in its partition is now less than the last number of
participants (4). This latter has to be recalculated and then equals 3. At first sight, this
partition could not perform the update, but the difference between the number of hosts

112 Simpésio Brasileiro de Redes de Computadores

| Host |A|B|C|D | E |
| Write Quorum | 1 [4 |4 [4[4 |

Table 2: Hosts after the update has being done

up and the needed number of participants is one, the update is possible. First, the out of
date host (A) will receive the missing version(s). Then, the update proceeds as in the case
without partition. For the name server in D, the number of hosts up will be 2 and even
when it recalculates the participants number it still does not have the required quorum,
so this partition is forbidden to do updates. The same does not occur with reading, and,
even with the partition, both could answer read requests, what guarantees the availability
and also that the information given to the user is the most update it has in its partition.

Host | A|B|C|D|E|
WriteQuorum|3 1334 |4|
Table 3: Hosts after the network partition and an update to one site

Afterwards, when the two sites join in one, the hosts that are not up to date can get
updated copies, simply, by participating in a voting process.

A special situation occurs when the network splits into equal partitions. To solve this
problem, the partition that has the host with the highest Internet address will be the one
permitted to perform updatings.

If a host that has a non-updated copy receives a request for an update, another host
that is asked to vote will return it the missing versions, and the operation proceeds. Also,
if a host is requested to vote and the proposed version is more than one version greater
than the one it has, it will not agree to vote and it will request the version(s) it has
missed. All the messages are exchanged by datagrams and are identified by a header that
corresponds to an operation of the voting process that is going on. There will be a log
file where the last versions of the data structures is kept. This will be useful during the
recovering of a host after a crash.

3 Persistence of The Name Servers’ Informations

During a distributed system activity, all processing information is maintained in volatile
memory (main memory) and if a crash occurs, this information will be completely lost.
Due to the importance of the name server’s task, it is necessary to preserve its informations

.293.

112 Simpésio Brasileiro de Redes de Computadores

even in the case of failures. Thus, a mechanism must be used to make these informations
permanent in such a way that the name server can be restarted in the same consistent
state as it was at the time of the failure.

The protocol implemented is based on a two-phase commit protocol, [Chin91]. It will
be executed together with the voting process that already implements atomicity. In the
first phase of the protocol, a coordinator process sends messages of pre-commit to all the
voting participants that, then, log the modifications in non volatile memory and reply with
an acknowledgment to the coordinator. If one of then does not answer, the operation is
aborted and the data is left in the same state it was before the updating started. Case the
coordinator receives all the messages, a commit request is sent to them. Commit means
that the name servers are allowed to make the modifications permanent, indicating the
success of the updating process. Non destructive (read) operations do not need such
protocol.

Considering the voting algorithm described in the previous sections, the first phase
of the protocol will correspond to the moment that the host that began the operation
(coordinator) sends the updatings to the voters. These ones update the logs in the disk and
reply with acknowledgments. If any of them does not answer, the operation is aborted and
everything remains as it was before the operation began. Otherwise, the coordinator sends
commit requests to the voters which discards the old versions of the updated structures.
This is the second phase of the protocol.

4 Conclusions

This paper presented a name server that tries to be very available and reliable. Differently
from other name servers, it offers more than a resource location service. It implements a
global time base and a global number generator.

The global number generator guarantees that no two requests are performed simul-
taneously. This is guaranteed with a very low overhead strategy employing just reliable
(connected) communication.

Based on a synchronization method for real time distributed systems, the global time
base offers a fault tolerant mechanism, under a low cost, that avoids the backward effect.

The voting process used to manage replication has the advantage of maintaining con-
sistency even if a partition occurs, without penalties to queries. Serializability among
updatings are obtained by employing a token-passing scheme efficiently implemented with
datagrams.

The three services handle situations as total crashes or network partitions, always
applying the atomicity property. Every relevant information is made permanent in a
logging scheme. This permits the recoverability of the system after a crash.

This name server implements a vast number of properties desired in a distributed

-224-

112 Simpésio Brasileiro de Redes de Computadores

system. It has been implemented and tested in a local network formed by SUN, HP
and DEC workstation. The messages are serialized using eXternal Data Representation
(XDR) protocol, assuring compatibility among different platforms. The name server is
been implemented in C with about 60% of its code already completed.

References

[Daniels88] Daniels, D.S.

Distributed Logging for Transaction Processing, Phd Thesis, Carnegie Mellon Uni-
versity, 1988,

[Lamport78] Lamport, L.
Time, Clocks and The Ordering of Events in a Distributed System, Communications
of the ACM, 21(7), July, 1978.

[Thomas79] Thomas, R.H.
A Majority Consensus Approach to Concurrency Control for Multiple Copy
Databases, ACM Transactions on Database Systems, 4(2), June, 1979,

[Jajodia90] Jajodia, S.; Mutchler, D.
Dynamic Voting Algorithms for Maintaining The Consistency of a Replicated
Database, ACM Transactions on Database Systems, 15(2), June, 1990.

[Gifford79] Gifford, D.K.
Weighted Voting for Replicated Data, ACM Proceedings of the 7th Symposium on
Operating Systems Principles, December, 1979.

[Chin91] Chin, R.S.; Chanson, S.T.

Distributed Object-Based Programming Systems, ACM Computing Surveys, 23(1),
March, 1991.

[Vieira91] Vieira Jr., L.; Fraga, J.S.,
Estabelecimento de uma Base de Tempo Global em Sistemas Distribuidos em Tempo

Real Utilizando um Algoritmo de Sincronizagdo de Reldgios Fisicos, 8 o CBA, Belém,
PA, 1990.

-225-

