Extending CCS with Multiway Rendezvous

Rosvelter Jodao Coelho da Costa® Jean-Pierre Courtiat

LAASICNRS = 7, Avenue du Colonel Roche - 31077 Toulouse Cedex France
E-mail: rosvelte@Ilaas.fr, courliau@laas.fr

Proceedings of the 10* Brazilian Symposium of Computer Networks (SBRC'92), Recife-PE (Brazil), April
1992. Also available as Rapport de Recherche LAAS-CNRS No. 91195, May 1991,

Abstract Rendezvous is the basic mechanism adopted by many concurrent languages (such that CCS
and CSP) for composing independent and cooperating parts of a concurrent system. Nevertheless, CCS,
and contrary 1o CSP, has been defined only with a two-way rendezvous mechanism. This limitation appears
as a drawback in many practical applications. Therefore, others CCS-based approaches (such that SCCS,
Meije, ...) providing the capability of multiway rendezvous mechanism have been proposed in the literature,
However, it is the authors' belief that none of these approaches can be considered as a natural extension of
standard CCS. In this paper, we propose a general approach to extend CCS-like languages with a multiway
rendezvous which is a direct extension of CCS synchronization mechanism and permits to generalize many
(may be all) results obtained for standard CCS,

Resumo Rendezvous é o mecanismo bdsico adotado por muitas liguagens de especificagdo de sistemas
concorrentes (tais como CCS e CSP) para a composigdo de partes independentes e cooperantes de um
sistema concorrente qualquer. Eniretanto, para CCS, unicamenie o mecanismo de rendezvous simples foi
definido. Esie fato tem feito com que CCS seja inadequado para muitas aplicagdes préticas e, por isso,
outras linguagens de specificagbes de sistemas concorrentes baseadas em CCS (tais como SCCS, Meije, ...),
mas possuindo a capacidade de especificar rendeivous miltiplo, tém sido proposio na literatura. No entanto,
¢ da opinido dos autores que nenhuma delas parecem ser uma extensdo naiural de CCS. Neste artigo, ¢
proposto um novo mélodo para capacitar linguagens de especificagdo de sistemas concorrentes baseadas em
CCS com um mecanismo de rendezvous multiplo,

Keywords Formal Description Techniques, Concurrent Languages, Rendezvous, Distributed/parallel
Systems, Communication Proltocols,

Introduction

CCS (Calculus of Communicating Systems), introduced some years ago by Milner
[11], has become one of the most important formal approaches for the design (specification,
analysis, and implementation) of concurrent systems [13, 9). Following Milner’s work,
CCS and related approaches such that CSP [3) have been the main sources of inspiration

“Professor of the Dept. of Computer Science and Statistics of the Universidade Federal de Santa Catarina
(Floriandpolis-Brazil). Partially supported by a research assistaniship of MEC/CAPES - Proc. 100/88-11.

183

of many other algebraic-oriented approaches specifying concurrent systems (for instance,
see [12, 8, 2, 4, 1, 10, 15] as a representative sample and further references). The aim of
such formal approaches is to provide a mathematical foundation for studying concurrent
systems, and trying to avoid, already at the design level, classical errors in concurrent
environments (like deadlock, non-termination, ...).

Synchronization in CCS is expressed by means of a two-way rendezvous between CCS
agents. Although a two-way rendezvous mechanism may seem to be powerful enough,
some important applications may not be described without a multiway rendezvous [5].
In a comparison two-way versus multiway rendezvous, the later particularly permits to
specify a concurrent system with a higher level of abstraction, for instance, for capturing
user requirements.

To be really useful, multiway rendezvous has to be expressed in a way as simple and
intuitive as the two-way rendezvous. Furthermore, any proposal for extending CCS with
multiway rendezvous should consider the two-way rendezvous as a special case.

That is the purpose of this short paper which is organized as follows: section 1
introduces a simple synchronization formalism which will be the basis of our proposal;
section 2 briefly reminds a few basic concepts of CCS, particularly its two-way rendezvous
mechanism; then, section 3, defines MCCS, an extension of CCS with a multiway
rendezvous; in this section a formal (operational) semantics of MCCS is provided as
well as a simple example illustrating the power of MCCS.

1 A Simple synchronization formalism

In this section we introduce a simple synchronization formalism, which is the basis
of our proposal (presented in section 3) for extending CCS with a multiway rendezvous
mechanism.

Definition 1. (Channels and synchronizations) Let T be a finite set of rerminals, ranged
over by p,q,r,..., with distinct letters denoting distinct terminals, unless otherwise stated.
Then, we define a basic channel 10 be any ordered pair of distinct terminals, noted as pg.
Let BC, ranged over by A, B, ..., denote the set of basic channels'. We also define the set
C = BCU {1} of channels, ranged over by I, where 1 ¢ BC. Then, we define recursively
a set § of synchronizations (ranged over by M, N,...) as follows:

i. Basiss: M e€C,then M € S

il. Induction step: If M\N € §,then Mo N € §

ili. Closure: M € S only if it can be derived from the basis (i) by applying operator _o_
a finite number of times. O

The following set of axioms is further assumed:

(al) MoN=NoM
@2) (MoN)oR= Mo(NoR)
@) Mol=M=10M

' Note that, BC # ¢ iff 7 > 2.

184

Note that (S, 0,1) defines a commutative monoid. In the sequel, as usual, we denote
(S,0,1) by . Moreover, a term in S will be noted only by its basic channel components;
for instance (pgorsol)o (ptolo (riots)) is noted as pg o r5 o pt o 5 o £3.

Now we define two rewrite rules:

(f1) pgogp — 1
(2) pgogr'— pr

These rewrite rules, in fact a family of rewrite rules, introduce in the formalism
the notion of “direction” for the channels. Informally, (rl) specifies that two channels
with equal “magnitude” and “opposite” direction cancel each other out and (r2) reflects
“transitivity” among channels.

One can easily prove that (S|,,0,1) is an Abelian group!. But even though
(S}a,200+1) iS noetherian, it is not confluent?; for instance: py o G o ¢ can lead ei-
ther to pr o ¢ or to ¢r o p%, which are two distinct normal forms. Nevertheless, for

our purpose, confluence is not really required, as this synchronization formalism will be
applied within a “non-deterministic” framework.

In the sequel, “M > N means that N can be obtained from M by applying r1 or
12 a finite number (possibly 0) of times. In the same way, we denote by “M > N” the

reflexive and transitive closure of the relation induced by r2.
Let us now give some examples that illustrate the intuition behind the formalism.

Example 1.

i. prorgogp > 1 (seefigurel)

prors (see figure 2(a))

. prorsospopgoqs b {Pﬁ‘“ﬁ (seeﬁgure2(b)]

Figure 1

' Assuming rl as an axiom (5 o gp = 1) and defining an operation M, distributive over _o—, such that 53 = gp.

2 We have demonstrated that there arc special cases where confluence is guaranteed; for instance, when #T <3,

185

-

Figure 2

The basic intuition illustrated by these examples is very simple: we characterize
multiway rendezvous by the existence of a closed path among channels.

2 CCS - The two-way rendezvous case

In this ssction, the usual syntax of (pure) CCS is presented. Then, we will survey,
briefly and intuitively, some concepts related to the synchronization mechanism of CCS.

For this purpose, we assume a (finite or infinite) set of labels A = {a,b,c,...}, with
L standing for an arbitrary finite subset of A. Furthermore, we define a set of co-labels
(complementary labels) A = {,5,<,...} and the bijection & = a. We assume A = AUA
to be the set of visible labels, and Acc = AU {7} to be the usual set of acrions, ranged over
by a, 8,7, ..., where ¢ A and 7 ¥ r. Finally, we assume an infinite set Var of agent
variables, ranged over by ..., X,Y, Z. Then, the syntax of (pure) CCS defining the set £ of
agent expressions, ranged over by E, F, .., is given by the following BNF-like grammar’:

E:=Ni| X |aE | (EIE) | (E+ E) | (E\L) | rec X.E

We assume a knowledge of the basic concepts underlying this syntax [12, 13],
particularly, the notion of (Var) closed agent expressions defining the set of agents, P,
ranged over by P, @Q,....

In CCS, for any agent expression E, action a € Act defines a prefixing operation aF.
Intuitively, “synchronization” is obtained assuming the following conversion rule:

aP[RE' — a(E[EE') + 7(E|E") + E(aE|E")
T For the sake of simplicity and without any loss of genenality, the renaming operation of CCS is omiied.

186

Term 7(E|E’') indicates the occurrence of an a-synchronization; and the two other
terms indicate that additional a-synchronization can take place in the context where a E[aE'
will be placed. Note that the restriction operation E\a determines a boundary for a-
synchronizations in E, as neither a nor @ can be derived from £\a.

3 Extending CCS with multiway rendezvous

In this section, we introduce MCCS, a simple extension of CCS which permits to
express multiway synchronizations.

3.1 The syntax of MCCS

In order to define the syntax of MCCS, another definition is required for the set of
actions Act.

Definition 2. (Actions) Let C be a set of channels with respect to some set 7~ of terminals.
Let also G = {a,b,...} be a set of gates. Then, an action is defined to be any gatea € g
labeled by a channel I € C, in symbols a’. In the sequel, Act will denote the set of actions,
as defined here, and we will continue to use a, 3,7, . .. to range over Act. Also, for the sake
of simplicity, whenever there is no danger of confusion, a* will be shortly noted as a. [J

The syntax of MCCS is almost the same as the one of CCS introduced in the previous
section, with one difference the set of actions is now specified as in definition 2; moreover,
L appearing in the restriction operation E\L, is now a finite subset of G.

3.2 Operational semantics for MCCS

In the sequel, an operational semantics for MCCS in the Plotkin’s SOS style [14] is
provided, which corresponds merely to an adaptation of the usual transitional semantics
given for CCS [13], further taking into account the new synchronization mechanism.

Definition 3.
: i _ESp
W 2E5E) B FoSE FiBop
ELE . ERp pPp
(iii) o a (iv) 3
E|IFSE|F FIESF|E E|F SE|F

aP¥ " a¥F

1.
BFSElr FESME

(vi) . E"—-r}r_f (i) [&X.E/XEEE.E’ 0
(E\L)=(E'\L) if agLvI=1 rec X.ELE

187

Note that axiom (i) and inference rules (ii), (iii) and (vii) are the standard rules for CCS.
Inference rules (iv) and (v) implement rules r1 and r2 of the synchronization formalism
presented in section 1. Finally inference rule (vi) is similar to the equivalent rule of CCS,
with the difference that internal action 7 of CCS is replaced by @ (remember that a is a
shorthand notation for a?).

Following this operational semantics, it should be clear that the usual algebraic laws of
CCS still hold for MCCS, in particular, the monoidal laws for “+” and “I”, the idempotent
law for “+”, and also the expansion law. All these laws implicitly assume an interpretation
of “=" in terms of strong bisimulation equivalence [13), which we assume to be sufficiently
clear within the context of MCCS (}).

For instance, the MCCS expansion law may be formalized in the following way:
LgI.PE(P!l..‘lpfn)\L‘ m)G.
Let also ¥(a™) = P,,..., P, be a non-empty index-ordered sequence such that

A
“{Pr,....,Ps} C{Pj|P, € {P,...,Pu} AP;°S P!}, and
J1=2 3
*A;0...0A, D> pg
r2

and ¥(a) = Fy,..., F;,..., P, be either a sequence of one element P; such that P; = P},
or an index-ordered sequence of more than one clement such that
a’s
o APy.. 5P} C LFP e {P1,...,Pa} AP; = P;}. and
* 3Jjsuchthat A,0...0A;_10A4j,10...04, D!p'('; A Aj =gp
T

Then,

P! if P, € W(a®)
P, otherwise

P! if P, € ¥(a)

P, otherwise

P=Z [“ﬂ{Piul---|R’J|---|P:;)\L ‘¥ (a™), agt L, P ={

+3 [a{P;‘| P |PINL W (a), @ €L, P’ = {

It should be clear that if #7 = 2, only two-way rendezvous is possible, and then we
boil down to standard CCS. For instance one may note that if 7 = {0, 1}, then we have

A= {n‘ﬁ,b"'i....}. A= {aﬁ.bﬁ’,. . .}. such that a% = a™® and 7 is any action al,

Example 2. (Dining philosophers problem) With the purpose of illustrating MCCS, we
use the well-known “Dining philosophers Problem”, originally stated and solved by E-W.
Dijkstra [6]. Since then, it has been considered as a classical synchronization problem,
not because of its practical importance, but because it is a representative example of a
large class of concurrency problems. We are not interested here in solving the problem,
but rather on showing how the problem can be stated, at a high level of abstraction, using
the multiway rendezvous of MCCS.

1 The notion of swrong bisimulation, and also cther (may be all) notions, defined for CCS still hold (or can be straightforward
adapied) for MCCS.

188

-
ke + |

P

1

Figure 3 The dining philosophers problem

Let P and F be the agents specifying respectively the behavior of both philosophers
and forks. We assume, without loss of generality, that there are three philosophers and three
forks' (see figure 3). The behavior of each philosopher is given by P, = p.x.uf& e; d** X
where u (picking up two forks), e (eating) and d (putting down the forks) have their usual
meaning (for the sake of simplicity, we omit the “thinking activity” in the behavior of
the philosophers).

The behavior of the forks may be expressed in the following way:
Fi = pXu¥ d%X + o a5 X
Fy = pXuf d®X 4 u? a X
Fy = pXuf d%X + P doX.

The “dining philosophers problem” may then be specified as:

D = (P |B|Ps|Fy | F3 | Fy)\u; vy uy d

Figure 4 (where distinct shaded arrows denote distinct gates) describes intuitively the
synchronization mechanism involved in the case of three philosophers and forks.

Applying several times the expansion law (and other laws mentioned above) in D, we
will obtain the following derivation:

=
ta (&2 A Py PSP R Fald™ F)\ vy usd 4
us (Piles & Py Py |d™ FyJd By By) \us wa s d -+
us (PiIPalesd™ B3| |4 By ™ F3) \uy s s d
=we dD+uye;dD+useadD

which clearly describes the deadlock-free (but yet unfair) behavior of the initial specifi-
cation.

! e original example of Dijkstra considers five philosophers and five forks.

189

q P, P

Figure 4 Synchronizaton problem of the dining philosophers

4 Conclusion

The main result presented in this paper dealt with an original proposal for extending
CCS two-way rendezvous mechanism. This proposal is not the first attempt to provide
process calculi with multiway rendezvous. Indeed, several solutions have already been
presented in the literature. SCCS [12] and Meije [1] are two process calculi close to CCS
which have similar synchronization mechanisms allowing multiway rendezvous. Circal
[10] is arother CCS-like calculus permiting also multiway rendezvous. Although these
three calculi are very close to CCS, none of their synchronization mechanisms seem to be
a natural generalization of the two-way rendezvous of CCS. On the other hand, CSP (7,
3, 8] and derived approaches like LOTOS [2], have a synchronization mechanism rather
different from the previous ones. Nevertheless, as CCS is (even intuitively) different from
CSP, the task of comparing the two synchronization approaches is not easy. However, the
belief of the authors is that the proposed approach appears to be much more natural and
intuitive than these other approaches.

This short paper has presented preliminary results. Of course, the approach developed
here is not unique. The synchronization formalism introduced in section 1 can be improved
(or modified) in several ways (for instance, “half-duplex” channels could be considered in
addition of the “simplex™ channels formalized here).

Current work on this topic deals also with the extension of the proposed multiway
synchronization with.a value-passing mechanism.

190

References

(1]
(2]
(3]

(4]

(51

(6]

(7]
(8]
(9]

Austry, L., and Boudol, G. Algébre de processus et synchronisation. Theoretical Computer
Science 30 (1984), 91-131.

Bolognesi, T., and Brinksma, E. Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 14 (1987), 25-59.

Brookes, S., Hoare, C., and Roscoe, A. A theory of communicating sequential processes. J.
of ACM 31 (1984), 560-599.

Courtiat, J.-P., and Coelho da Costa, R. J. A LOTOS based calculus with true concurrency
semantics. In Proceedings of the IFIP TC6/WG6.1 Fourth International Conference on Formal
Description Technigues for Distributed Systems and Communication Protocols, FORTE'91
(Sydney, Austr_a.!ia. Nov. 1991), G. A. Rose and K. R. Parker, Eds., North-Holland.

de Saqui-Sannes, P., and Courtiat, J.-P. An extension of the multiway synchronization
mechanism concealed by estelle. In JFIP 11% International Symposium on Protocol
Specification, Verification and Testing (Stockholm, June 1991), North-Holland.

Dijkstra, E. W. Cooperating sequential processes. Tech. Rep. EWD-123, Technological
University, Eindhoven, The Netherlands, 1965.

Hoare, C, Communicating sequential processes. Comm. of the ACM 21, 8 (1978), 666-677.
Hoare, C. Communicating Sequential Processes. Prentice-hall, 1985.

Lopes de Souza, W., and Riso, B. G. Using CCS for protocol specifications by step-wise
refinements. In 2™ International Symposium on Interoperable Information Systems (Japan,
1988).

(10]Milne, G. J. Circal and the representation of communication, concurrency and time. ACM

Trans. on Progr. Lang. and Systems 7 (1985), 270-298.

[11]Milner, R. A Calculus of Communicating Systems, vol. 92 of LNCS. Springer-Verlag, 1980.
[12] Milner, R. Calculi for synchrony and asynchrony. Th. Comp. Sci, 25 (1983), 267-310.

(13] Milner, R. Communication and Concurrency. C.A.R. Hoare Series Editor. Prentice Hall, 1989.
[14]Plokin, G. A structural approach to operational semantics. Report Daimi FN-19, Aarhus

University (Denmark), 1981.

[15]Sobral, J. B. M., Ledo, J. L. S, and Pedrosa, A. C. P. CSP*; Um dialeto de CSP e sua

aplicaglo 2 especificagdo de protocolos de comunicagdo. In 92 Simpésio Brasileiro de Redes
de Computadores (FlorianGpolis-SC (Brazil), May 1991).

191

