REASONING ABOUT DISTRIBUTED SYSTEM
SPECIFICATION: THE TEMPORAL-CAUSAL
WAY

Jaelson Freire Brelaz de Castro
Departamento de Informitica - UFPE
Caixa Postal 7851- 50732 Recife- PE
Brazil
jbedi ufpe.br

Abstract

The temporal-causal framework supports the specification of systems from
three points of view: informal, causal and temporal-causal. The Informal View
describes in natural language and graphically the requirements of the component,
It is based on the Conic Environment that provides a language-based approach
to the building of distributed system. The Causal View relies on enhanced Petri
Nets to describe internal structure, distributed control and safety requirements.
The third view makes use of temporal-causal logic to describe temporal features

of the components such as liveness requirements. Previous causal properties are
preserved.

In this paper we use the technique to specify and reason about properties
of distributed systems. Local properties of the components as well as global
properties of the systems are derived. The Hygienic Dining Philosopher ezample
is used to the illustrate the viability of the specification languages and adequacy
of the logic formalism.

1 Introduction

In [4] we developed a framework to support specification, i.e. modeling and analysis,
of concurrent and distributed systems. A system is composed of separate, interacting
components, possibly highly independent of each other. Components will have well-defined
interfaces and their local state that changes over time. A system is described and
managed in terms of their configuration [6).

We argued that a single representation scheme is often not enough to capture the
various features of system behaviour. Instead, multiple viewpoints should be used to
partition the domain of information. Its success rests upon the selection of appropriate
representation schemes, the careful definition of the relations between them and the
process by which such specifications are built within those representation schemes.

Indeed, the major feature of research in software engineering and formal methods
in recent years has been the trend towards combinations and integrations of different
approaches (8, 9, 10, 3, 2].

321

We showed how multiple representation schemes, such as temporal logics and Petri
Nets. can be used to describe the behaviour of systems. This temporal-causal framework
will contribute towards the provision of a more effective basis for software development,
enabling system specification from multiple points of view. The main advantages are the
ability to express explicitly, clearly and compactly the causal and temporal relationship
between the events of the system. Formal reasoning is also supported, i.e local and
global properties are derived.

Systems are specified from three points of view: informal, cansal and temporal-causal.
The Informal View describes in natural language and graphically the requirements of
the component. It is based on the Conic Environment that provides a language-based
approach to the building of distributed system. The Causal View relies on enhanced
Petri Nets to describe internal structure, distributed control and safety requirements.
The third view makes use of temporal-causal logic to describe temporal features of the
components such as liveness requirements. Previous causal properties are preserved.

In [4] we discuss how Petri Nets and Temporal Logic can be integrated. In
essence, the basic Petri Net model is enhanced (to include types, guarded transitions
and the annotation of places with a logical scope) and given a logical proof-theoretic
characterization. This logic is then merged with standard temporal logic. The resulting
logic is called Temporal-Causal Logic. A methodology for the temporal-causal specification
of systems is briefly discussed in [1]. It shows how ome can start from an informal
description and end up with a temporal-causal specification.

In this paper we use the technique to specify and reason about properties of
distributed systems. Local properties of the components as well as global properties
of the systems are derived. The Hygienic Dining Philosopher example is used to the
illustrate the viability of the specification languages and adequacy of the logic formalism.

Section 2 introduces the Hygienic Dining Philosopher problem. It reviews the
solution proposed by [5]. In Section 3 we use the temporal-causal framework to specify
the basic component of the Hygienic Dining Philosophers System. We then carry on and
prove some local properties of the philosopher component.

In Section 4 we describe a “Diner System” comprised of three philosopher components
named “plato”, “karl” and “maz” which are sitting around a table, with plato next to
karl, who is next to maz, who in turn is next to plato. We then proceed to prove that
every hungry philosopher will eat. Section 5 summarizes the discussions and concludes
the paper.

2 Hygienic Dining Philosophers System

Our example is based on the well known Dining Philosophers Problem. It has been
extensively used in the literature to illustrate the possibility of conflicts between processes
in distributed systems. Philosophers are arranged in a ring with neighbouring philosophers
sharing a fork. Figure 1 depicts a table with three philosophers. A philosopher is eithe:
thinking, hungry or eating. To move from the hungry eating state a philosopher must
acquire both his lefthand and righthand fork.

In the sequel we shall describe a solution to the fully distributed diners problem. It
is based on the work of Chandy and Misra [5] which relies on two principles:

n

Figure 1: Dining Philosophers Problem

e In every state of the diners system at least one philosopher in every set of conflicting
philosophers must be distinguished from the other philosophers of the set:

* The distinguishing property must be such that the philosopher selected for favourable
treatment is not always the same, i.e conflicts should not always be resolved to the
detriment (or favour) of a particular philosopher.

The former is achieved through a distributed implementation of an acyclic precedence
graph, the depth of a philosopher (the longest chain of predecessors) being the
distinguishing property. The latter, i.e. fairness of the solution, is obtained through a
simple conflict resolution rule coupled with the acyclic graph. The solution of Chandy
and Misra can be described informally as: “A fork is either clean or dirty. A fork being
used to eat with is dirty and remains dirty until it is cleaned. A clean Jork remains clean
until it is used for eating. A philosopher cleans a fork when mailing it (he is hygienic).
An eating philosopher does not satisfy requests for forks until he has finished eating®.
Moreover, a noneating philosopher defers requests for forks that are clean and satisfies
requests for forks that are dirty.

As stated in [7], their solution can be considered to implement a precedence graph
such that an edge directed from a node u to v indicates that u has precedence over v
(Figure 2). In the diners solution a philosopher node u has precedence over its neighbour
v if and only if :

e u holds the fork and it is clean;
* v holds the fork and it is dirty; and
e the fork is in transit from v to u.

Furthermore, the direction (from u to v) of the edge can change only when u starts
eating and all edges incident on an eating philosopher are directed toward it. Therefore
the graphs are acyclic.

The initial conditions are the following:

e all forks are dirty
o forks are distributed among philosophers such that the precedence graph is acyclic

e if u and v are neighbours then either u holds the fork and v the priority request
token or vice versa..

323

ri n

ooy WO

2] vz Lo Pz

{a) P1 hungry (b) P1 sating

Figure 2: Dining Philosophers: Precedence Graph

We shall use the Temporal-Causal Framework described in [4, 2] to specify this
solution to the diners problem. The description will consist of three complementary
views: Informal, Causal and Temporal-Causal. This specific section concentrates on the
specification and analysis of local properties of an individual philosopher. We shall delay
the description of the full system, which is the composition of n individual philosophers,
and reasoning of global properties to Section 4.

3 Philosopher Component: Temporal-Causal Specification
and Analysis

In this section we use the temporal-causal framework (see [4, 3, 1]) to specify the basic
component of the Hygienic Dining Philosophers System and prove some local properties
of its behaviour.

The Informal View describes in natural language and graphically the requirements of
the component. It is based on the Conic Environment which provides a language-based
approach to the building of distributed system. The Causal View relies on enhanced
Petri Nets to describe internal structure, distributed control and safety requirements.
The third view makes use of temporal-causal logic to describe temporal features of the
components such as liveuess requirements. Previous causal properties are preserved.

3.1 Philosopher’s Informal View

The objective of this initial description is to identify the basic features of the philosopher
being described. It should make use of both natural language and graphics. Because a
system will be composed of separate, interacting philosophers, we shall put emphasis on
the identification of messages and ports.

This particular solution relies on the concept of exchange of tokens and forks between
neighbouring philosophers. Assuming that fork “f” can take the value of left (1) or right
(r), there are the following types of messages:

o fork; passes (clean) fork f to neighbour which shares i
o token; passes request token for fork f to neighbour which shares {.

Hence, we have the following message types for the dining philosophers system:

324

define philomsg: fork, nametype, phil, position, signaltype, token

type fork = (left, right);
nametype = packed array [1 ... namelength] of char;
phil = nametype;

pesition = (left, right);
signaltype = boolean;
token = (left, right);

Having defined the messages, the next task should be the clarification of the exit and
entryportsiof the component. The following ports could be identified:

» exitport req forks of type token; to model the sending of a request for forks;
¢ entryport forks avail of type fork; to indicate the reception of a clean fork ;

e entryport fokens avail of type token; to capture the reception of request for a
clean fork;

e extiport release fork; of type fork; to express that a clean fork has been released.

Given this set of messages and ports one can come up with the Informal View of
Figure 3.

The following rules are expected to informally describe an individual philosopher:

¢ R1 Requesting a fork f if a philosopher holds the token, is hungry but does
not possess the fork f, he should send the token to his neighbour requesting the
fork. The predicate which indicates the possession of the token must be reset
(hastoken(f)=false).

* R2 Releasing a fork f if a philosopher possess a fork and is not eating and
provided that the fork is dirty and he possesses the request token, the philosopher
should send a message to his neighbour releasing the fork . Forks are cleaned before
they are sent (dirty(f)=false and hasfork(f)=false).

¢ R3 Receiving a request token for f a philosopher shall be able to receive a
request for token, in which case a predicate indicating the possession of the token
must be set (hastoken(f)=true).

* R4 Receiving a fork f a philosopher shall be able to receive a fork, in which
case a predicate indicating the possession of a fork should be set (hasfork(f)=true).
Because the forks are clean then predicate which indicates the dirtiness of a fork
should be unset (dirty(f)=false).

* R5 Philosopher Starts Thinking from a “eating condition” a philosopher should
move to a “thinking condition” provided that predicate “Eating timeout” holds.

* R6 Philosopher Becomes Hungry from a “thinking condition” a philosopher
should move to a “hungry condition” provided that predicate “Thinking timeout”
holds.

¢ R7 Philosopher Starts eating from a “hungry condition” a philosopher may move
to a “eating condition” provided that he possesses both both his left and right forks.
Note that before the transition it should not matter if the forks are clean or dirty.
However after the transition both forks are dirtied (dirty(l)=true and dirty(r)=true).

325

token, avail req fork,
req fork, fokonn avail
forkL avail release fork

R

release forkL 1.'1:::.-!:Il avail

A philosopher is either thinking,hungry or eating. Tc move from
hungry to the eating state a philosopher must acquire both his
lefthand and righthand fork (recasive forkf from forkf avail).

If he does not yet possess them, a request for ferk should be
issued (send tokenf to req forkg). A fork being used to eat with
is dirty and remains dirty until it is cleaned. A clean fork
remains clean until it is used for eating. A philosopher may
receive requests for forks (recelve tokenf from tokenf,avail}.
However, an eating philosopher does not satisfy them until he has
finished eating. When not eating, philosophers defers requests
for forks that are clean and satisfy requests for forks that are

dirty (send forkf to release fork,).

f

Figure 3: Hygienic Philosopher Component: Informal View

3.2 Philosopher’s Causal View

Before we get on to the discussion of the philosopher causal description (see Figure 4),
it is perhaps appropriate to remind the reader of some conventions. At the highest
level of abstraction, a component can be viewed as a transition with input (entry) and
output (exit) places. Those interface places must correspond to entryport and exitports
of the informal view. Places are typed according to the message that it is supposedly
conveying. Graphically, interface places are differentiated from the other normal places
(transparent circle) by a different filling pattern (see Figure 4).

=ttt 0 e

T AN .3:_-_ i

Figure 4: Hygienic Philosopher Component: Causal View

We shall adopt the convention of underlining condition predicates which correspond to
places, Typical examples of “entry” places are token; avail(token) and forks avail(fork).
For “exit” places we have req fork;(token) and release fork; {fork).

Places may have variable extensions. That is, they may represent changing properties
of individuals. For instance, place Holding Fork(fork) may have tokens denoting the
presence of the left fork (fork;) or the right fork (fork,). A label underneath the arc
will indicate which objects are affected by the tramsition. For example when transition
“receive fork; from fork; avail” fires, the label “fork,” underneath the arc indicates that
the condition predicate Holding Fork(fork) holds for fork; in that slice. Graphically it is
as if the circle associated with this condition predicate were able to hold two distinct
dots (fork; and/or fork,).

As far as transitions are concerned, it should not be difficult to identify them from
the set of rules (R1-R7) presented in the informal view. Observe that each interface
place has associated with it a communication transition or event, Typical examples are:
“receive ftoken; from token; avail”, "send token; to reg fork;”, “receive Jork; from
Jork; avail” and “send fork; to release forky”. Three remaining transitions have to do
with the basic cycle of activities of a philosopher: start thinking, become hungry, start
eating,

Note that there are two types of transitions: normal (solid bars) and conditional
(hatched bars). Conditional transitions (events), as the name suggests, requires the
holding of the “guard” for it to fire (occur). It is natural to expect that the “provisos”
included in the informal rules (R2, R5, R6 and R7) act as guards. For instance, from
R5 we shall note that a thinking philosopher can become hungry, provided that the
proper thinking timeout has expired.

A transition may have a {scope} associated with it. The scope is a well-formed-formula
of the enhanced net language which holds after the firing (occurrence) of the transition

327

(event). ¥For example the reception of a token (transition receive token; from
tokeny avail) causes the predicate hastoken(f) to hold.

Note the presence of inhibitor arcs. Graphically they are represented as dotted lines
which have a black circle at their end. Often, inhibitor arcs are used to link input places
to transitions. The presence of a token in one such place will disallow the firing of the
transition. For instance, consider transition “send forks to release fork;", which models
the release of forks. From the diagram one can note that the philosopher defers request
for forks that are clean and when not eating satisfy requests for forks that are dirty.

Moreover, since a philosopher is always either eating, thinking or hungry, it is fair to
say if he is neither thinking nor eating then he must be hungry. Therefore, transition
“send token; to reg fork;”, which models the request of a fork f, is allowed to fire when
the philosopher holds the token and is in a hungry state (modelled by the two inhibitor
arcs from condition predicate thinking(phil) and eating(phil)).

3.3 Philosopher’s Temporal-Causal Specification

Philosopher Specification
Compoenent Philosopher (fork;?, forke?);

import philomsg: t , fork, position, phil, signaltype;
exitport reg forky: talun

entryport talnf avail: token;

exitport release fori:! fork;

entryport forks aveil: fork;

New type philosopher;

Variables
P {ph-il):

i (signaltype};
Jorky © (fome)
“‘“é)cﬂ l[t.ahn),

Condition Predicates

tokeny avail, reqf, reg !of.t! (token);
T =£ Hu lﬁu 1&}
oﬂuu ork, release forks: (fork);

WT-:.:

send tokens to req forkr: (token); (to be used with HI1)
send forky to relesse forks: (fark); (to be used with RZ)
receive fokeny from uluj avail: (token); (to be used with R3)
receive forky from forks evail: (fork); (to be used with R4)
Start Thinking: (phil); {to be used with RS5)
Become Hungry: (phil); (to be used with RS)
Start Eating: (phil); {to be used with RT)
Behaviour

Convention: f w {1,r) or fork = 11-&.:1;“}

Figure 5: Hygienic Philosopher: Enhanced Net Description

Causal Properties

post—condition acope resetisng
/ = - e - ——
phil 1 ([send tokeny to req forks) reg forky(tokens) A {~hastokens (f)})A ~regf (f)); (from [R1])
post=condition scope
phil 2 ([dirty(f)Abastoken(f) : send forks to release forks) release forks(f) A{~hastoken(f)A-dirty(f)})A

resetting
iy
” N

=Holding Fori{!ofl[)i (frem [R2])

post = condition 1cope
P — ——
phil 3 ([receive tokeny from token; avail) rqj(talu!) A{hastoken(f)})A
resetting
r-h:l:nf -ulii[lohu;f]; (from [R3])
post— oo:ld’tll'on scape

phil 4 ([receive forky from forkr svail }rﬁ"ofﬁng Furk{}ori!Th?hu!rri[!]n-dirﬂ{f}i)n

resstiing

- er.i[lnionri!}ll: (from [RA4])

post —condition resetiing
phil 5 ([Eating timeout(signal) : Start Thinking) Thinking(p))A ~Esting(p)); (frem [RS])

post—condition

PR
phil 8 ([Thinking fimeout(signal) : Become Hungry) Hungry(p))A
resetting

Pt —
= Thinking(p)); (from [RE])

poat—condition scope

——— p—————
phil 7 ([fork(l)Afork(r): Start Eating) Esting(p Adirty(l)adirty(r))A
resetting
~Henpry(p)) (from [RT))
Safety Properties
preconjuwm

phil 8 (’rqu]AﬂHoHiq Pori(h.iu!}A-Eaﬁn;(p}a\-vﬂilﬁuﬂpﬁ—-(OOu(nui tokeny to reg forks);
(from [R1])

preconditions

phil © (Holding Fork(forks)A~Esting(p) Adirty(f)Akastoken(f))~(OOcc(send forky (o release forky);
(from [B3))

precondition

phil 10 (tokens avail{fokens))—(O Occlreceive tokeny from tokeny avail); (from [R3])

precondition

e e,

phil 11 (forks :vﬁonrl[]]—o(Oﬂectncein forky from forkr avail); (from [RA])
precondition

phil 12 (Eating(p) AEating timeost(signal)}—(QOOcc(Start Thinking); (from [R5])

330

precondition

Pm— e,

phil 13 (Thinking(y) AThinking fimeout(signal))—({QO Occ(Become Hungry); (from [R6])
precondition
e ;

phil 14 (Hangry(p) Afork(I)Afork(r))—(O Oce(Start Eating); (from [R7])

Liveness Properties

phil 15 uha[suil(tnhn!)m O Occ(send forky to release forkg)
Initialization

phil 16 Thinking(p)

end.

In this particular example of Figure 5, the philosopher may initially possesses both
his left and right fork (and they are dirty) and consequently does not have the left and
right tokens. This would lead to the extra initialization formula:

Holding Fork(fork)AHolding Fork(forkr)A dirty(1)Adirty(r)

We assume that all predicates not meniioned in the initialization segment are initially
unset,

3.4 Philosopher Local Properties

Having specified the philosopher component, we now proceed to derive local properties
of its behaviour. The philosopher may exhibit many interesting properties. For example,
we expect the philosopher to behaviour (ideally) in such way that there will be a cycle
of activities from thinking to hungry to eating and back to thinking state.

Let us first demonstrate that if the philosopher is thinking and provided that a
certain “thinking timeout” has expired, then there will be a successor slice in which he
will be hungry.

T 1 Thinking(p)AThinking timeout(signal) — O Hungry(p)
Proof of T 1:

1 niﬂh!ﬂl Pia ﬂiﬂhﬂg t‘mukw‘) Asumption

2 Thinking timeout(signal) i A

s oOce(Become Hungry) Phil 18, 1 MP

« (Become hungry)Hungrypa-~Thinkingp) (enit & 4 2) , ux 18 Mp
s o(Hungryp)s~ Thinking(p) 3, 6 DR I 4 temp. ress.
s oHungryp) S Op elim

v Thinking(p)a Thinking timeout(signah-.oHuugrE[?}

1, 6 Discharge Assumption

Q.E.D

331

Now let us demonstrate that if the philosopher is eating and provided that a certain
“eating timeout” has expired, then there will be a successor slice in which he will be
thinking.

T 3 Eating(p)»Eating timeoul(signaly — o Eating(p)

Proof of T 2:
1 Eating(p)AEating timeout(signal) Assumption
2 Eating timeout(signal) 1 Astim
3 (OOcc(Start Thinking) Phil 12 , 1 MP

4 [Start Thinking)(Thinking(p)A~Eating(p)) (Phil 5 A 2) , ax 15 MP

5 O(Thinking(p)A—Eating(p)) 3, 4 DR2 + temp. reas.
6 QThinking(p) 5 OA eiim

7 Eating(p)AEating timeout(signal) — O Eating(p)
1, 6 Discharge Assumption

QED

Several other properties are also easily derived. For example it should not be difficult
to demonstrate :

T 3 Eating(p)Ahasfork(f)—dirty(f)

4 Hygienic Dining Philosophers System Specification and
Analysis

In the previous section we presented the specification of a philosopher component. We are
now able to specify and reason about any system which is build upon this component. In
particular let us describe a “Diner System” comprised of three philosopher components
named “ ", “karl” and “maz” which are sitting around a table, with plato next to
karl, who is next to maz, who in turn is next to plato (see Figure 6 below).

4.1 Informal View

A “diner system” consisting of three “philosopher” components named “plato”, “karl”
and “maz” is specified by instantiating three “philosopher components” to the respective
names and linking their respective ports according to the desired configuration (Figure 7)).
Observe that each philosopher has a left and right neighbour philosopher, with whom
he may exchange messages. Hence, the forks are shared according to the the following
distribution:

332

plate

O

max karl
Fork2

Figure 6: Diner Configuration

¢ philosopher pfato: left fork = Forkl, right fork = Fork3;

o philosopher KQTL: left fork = Porkd, right fork = Forki;
v philosopher TTIAT: left fork = Forkd, right { = Forkd;

Note that this intended configuration implies that the “left fork™ of any philosopher is
equal to the “right fork” of its neighbouring philosopher, and vice versa, i.e. neighbouring
philosophers share forks. Given that, the diner system can be depicted as in Figure 7.

Note that “plato”, “karl” and “maz” are components of type philosopher. The
following initial conditions are required:

e all forks are dirty

e forks are distributed among philosophers such that the precedence graph is acyclic

¢ if u and v are neighbours then either u holds the fork and v the priority request
token or vice versa.

Let us assume that the initial distribution of forks is the following: “plato” possesses
his left and right fork, “karl” does not have any fork and “mar”™ possesses his right fork.
All the forks are initially dirty. Moreover, “plato” does mot possess any token, “kari”
has both his left and right token and “maz” possesses only his left token. Given this
initial conditions and Figure 7 we can derive the following textual description.

System diner;

use Philosopher.

create

plato(forky, fork,): Philosopher;

karl(—fork;, ~fork,): Philosopher;
max(—~fork, fork,): Philosopher.

link

333

Figure 7: Diner System : Informal View

plato.req fork, to karl.tokengy avail;
plato.rel fork; to karl forky avail;
karl.req forkg to plato.token; avail,

karl.release forkg to plato.token; avail;

karl.req -forkp to max.tokeng avail;
karl.rel fork; to max.forkg avail;
max.req forkg to karl.token; avail;

max.release forky to karl.token; avail;

max.req fork; to plato.tokeng avail;
max.rel fork; to plato.forkg avail
plato.req forkg to max.token; avail;

plato.release forkg to max.token; avail;

end.

behaviour (below)

Observe that the system has no interface ports. The use construct identified the
type of the component used, namely, Philosopher. The create construct defines three
instances of them, named “plato”, “karl” and “maz” respectively. The link construct
defines the configuration of the various ports of the diner system.

334

The behaviour of the diner system is defined by the causal and temporal-causal view
given below.

4.2 Enhanced Net Composition (Causal View)

Again, the causal view is obtained from the diner structural configuration specification
(see Figure 8). Recall that each philosopher component could be thought of as a
transition whose typed output/input places correspoaded to the typed exit/entry ports
of the philosopher informal view. The task of composing philosopher components into
diner system specifications is straightforward: the output/input places of a philosopher
are joined together (i.e. are identified) with the input/output places of a neighbouring
philosopher, a.ccordlng to the “configuration” (links) presented in the informal view of
Figure 7.

Figure 8: Diners System: Causal View

Hence, the following interface places are identified:

« plato.req fork, (token) u equu 1o nntokeny avail (token),

. .-uu.rcffoﬁ." (fOft) is equal to h.rlfOft_E avasl (fOf* %

o mereg forkp (token) u e 1o pinsc.token, avail (token).
« nsrelease forks (Jork) 4 equal 1o p:....lokenL avail (fork),

o nnreq fork; (token) i wqua 1o m.tokengamihtoken),
. hﬂ.m‘fork (fo"*} is equal to nufof*a dmﬂ ‘fofk %

335

+ max.req forkp (token) i equst w0 wc.tokeny avail (token),

. mu.mfmefﬂrkg (fOfk } is equal 1o karl ‘ﬂkCﬂL avat! (fork N

o max.req fork, (token) i equu 1o pase tokeny avail (token),
. mu.l"EffOf*L {fork } is equal 1o plﬂ-.fﬂl*a avail ;fork %
. pum.wqforkﬂ(tokem is equal 1o maxtoken, avail (token),

« plato.release faﬁﬂ(fork) is equal 1o max.token; avail (fork),

4.3 Temporal-Causal View

The intended configuration defines three instances (plato, karl and maz) of the philosopher
component. We adhere to the notational device presented above, i.e, prefix any syntactic
categories by the instance name of the component. For example, in the diner system
example, there will be the following interface condition predicates (where f can take
value r or [):

. plato.rtqforkj. karl,mqforkl. nm.r.mqfork! . (token y,

+ plato.token ami!j. karl token aval'ul!. maz token amﬂ[. (token .
« plato. release forkf. karl release fork!. maz release fnrk! . forky,
. plato.fm*‘LamiI. karlfork‘f avail, maz.fartj avail: (forky,

Moreover, axioms of the individual component specifications will also use this “dot”
notation. For example, the first axiom of “plato” philosopher component specification:

poat—comdition scope resefting

- -~ ~ p——
phi 1 ([Send token, o req fork, yreq fork!{toben,)a{-haatoken!(f)m—- »

now corresponds to:
post—condition

plato.Phil 1 ((plato.send token, to req fork, ;}:ln!o.mqfork!(wben!;

scope resetting
e R

a';-.plato.hastoken!d;f;a:piata.Egz (_f}‘)‘

For each “link” associated with the previous views, there will be a corresponding
temporal-causal configuration axiom. For example, from Figure 8 we can identify twelve
configuration axioms:

Diner 1 um.mquL(token,} o= harl Ecma(‘m};
Diner 7 plase.Tel farﬁ(fork;) - m.jorkB avail (fork,),

Diner 8 wan.req forkp (token,) — suw.token, avail (token,),
Diner 4 kact.release forkp (fork,) ~ sie token avail (fork,).
Diner & kasl.req fork, (token;) - max.tokeng avail (token,).

Diser 0wt 1el fork; (fork,) - ma.fm'ka avail (fork,),

336

Diner 7 max.req forkp (tokeny) - wa.token; avail (token,),

Diner 8 maus.release forky (fork,) - watokeny avail (fork,).

Dinar @ nux.f?qforkj(tﬂk‘.ﬂf) - phto.tﬂkeﬂg GMI‘I(!Okfn-r %

Diner 10 mu.l"ElfOTk; [fOI”k;] - plun-.ft)?"kn avaﬂ { fOl"’kr h

Diner 11 plate.TE] forkﬁg token,) — max !okenb avail ¢ Iokenlx)

Diner 13 pun..rel'easefarkncfork,.) ~ max.token; avail ¢ fork,),

The initial conditions of the three philosophers will account for three extra
temporal-causal axioms.

piner 18 plato Holding Forkfork)aplato Holding Forkfork. plato. dirtyl)
aplato.dirtyry,

piner 14 karl.regf (token)aplato reqf (tokenyinkarl hastokenl)akarl hastokenr),
piner 18 maz. Holding Forkfork.)amaz regf (token)amaz dirty(rymaz hastokenl)

4.4 Hygienic Diner System Global Properties

Having specified the system, we may now want to derive the global properties of it.
Of course we do not have to redo the proofs of the local components, because the
temporal-causal framework is compositional (see [4]).

The initial diner system configuration guarantees that:

e all forks are dirty (plato.dirty(I)Aplato.dirty(r)Amaz.dirty(r));

¢ every fork and request fork are held by different philosophers:

= plato Holding Fork(forki)Akarl.reqf (token,)
~ plato.Holding Fork(fork,)Amaz.reqf(ioken;)

— maz. Holding Fork(fork..)f\karl.mgf{tokcn;!
e all forks are located at philosophers in such a way that H (precedence graph) is acyclic.

Furthermore, the directions of edges in H may be affected oniy when a fork changes
its status (dirty or clean) or its location. But every change to H preserves acyclicity.
Recall from Phil 2, that every transmission of fork is accompanied by a change in its
status from dirty to clean, but this does not change the direction of any edge. From Phil
7 we conclude that a fork is dirtied when the philosopher u holding it, eats. But this is
a guarded event which requires that the philosopher possesses all forks associated with
edges incident upon it. Therefore u cannot create a cycle in H because all edges upon u
are directed toward it. Consequently H is always acyclic. Furthermore, immediately
upon completion of an eating session a philosopher yields precedence to his neighbour.

We want to prove that every hungry philosopher will eat.
T 4 Hungry(p)—(QFEating(p)

As expected, Chandy and Misra solution and proofs can be translated easily to our
framework. This is done as follows:

337

The formal proof of this property is based upon the fact that a hungry philosopher,
which is not in possession of both forks (consequently has the tokens) will request the
furks to its neighbour (Phil 8), which will eventually grant it (axiom Phil 15). And
since the fork is clean upon receipt (Phil 4), the philosopher will hold it until he eats
(from Phil 7 and Phil 8). A philosopher requesting a fork that is clean must make the
request to a philosopher at a smaller depth and, by induction on depth, this philosopher
will eat and then dirty the fork, in which case the first argument applies.

The depth of a philosopher in H is the maximum number of edges along a path to
that philosopher from one without predecessors. A hungry philosopher at depth 0 in H
will commence eating in finite time (because he has precedence over all his neighbours).
By induction on depth, a hungry philosopher at depth k,k > 0, will eat in finite time
because he has precedence over all philosophers at greater depth, and all philosophers at
smaller depth will yield precedence to it in finite time.

Let u,v be neighbours and u be hungry. We can show that u holds or will hold the
fork { corresponding to the edge (u,v) and will thereafter continue to hold it until u
eats. If u holds the fork currently and holds it continuously until he eats, the result is
trivial. Therefore assume that v holds the fork f sometime before u eats next. At this
slice we have:

-u.Eating(p)A-u. Thinking(p)A-~u.hasfork(f) Av.hasfork(f).

case 1: f is dirty (v.dirty(f)), If u.regf(tokens) holds then u will request f (Phil 8)
and subsequently v.regf(tokens) will hold {from Phil 10 and Phil 3); otherwise
v.regf(tokeny) already holds. v.Eating(p) holds then at some later point (since
eating is finite), ~v.Eating(p) (from Phil 5) and all conditions for rule Phil 9 still
hold. Therefore Phil 2 will be applied to v, and u will eventually hold a clean fork
u. u will not release a clean fork until u eats.

Case 2: fis clean -w.dirty(f)), Every fork held a a nonhungry philosopher is dirty
because:

o all forks are dirty initially (Initialization),

e only hungry philosophers receive clean forks (Phil 4), and
e all forks held by eating philosophers are dirty (Phil 7).

Since f is clean, the philosepher v holding it must be hungry. Furthermore, because
f is clean, (v,u) is an edge in H and hence depth(v) < depth(u). According to the
induction hypothesis, v eats and hence dirties f. Case 1 then applies.

5 Conclusions

We argued that a single representation scheme is often not enough to capture the various
features of system behaviour. Instead, multiple viewpoints should be used to partition the
domain of information. Its success rests upon the selection of appropriate representation
schemes, the careful definition of the relations between them and the process by which
such specifications are built within those representation schemes.

338

We presented a technique that supports the specification of systems from three points
of view: informal. causal and temporal-causal. The Informal View describes in natural
language and graphically the requirements of the component. It is based on the Conic
Environment which provides a language-based approach to the building of distributed
system. The Causal View relies on enhanced Petri Nets to describe internal structure,
distributed control and safety requirements. The third view makes use of temporal-causal
logic to describe temporal features of the components such as liveness requirements.
Previous causal properties are preserved. Temporal-causal logic is the result of the
integration of two well-known formalisms, namely Petri Nets and Temporal Logic.

In this paper showed that the framework can be used to describe the behaviour
of distributed systems and to reason about it. In particular we are able to prove

local properties of the components behaviour as well as global properties of the system
composed of separate, inferacting components.

6 Acknowledgements

I gratefully acknowledge CNPq, under grant 301052/91-3(NV) for its financial support. I also
acknowledge the usefull discussions with Jeff Kramer at Imperial College.

References

(1] J. Castro. A Pluralistic Approach to Distributed System Specification extended abstract.
Second IEEE Symposium on Parallel & Distributed Processing, December 1990. Dallas,
United States.

[2] J. Castro and J. Kramer. Constructing Distributed System Specification: A Temporal-Causal
Approach. In Proceedings of X Congress of The Brazilian Computing Society, pages 106-120,
July 1990. Vitéria, Brazil.

[3] J. Castro and J. Kramer. Temporal-Causal System Specifications. In Proceedings of IEEE
International Conference on Computer Systems and Software Engineering (CompEuro90),
pages 210-217, May 1990. Tel-Aviv, Israel.

(4] Jaelson F. B. Castro. Distributed System Specification Using A Temporal-Causal Framework.
PhD thesis, University of London, October 1990. Imperial College of Science, Technology
and Medicine, Department of Computing.

[5] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM TOPLAS,
6(4):632-646, October 1984.

(6] J. Kramer. Configuration Programming - A Framework for the Development of Distributable
Systems. In Proceedings of IEEE International Conference on Computer systems and software
Engineering (CompEuro90), pages 374-384. IEEE Computer Society Press, May 1990.

(7] J. Kramer and J. Magee. The, Evolving Philosophers Problem: Dynamic Change Management.
In IEEE Transaction on Software Engineering, page 35pp, 1990.

(8] Wolfgang Reisig. Temporal logic and causality in concurrent systems. In F. H. Vogt, editor,
Proceedings of Concurrency 88, pages 121-139. Springer-Verlag, 1983. LNCS 335.

[9] Wolfgang Reisig. Towards a temporal logic for causality and choice in distributed systems.
In J.W Bakker, W. P. de Roever, and G. Rozemberg, editors, Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, pages 603-627. Springer-Verlag,
1989. LNCS 354.

[10] Ichiro Suzuki and HarnGdar Lu. Temporal petri nets and their application to modeling and
analysis of a handshake daisy chain arbiter. /EEE Trensactions on Computers, 38(5), May
1989,

339

