Defining a Verification Methodology for Distributed
Algorithms

Tereza C. M. B. Carvalho !* Ana R Cavalli2 Sidney Monreal Martin 1*
EPUSP/BRISA HUMANA Informatica
1 University of Sao Paulo, Av. Prof. LucmnoGualbcno, Tr 3, N 158, CEP 05508 Cidade
Universitaria, Sao Panlo - SP, BRAZIL
7 Institut National des Telecommunications, Les Epinettes, 9 rue Charles Fourier, 91011
EVRY Cedex, FRANCE

and verification of distributed algorithms. The mcthodology is illustrated by
verification of a fault-tolerant traversal algorithm _mblem of a network.
Ermrshavcbeenfoundandaﬁamm:cnm anc:wvc:smnofﬂlcalgd'l

b R W B

ue
TOS enc tr os oral corr dos e uma nova vVersao ao nlgorit-o e -os rada~

1. Introduction

The specification languages for protocols and distributed algorithms: ESTELLE, SDL and
LOTOS have been standardized by ISO and CCITT in the recent years. They represent the
methodological and scientific progress accomplished in relation to the informal languages used
before.

These languages, that have been originally conceived for the description of communication
protocols and services of the OSI (Open Systems Interconnection) architecture, can be casily
adapted to the description of any distributed algorithm.

Many reasons make these languages the ideal tools for the description of protocols and
distributed systems: simplicity of concepts, expression power, precise semantic, stable
definition, controlled evolution, large community of users and reduction of cost for software
development.

Different verification techniques have been developed for these languages. We have
studied and contributed to the development of these techniques [CAV87] [CAVEE] and
[CAR91]. In this last work a fault tolerant distributed algorithm is described using the SDL

* The research was supported by the CNPq (Brazil) and the INT (Francc)

language and simulated using a prototyping tool. The simulations permitted the detection of
errors and, after correction, the verification of the algorithm.

The present work extends [CAR91] in the following way: we consider a "multiformalism”
point of view , i. ¢., developing verification techniques common to all three languages. More
precisely, we want to extend the use of any of the specification languages as a support for the
design and verification of distributed algorithms.

On the other hand, it is well known that no safety techniques exist for the verification of
the correctness of distributed algorithms. This paper proposes a methodology based on the use
of simulation for the design and verification of the correct behavior of distributed algorithms.
Its main purpose is to increase the confidence in the correctness of algorithms whose
mathematical proofs are hard to obtain.

Our work is related to [JAR88], where protocols are described using the language
ESTELLE and verified by VEDA a verification-oriented simulation tool. Even if in this work
we use the same specification language, our point of view is different, we propose the use of
any of the specification languages for the description of the algorithms and we don't suggest
any specific tool. All verification tools that can perform the steps that we propose in our
methodology will be useful in accomplishing our goals.

In this paper, we illustrate our proposal giving the specification and verification of a fault
tolerant traversal algorithm described in [BEA90]. The algorithm is described using the
specification language ESTELLE, and simulation is performed using EDT (ESTELLE
Development Tool Set), a tool developed at BULL and at the present time at INT [BUD91].

The paper is organized as follows: Section 2 gives a brief presentation of ESTELLE and
EDT; Section 3 presents an outline of the methodology; Section 4 illustrates its use on a fault
tolerant algorithm and Section 5 gives the conclusions of this work. Finally, Appendix A
gives the commented ESTELLE specification of the module responsible for the creation of the
simulation environment and Appendix B gives the ESTELLE specification of the algorithm with
the modifications that have been done to correct errors found in the original version of the
algorithm.

2. The Formal Description Language ESTELLE and its Toolset

341

This section presents a brief description of the specification language ESTELLE and EDT
(ESTELLE Development Tool Set). For a compiete description of the language see [ISO89] and
for EDT see [BUD91].

ESTELLE is an extension of the Pascal language based on an extended state transition
model, i. e., a model of a nondeterministic communicating finite state machine. A system in
ESTELLE can be seen as a hierarchical structure of communicating finite state machines,
running in parallel, communicating by exchange of messages and by sharing, in a restricted
way, some variables.

Each communicating component is in fact an instance of a module defined within the
ESTELLE specification. The behavior of a module and its internal structure are specified
respectively by a set of transitions that it may perform and by the definition of its children
(submodules) together with their interconnections. Modules may exchange messages via
interaction points. The received messages arc appended to an unbounded FIFO queue
associated to each interaction point. Communication is asynchronous.

EDT (ESTELLE Development Tool Set) is a set of integrated tools developed at BULL
S.A. and further extended at INT. EDT includes an ESTELLE compiler [BUL90A], which
translates an ESTELLE specification (after static errors detection) into C language source codes
and an ESTELLE Simulator/Debugger [BUL90B], which allows the validation of a
specification with respect to dynamic errors.

The user of ESTELLE Simulator/Debugger can define a simulation scenario, consisting of
simple and macro commands, which may include the description of propertics/anomalies to be
detected during simulation. This last description can be defined as being an observer of the
behavior of the system .

Both global and local properties can be analyzed by means of an interactive or automatic
(predefined scenario and properties to be detected) simulation. The global propertics give
insight, for instance, of deadlocks and undesired sequences of transitions. Local propertics
concern errors that occur while executing a transition or evaluating a transition's enabling
conditions; for instance, uninitialized variables and lost outputs.

The simulations can be extended with "time constraints” defined by the user. These time
constraints may reflect the known execution speeds of components of a real computer

architecture in which the specification is to be implemented.

342

3. Outline of the Methodology

This section presents an outline of the major steps of the methodology that we are
proposing. It consists basically of the use of simulation to verify the correct behaviour of
distributed and parallel algorithms. And its main purpose, as said before, is to increase the
confidence in the correctness of algorithms whose mathematical proofs are hard to obtain,

First of all, it is necessary to create an environment for the simulation of the algorithm
based on tl;c formal description language, e.g., ESTELLE, SDL and LOTOS, on the
corrasponding toolset to be used and on the algorithm itself. At this level, the algorithm is seen
from a functional point of view, i.c., we are not interested in internal details of it.

The creation of this environment implies the definition of a system architecture comprising
the modules responsible for the implementation of the algorithm to be verified, the auxiliary
modules necessary to test the algorithm, the interactions among the defined modules and the
observation point:; used to analyze the simulation carried out and to verify the execution of the
algorithm.

After the system architecture is defined, the following step consists of the specification of
the algorithm and the test environment using the adopted formal description language. In this
phase, all the eventual ambiguities of the informal description of the algorithm must be
climinated. It is worth noting that this new formal description becomes the actual description of
the algorithm, replacing the original one.

Finally, after the system is completely described in the adopted formal description
language, simulation sessions are performed. To allow a gradual verification and analysis of
the algorithm, the simulations are conceived in two ways: User Controlled and Random
Simulations.

The User Controlled Simulation has the purpose of exercising the algorithm in user
predefined conditions to test at least once all the decision branches of the algorithm. This
approach intends to verify if the algorithm works out in simple situations. This type of
simulation is supposed to require more participation of the algorithm designers or verifiers in
order to plan the specific situations for the algorithm verification and to analyze the obtained
results.

The Random Controlled Simulation is performed in order to test the algorithm in a
more exhaustive manner. In this case the algorithm is simulated a great number of times in

343

randomly determined conditions that are expected to create complex situations. As this
simulation type normally is supposed to take long runs, it is planned to be carried out
unattended with the results being monitored and analyzed automatically to detect
inconsistencies. If inconsistencies are found, the algorithm designer or verifier must analyze
the corresponding simulation sessions and, eventually, make the necessary corrections on the
algorithm. It is important to emphasize that each time the algorithm is modified the two types of
simulations must be run again to detect undesirable collateral effects.

When the system passes all the simulations without errors, the description of the algorithm
is considered reliable. This description is then extracted from the system architecture and
becomes the ultimate description of the algorithm.

4. An llustration of the Methodology

This section illustrates the use of the proposed methodology, i.c., the use of simulation to
verify the correct behaviour of distributed algorithms, taking as example a fault-tolerant
traversal algorithm that solves the naming problem of a graph as proposed in [BEA9S0].

4.1. Case Study: A Fault-tolerant Traversal Algorithm

The algorithm that we have verified through the proposed methodology performs the
traversal of a graph and solves the naming problem, giving a distinct identifier (a number) to
each of its nodes. The traversal is done in a faulty environment, i.c., one where nodes can
crash.

In this algorithm, each node of the graph is described as being composed of two logical
layers: Application and Communication layers. The Application layer is responsible for the
naming part of the algorithm and is not sensitive to node failures. On the other hand, the
Communication layer is responsible for the traversal of the graph and for the handling of
definitive failures of graph nodes (crash). The Communication and Application layers
communicate with each other through a set of predefined messages.

In the absence of node failures, a token with an identification field (a number) performs a
depth-first traversal of the graph, starting at an initiator node. Each time this token visits a
new node, the Communication layer sends it to the Application layer. This layer then updates
the token identification field (increments it) and uses it to name the current node. The token is
returned back to the Communication layer to continue the traversal.

In case of node failures, a token can be lost. Because of this, another token has to be
generated in order to complete the traversal. The communication layer is responsible for this
new token generation when it detects a crash failure in its current son node (the last not already
visited neighbour node to whom a token has been sent). For this purpose, the Communication
layer always keeps a copy of the token, which is updated each time the token is sent to a new

son.

As a consequence of the token's creation it is possible, at a given time, to have more than
one token circulating through the graph. It must then be decided which token will continue the
traversal, i.c., it is necessary to have a method to compare tokens. This is achieved using
additional token fields, which have information concerning the token history (a time stamp),
and a metric for comparison. In this way, when a Communication layer receives a token, it
compares it with the copy previously saved. If the received token is worse, it is discarded.
Otherwisc, it continues the traversal.

A complete description of this algorithm can be found in [BEA90]. For the purpose of the
present paper, we used a later version of this algorithm derived in [CAR91] that corrects some
problems found in the original version. The final version of the algorithm is given in Appendix
3.

4.2. System Architecture for Simulation

In this phase of the methodology, it is necessary to create an environment for the
simulation of the algorithm based on the formal description language, on the corresponding
toolset to be used and on the algorithm itself.

In the case of the traversal algorithm, we have adopted ESTELLE as the formal description
language and EDT as a debugger / simulator tool [BULS0B], which were briefly described in
Section 2.

According to the description of the algorithm, the system to be modelled is a directed
graph, representing a set of interconnected nodes, with a defined topology. Each node of the
graph can be described in ESTELLE as a pair of modules called "na" and "nc". These modules
are responsible, respectively, for the Application and Communication layers specified in the
traversal algorithm. The graph is then modelled by several instances of this pair of modules
created by a system module called "graph”. To accomplish this, the "graph" module must have
an internal data structure describing the graph topology. The asynchronous parallelism of the
algorithm execution among the graph nodes are adequately modelled by the nondeterminism

345

implied by the activity attribute given to the modules "na" and "nc". This system architecture
is depicted in Figure 4.1.

SPECIFICATION TRAVERSAL

Graph Systemactivity

ipTrav
EnuvNa
na activity ipEnv
IpNc
NaNec NeNe
ncactivity pNg IPNTR(T) |
IpNTH(n) p—r
IpNRR(1) p—
.}—
ipNR#(n) |

Figure 4.1 - System Architecture

In this architecture, the "na" module of the initiator node, i.c., the node that is going to
initiate the traversal algorithm, is connected to the "graph"” module through the channel
EnvNa. Through this channel, the "na" module receives the message NameGraph used 10
initiate the traversal algorithm.

The "na" and "nc" modules of each node are in tumn interconnected through the channel
called NaNc. Through this channel are exchanged four types of messages. The first one,
Travlnit(info), is sent by the "na" module, after the reception of the NameGraph message, to
the "nc" module in order to begin the traversal algorithm. The "nc" module that receives such
message is then called "initiator". The second message, TravEnd(info), is sent by the "nc
initiator” to the "na" module to inform that the traversal algorithm was already executed. These
two messages carry a parameter info with the number used by the Application layer to identify
the nodes. The third message, TravVisit(t), is sent by the "nc” module to the "na" module to
inform that the "nc" module has received a new token. The last message, TravCont(t), is the

346

response to the TravVisit message. It is issued by the "na" module to the "nc" module, after
processing the info field of the token 7. The "nc" module uses then the token ¢ received in the
TravConti(t) message to continue the traversal. The parameter ¢ of these two messages is
constituted of the fdllowing fields: info, which contains the information processed by the
Application layer; numSizes, which indicates the number of nodes already visited by this token;
stampSize, which indicates the size of the stamp field of this token; and stamp, which is a
vector with a sequence of integers rcp:ﬁénting a time stamp.

Finally, the "nc" modules of the neighbour nodes are interconnected through the channel
called NcNes Through this channel are exchanged two types of messages: TokenMsg and
Crash. The TokenMsg(t) message contains the token that traverses the graph. The parameter ¢
is the same as described above for the TravVisitr and TravCont messages. The Crash message
acts as a hardware indication of a permanent failure of a node in a real system. It is issued by a
"nc” module to inform its neighbours that it has crashed (the algorithm assumes that the
neighbours of each crashed node are warned of its failure).

The conditions related to how and when a node crashes are not defined in the original
description of the algorithm. Therefore, it is necessary to include these definitions as part of the
environment required to carry out the simulations. In this way, in order to get more meaningful
simulations, it was decided that the nodes would signalize failures through the Crash message
only after the reception of a token. Upon the token reception a node to crash can then behave in
two different ways: consuming or not consuming the received token. In the first case, the
Crash messages are sent without processing the token, i.c., the token is lost. In the latter case,
the node processes the token, sends it to the corresponding neighbour and then sends the Crash
messages. In both cases all further messages received by the crashed node are ignored.

The description of the behaviour (not failing; failing consuming the token; failing not
consuming the token) of each node is stored in a data structure of the "graph" module. Each
node in turn will be aware of its behaviour when it is created by the "graph" module.

In order to allow the analysis and verification of the algorithm execution, observation
points were specified corresponding to data structures of the "graph” and "na" modules, which
are examined and displayed by observers defined in the script language of the used toolset,
EDT. The observed data structure of the "graph" module describes the graph topology, the
initiator node of the traversal algorithm and the nodes to crash. In the case of the "na” module,
the observed data structure contains information related to the identification of the node
achieved by the algorithm execution.

347

4.3. System Description

After the System Architecture is defined, the following step consists of specifying the
algorithm and the test environment using the adopted formal description language, ESTELLE.
As an illustration, the Appendix A presents the ESTELLE description of the "graph” module,
which is responsible for the creation of the test environment.

As it can be seen in this appendix, the behaviour of the "graph” module is modelled
through a finite state machine with the following states: Initial, Active and EndSimul.

In the transition from the Initial state to the Active state, it is created the graph upon
which the traversal algorithm will be executed. This is accomplished through the creation of
different instances of the "na" and "nc" modules and the interconnection of the corresponding
interaction points, according to a data structure describing the graph topology. When the "nc"
modaule instance is created, it is also defined the behaviour (no fail; fail consuming the token;
fail not consuming the token) of each node through a specific parameter, fpFail. At the end of
this transition the traversal algorithm is started through the message NameGraph sent to the
"nc" module instance of the initiator node.

During the algorithm execution the “graph” module remains at the Active state. When
this execution is finished, the "na" module of the initiator node sends a NameEnd to the "graph”
module, causing a transition from the Active state to the EndSimul state. This transition is
detected by an observer that analyses and stores the simulation results, i.c., the naming of the
graph achieved in each test condition and an indication of its comrectness.

The "graph" module remains at this state if it is a User Controlled Simulation or if it
was exccuted the last Random Simulation. Otherwise, there is a transition to the state
Initial. In this transition, the graph data structures are initialized using a random number
generator to define other conditions for the next simulation.

4.4, Simulation

Finally, after the system is completely described in the adopted formal description
language, we have the simulation sessions.

348

In the case of the traversal algorithm, considering the User Controlled and the
Random simulations, a great number of simulations were carried out. The control of each
simulation is done through the use of macros and observers defined in the script language of the
used toolset, EDT. We use basically two types of macros. The first one specifies the graph
topology, the initiator node and the nodes to crash for the User Controlled simulation or just
the graph topology for the Random simulation, updating a data structure of the "graph”
module. The second one is responsible for starting the simulations and activating the

observers.

The results of the simulations are saved in a file to bz analyzed later. If problems are
found, ¢.g., the naming is not correctly achicved for a specific test suite, the simulation can be
repeated under the same conditions that generated the problem, presenting this time a more
detailed trace of the algorithm execution. This detailed trace is obtained through the use of a
special observer. This trace is then further analyzed and, if some inconsistency is detected in
the algorithm, its description is modified accordingly and the simulation cycles are repeated.

In the case of the traversal algorithm, these simulations enabled the detection of an error
that resulted from a complex situation related to a simultaneous occurrence of events between
the different layers of the same node. This situation was not predicted in the original version of
the algorithm. Once the corresponding modificatiun of the algorithm was accomplished, more
than three hundred simulations were performed and it was verified that the naming of the graph
was correct in all these tested situations. Thus, these results allowed us to have confidence that
the final version of the algorithm is robust and stabie. The ESTELLE description of this final
version of the algorithm is presented in the Appendix B.

5. Conclusions

In this paper we have presented a methodology for the design and verification of
distributed algorithms. Its application has been illustrated through the formal description and
the verification of a fault-tolerant traversal algorithm.

The methodology was developed from a "multiformalism" point of view, i.e., it is
independent of the used formal description language and of the used toolset.

Nevertheless, the studied example showed that efforts must be done in order to define an

appropriate environment for the simulation. This environment must be based on the chosen
formal description language, on the tool used for simulation and on the algorithm itself. The

349

formal description of the algorithm must be done carefully to avoid changes in the original
version of it.

References

[BEA90] Beauquier J., Gastin P. and Vilain V., Toward a Methodology for Designing
Fault-tolerant Algorithms, Rapport LITP, Universite' Paris VII, September 1990.

[BUD91] Budkowski S., Estelle Development Toolset (EDT), Rapport DSR, Institut
National des Télécommunications, June 1991.

[BUL9S0A] BULL/MARBEN Estelle to C Compiler - User Reference Manual, BULL S.A.,
Direction Methodology / MDL, Rue Jean Jaures, 78430 Les Clayes s/s Bois, France, May
1990.

[BULSOB] Estelle Simulator | Debugger (Edb) Version 2.4 - User Reference Manual, BULL
S.A., Direction Methodology / MDL, Rue Jean Jaures, 78430 Les Clayes s/s Bois, France,
May 1990.

[CAR91] Carvalho T.C.M.B., Cavalli A.R. and Martin S.M., Verifying a Fault-Tolerant
Algorithm by Simulation, Rapport DSR, Institut National des Télécommunications, May 1991.
[CAV87] Cavalli A.R. and Horn E., Proof of Specification Properties by Using Finite-State
Machines and Temporal Logic, Proc. Seventh IFIP Symposium on Protocol Specifi.ation,
Testing and Verification, Zurich, North-Holland, May 1987.

[CAVS8] Cavalli A.R. and Paul E., Exhaustive Analysis and Simulation for Distributed
Systems, Both Sides of the Same Coin, Distributed Computing, Vol 2, Springer Verlag, 1988.°
[CCI88] CCITT. SDL, Specification and Description Language, Recommendation Z100,
International Consultative Committee for Telephony and Telegraphy, Geneva, 1988.
(ISO89).ISO/EC JTC 1/SC 21 N4230, Proposed Draft Addendum to ISO 9074:1989 :
Estelle Tutorial, December 1989.

[JARS88] Jard C., Groz R. and Monin J.E., Development of VEDA, a prototyping tool for
distributed algorithms, IEEE Transactions on Software Engincering, Vol 14, No 3, March 88.

350

Appendix A

This appendix presents the ESTELLE specification of the “graph" module, which is
responsible for the creation of the simulation environment. It is an annotated specification in
order to facilitate its comprehension.

body GraphBody for Graph;
(***ltt&‘*‘*‘t-#l’*ttl*t* D ec l arat i on P art tt*t*ﬁi***i*t*t*‘***it***)
const
MaxSizeStamp = 8;
MaxNumNodes = 15;
MaxIdentNum = 30,
MaxNumNeighbours =
None = 0;

type

Nodeldx = 1..MaxNumNodes;
CommLineNum = 1..MaxNumNeighbours;
None_CommLineNum = None..MaxNumNeighbours;
Stampldx = 1..MaxSizeStamp;
StatusConnection = 0..1; (* for the graph topology description (nbs below) *)
StatusCommlLine = (Not\’m:ed. Visited, Crashed);
StatusSet = array [CommLineNum] of StatusCommLine;
Failures = (N, NCT); (* None; Consuming Token; Not Consuming Token *)
ClearMode = (AllNexghbom‘s. ExceptCrashed);
TokenCmpResult = (StLower, StEqua.l StHigherSubst, StHigherNotSubst);
Token = record

info: integer;

numSites: integer;

stampSize: 0..MaxSizeStamn:

stamp: array [Stampldx] of i. ger;

end;
var (* These variables are updated at simulation/debugging time by script files: 2

numNodes: Nodeldx; (* Number of nodes of the graph to be simulated *)
numNbs: array [Nodeldx] of CommLineNum; (* Number of neighbours of each node *)
(* The next communication line number 1o be used for a connection to each node *)
nextCommlLine: my [Nodeldx] of CommLineNum;
(* Matrix specifying the connections among the nodes comprising the graph (topology): *)
(* each edge is specified only once. *)
nbs: array [Nochdx,NodeIdx] of StatusConnection;

tpFail: array [Nodeldx] of Failures; (* Type of failure of each node *)
initiatorNode: Nodeldx; (* Initiator of the traversal algorithm *)
(* Variables to control the simulation: *)
tpTest: (ControledSimul, RandomSimul); (* Type of simulation to be carried out *)
numRandomSimul: integer; (* Number of random simulations to be carried out *)

maxNumPFail: integer; (* Maximum number of failures in each random simulation *)
identVector: array [1..MaxIdentNum] of boolean; (* Node identification vector used for *)
(* verification of the algorithm execution *)
* Channels Definition *)
channel EnvNa (User, Provider);
| by User:
NameGraph;
by Provider:
NameEnd;
channel NaNc (User,Provider);
. by User:
Travlnit (info: integer);
TravCont (t: Token);
Provider:

by

351

TravVisit (t: Token);
TravEnd (info: integer);
channel NcNc (Tx, Rx);
by Tx, Rx:
TokenMsg (t: Token);
Crash;
[& Modules Definition
module Na activity;
ip ipEnv: EnvNa (Provider);
ipNc: NaNc (User);

end;
body NaBody for Na; external;
module Nc activity (numCommLines: CommLineNumy; fail: Failures);
ip ipNa: NaNc (Provider);
ipNTx: array [CommLineNum)] of NcNc (Tx);
ipNRx: array [CommLineNum] of NcNc (Rx);

end;
body NcBody for Nc; external;
modvar NaMod: array [1..MaxNumNodes] of Na;
NcMod: array [1..MaxNumNodes] of Nc;
ip ipTrav: EnvNa (User); (* Internal ip to start the Traversal and to detect its end*)
*

States Definition *)
state Initial, Active, EndSimul,;
(t*#t*t#‘tt*l*ttt##‘i‘tt i n i t 1 a] i zat l on p art bk ko ttl*ll*ll*ll)
to Initial
vari, j: integer;
begin
1nitiatorNode := 1;
for i := 1 to MaxNumNodes do begin
nextCommLine[i] := 1; (* Number of the first communication line available *)

=0

Fail[i] :=N; (* Node is not going to crash *)
or j := 1 to MaxNumNodes do
nbs[ij] :=0; (* Neighbours not connected *)

e
fori := 1 to MaxidentNum do
identVector{i] := false; (* Nodes without identification *)

(‘**‘*‘*.*i“*‘ﬁ‘*t*‘*l***i T rans i t i on P art “.***‘**‘*‘#.*‘*.*‘t‘t.)
(* —— Jnitial State =r====*=_====')
trans
from Initial
to Active
provided true

var i, j: integer,

gin

(* Create nodes of the graph *)

for i ;= 1 to numNodes do begin
init NaMod[i] with NaBody;

end;
for i := 1 to numNodes do begin
init NcMod(i] with NcBody (numNbs(i], tpFail(i]);

end;

(* Make the connections *)

(* Connect the Environment and the Application layer of the Initiator node *)
connect ipTrav to NaMod([initiatorNode].1pEnv;

(* Connect the Application and Communication layers of cach node *)
fori := 1 to numNodes do begin

352

connect NaMod(i].ipNc to NcMod][i].ipNa;
end;
(* Connect the Communication layers defining the graph topology *)
for i ;= 1 to MaxNumNodes do begin

for j := 1 to MaxNumNodes do begin

if nbs[ij] = 1
then begi
connect NcMod[i].ipNTx[nextCommLine[i]]
to NcMod[j]ihH{Iin[nmﬁommLinc[ﬂ];
connect NcMod[i).ip [nextCommLine[i]]
to NcMod([j].ipNTx[nextCommLine[]];
nextCommLine[i] := nextCommLinefi] + 1:
m::fxtCommLinc[j] = nextCommLine(j] + 1;
end;
end;
output ipTrav.NameGraph; (* Initiate the traversal algorithm *)
end;
(G Active State mmm*)
trans
from Active
to EndSimul
when ip'I‘mv.NameEnd
begin ("I‘hisstatccxiststoallowanobscwerwpmcmme*)
end; (* result of the execution of the algorithm *)
(* ========—= EndSimul State *)
trans
from EndSimul
to Initial

provided (tpTest = RandomSimul) and (numRandomSimul >= 1)
;:r ol u:(tfg;;pm another ¢ iz

gin test sequence (simulation) *)

numRandomSimul ;= numRmﬂomSim -1;

for i := 1 to MaxIdentNum do (* Clear the ident. vector used by the observer *)
identVector{i] := false;

for i := 1 to numNodes do begin (* Destroy node module instances *)
terminate NaMod[i];

cnd.mm' NeMod[i];

fori=1 mManmnNodesdobegm' (* Update data for the next simulation *)
nextCommLine [i] := 1;

initiatorNode := ((*C (int)random() %*) numNodes) + 1;
for i := 1 to maxNumFail do begi
node := ((*C ('ml:)nndomglq’np‘) numNodes) + 1;
while (node = initiatorNode) do begin
mglodn = ((*C (int)random() %*) numNodes) + 1:

rd := (*C (int)random() %*) 3;
case rd of

0: tpFail [node] := N;

1: tpFail [node] := CT;

2: tpFail [node] := NCT;
end;
end;
end;
end;

353

Appendix B

This appendix presents the ESTELLE specification derived from the simulations of the
traversal algorithm that corresponds to the "nc" process description (Communication layer) .
The errors found and corrected in the original algorithm are pointed out in bold face. The
comments were included to facilitate the comprehension of the algorithm.

body NcBody for Nc;

(**t*.#ttittttt*itttttt D ec l arat i on P art **tlt.ti&t‘*t“ttt‘*tt)
var initiator: boolean; (* Indicate if this node is the initiator of the *)
(* traversal algorithm *)
nodeVisited: boolean; (* Indicate if this node was already visited *)
father: None_CommLineNum; (* Number of the 1st communication line *)
(* that sent me the newest valid token *)
currentSon: None_CommLineNum; (* Number of the last communication line to *)
(* whom I have sent a token *)

myCopy: Token; (* My copy of the token y
tokenN: array [CommLineNum] of Token; (* Token from the neighbour N »)
visitedSet: StatusSet; (* Set of visited communication lines *)
potenVisitedSet: StatusSet; (* Set of potentially visited comm. lines ~ *)
state Commldle; :
(* primitives: *)
(* function cmpTokens (11, £2: Token): TokenCmpResult; *)
(* function tstSubstEqToken (t1, 2: Token): boolear *)
(* function searchNeighbour (v: StatusSet; numNbs (CommLineNum): *)
(g None_CommlLineNumy; ¥)
(* procedure clearSets (m: ClearMode); *)

#include " /trav.proc”

{t#‘#t#tttlﬁttt*.*t*tl* ln i t i a l i zat i on P art *t#t‘*itt**ti‘*tti#i)

initialize to Commldle

begin

initiator ;= false; (* Initialize working variables *)

nodeVisited := false;

father := None;

currentSon := None;

clearSets (AllNeighbours); (* Clear Visited and Potentially Visited sets *)
nd;

ftttt**#*tttt“*‘t‘ttttt Tr ans i t i on P art t“#.tl#*‘titt#*#tt‘tt)
- = state Commldle .

(*- Reception of the Travnit(Info) message from the Application layer *

trans
from Commldle
to Commidle
when ipNa.TravI:ﬁt (info)
begin
initiator ;= true; (* I'm the initiator of the traversal *)
nodeVisited := true;
myCopy.info := info; (* Initialize my copy of the token *)
myCopy.numSites := 1;
: ize :=0;
if num >0
then begin (* I have some neighbours: *)
currentSon := 1; (* Take one of the neighbours *)
mgutput ipNTx[currentSon). TokenMsg (myCopy);

clse (* 1 don't have any neighbour: *)
output ipNa.TravEnd (info);

354

(*- - Reception of the Traversal. Continue (t) from the Application layer --—-—-—%)
trans
from Commldile
to CommIdle
when 1pNa_TravCom (1)
begin
myCopyanfo := t.info;
currentSon := searchNeighbour (visitedSet, numCommLines);
if currentSon <> None
then (* There is some neighbour to be visited *)
output ipNTx[currentSon]. TokenMsg (1)
clse (* There are no more neighbours to be visited *)
output ipNtx[father]. TokenMsg (t);
("

-----——- Reception of the token T sent by the neighbour N *)
trans

from CommlIdle
any n: CommLineNum do
when ipNRx[n].TokenMsg (1)
to Commlidle
var i: CommLineNum;
begn
if not nodeVisited
then begin (* I haven't received any token so far *)
nodeVisited := true;(* Updatc my status *)
t.numSites := tnumSites + 1
father :=n;
myCopy :=t;
visitedSet[n] := Visited;
output ipNa.Trav Visit (t);
end

else begin G (*Ihavcalrw:gmcwedsgmcnok&;n')
case cmpTokcns t,myCopy) of Compare Stamps
Stlaugl (* case 1) T.Stamp =st MyCopy.Stamp *)

if currentSon < n
then begin (* The Token is not from my Current Son *)
pothmlndSct[n] = Visited;
tokenN[n] :=
omput ipNTx[n].Tokchsg (t);

e.lsc begin (* The Token is from my CurrentSon *)
(* Add PotenVisited and CurrentSon to the Visited set *)
fori := 1 to numCommLines do
if (potcnhrmtedSct[l] = Visited)

vismdSaﬁ] = Visited;
potchism:dSct{l] :=NotVisited;

ws:tedSet[cmmtSon] := Visited;
myCopy :=t;
currentSon := searchNeighbour(visitedSet, |
numCommbLines); |
if (currentSon < None) |
then (* There are some neighbours to be visited *)
output ipNTx[currentSon]. TokenMsg (1)
else (* There are no more neighbours to visit*)
if initiator

355

then (* I am the Initiator *)

output ipNa.TravEnd (t.info)
else (* I am not the Initiator *)
output ipNTx[father] TokenMsg (t);
end;
end;
StLower: (* case 2) T.Stamp <st MyCopy.Stamp |
begin (* This Token will not achieve its traversal *)
; (* It is stopped here *)

end;
StHigherNotSubst: (* case 3) T.Stamp >st MyCopy.Stamp *)
(* T isn't a substitute for MyCopy *)

begin

t.numSites := L.numSites + 1;
father :=n;
myCopy :=t
clearSets (ExceptCrashed); (* Clear Potentially Visited and *)
(* Visited sets *)
visitedSet[n] := Visited;
currentSon := None;
cng:“pm ipNa.TravVisit (1);
StHigherSubst: (* case 4) T is a substitute for MyCopy *)
begin
if currentSon < n
then begi (* The Token is not from my CurreatSon *)
poten VisitedSet[n] := Visited;
tokenN[n] :=t;
mgutput ipNTx[n]. TokenMsg (1);
else begin (* The Token is from my CurrentSon *)

(* Add to Visited set: CurrentSon and Potentially Visited *)
(* N such that T is a substitute for Token[N] or Tis *)
(* equal to it _)

: begin

potenVisitedSet(i] := notVisited;
end;

end;
visitedSet[currentSon] := Visited;
myCopy =1,
currentSon := searchNeighbour (visitedSet,
numCommLines);

then (* There are some neighbours to be visited *)

output i N'I‘x[cwmtSou].quwnMsg (3]
e.-l.tnief (‘%hucmmmwghbunxmbcvisim*)
initiator

then (*Iam the Initiator *)
output ipNa.TravEnd (t.info)
else (*1am not the Initiator *)
- output ipNTx[father]. TokenMsg (t);
e

356

end;
end;

end;
Reception of Crash from the neighbour N - *)
to Commidle
any n: CommLineNum do
when ipNRx[n].Crash
var i: CommLineNum;
begin

!
\
\

(* Remove N from the Visited and Potentially Visited sets *)

visitedSet[n] := Crashed:;

potenVisitedSet[n] := Crashed;

if n = currentSon

then begin (* My current son is the crashed neighbour: *)
currentSon := searchNeighbour (visitedSet,

numCommLines);
if currentSon <> None

then begin (* There are some neighbours to be visited *)
(* Concatenate MyCopy.NumSites to MyCopy.Stamp; *)
myCopy.stampSize := myscopy.Stan]:pSmc +1;
myCopy.stamp{myCopy.StampSize] := myCopy.NumSites;
fori := 1 to numCommLines do (* Potentially Visited =[] %)

if (potenVisitedSet[i] = Visited)
then

potenVisitedSet[i] := NotVisited;
output ipNTx[currentSon] .TokenMsg (myCopy);
end

else begin (*'Ihucaremmrcmﬁghbommbcvisited*)
if initiator

then N(" I am the Initiator *)
output ipNa. TravEnd (myCopy.info)

clse begin (* I am not the Initiator *)
(* Concatenate MyCopy.NumSites to MyCopy.Stamp; *)
myCopy.stampSize := myCopy.StampSize + I;
myCopy.stamp[m y.StampSize] := myCopy.NumSites:
Qutput ipNTx[father] TokenMsg (myCopy);

end:

end;
end,

end;

357

