RUMO A UM AMBIENTE DE PROGRAMAÇÃO DISTRIBUIDA EM MODULA-2

Lidia Segre e Michael Stanton

COPPE/UFRJ Programa de Sistemas PUC/RJ 21945 Rio de Janeiro, RJ

Departamento de Informática Caixa Postal 68511 22453 Rio de Janeiro, RJ

Sumario

Apresenta-se o atual estágio de um projeto que visa criar meios de construir software distribuido. Estes meios incluem a linguagem de programação, basicamente Modula-2 com algumas extensões, e uma linguagem de configuração, que permite definir como um programa distribuido é composto de módulos carregados (potencialmente) em estações diferentes. Entre os itens descritos se incluem a implementação da chamada remota de procedimentos e da linguagem de configuração estática de programas.

1. Introdução

Os autores estão conduzindo uma investigação na construção de software para executar em ambientes distribuidos. Programas distribuidos são compostos de modulos, que são escritos na linguagem Modula-2 [Wirth 1982] com algumas extensões, e carregados em estações diferentes de um sistema distribuido de acordo com a finalidade do programa e a conveniência do seu configurador. Em [Segre 1985a], descrevemos as extensões a Modula-2 que são necessárias para permitir o uso desta linguagem para escrever módulos componentes de um programa distribuido. Estas incluem mecanismos para descrever concorrência e comunicação remota, e foi escolhido o modelo de processos e monitores (remotos) com acesso através da chamada remota de procedimentos. Para conservar o conceito de transparência de locação, mostramos que o mecanismo de chamada remota também tem que ser transparente, e definimos em [Segre 1985b] uma linguagem de configuração estática que permite configurar programas distribuidos, isto é, colocar e ligar seus módulos componentes.

Este relatório descreve a evolução das propostas contidas em [Segre 1985a, b], inclusive alguns aspectos pragmáticos decorrentes do trabalho prático de implementalas. Além dos autores, participaram deste trabalho os alunos de mestrado Nanci dos Santos Lages (COPPE/UFRJ), Nelson Alves da Silva Filho (PUC/RJ) e Vanise Paraiso Vetromille (COPPE/UFRJ).

Chamada remota de procedimento (CRP)

A implementação de chamada remota transparente segue o modelo de "stubs" adotado no projeto Cedar da Nerox [Birrell 1984]. A partir da especificação de uma interface remota,

escrita na forma de um módulo de definição em Modula 2, gera-se automaticamente um par de "stubs", um do cliente (importador da interface), e o outro do servidor (exportador da interface). O "stub" do cliente é um módulo (escrito em Modula-2) que implementa a interface em questão e recebe chamadas locais a seus procedimentos exportados, convertendo estas chamadas em mensagens a serem enviadas à estação onde está localizado o módulo exportador da interface. Aí, são recebidas pelo "stub" do servidor, que as transforma em chamadas aos procedimentos do módulo exportador. Ao terminar a execução da chamada, os resultados são enviados de volta á estação originária da chamada por procedimento análogo.

A implementação convencional de Modula-2 traduz uma especificação de interface, codificada num módulo de definição, para um arquivo "simbólico", que contém informação sobre os identificadores exportados [Geissmann 1983]. O gerador de "stubs" é um programa em Modula-2, que a partir- deste arquivo simbólico gera dois arquivos de programa fonte em Modula-2 para os "stubs". Estes então serão compilados e usados para compor qualquer configuração em que esta interface é importada remotamente.

Os "stubs" se comunicam entre si usando um protocolo de comunicação, próprio para CRP, que é implementado neste projeto por um módulo de suporte replicado em cada estação da rede. Este módulo é responsável pela manutenção e atualização de informações sobre a localização dos módulos exportadores de interfaces importadas a cada estação, além do envio e da recepção de mensagens de chamada e retorno de chamada de procedimentos, e da recuperação de falhas de chamadas remotas. Para permitir um máximo de paralelismo, o módulo de suporte dispara um processo novo para executar cada chamada remota recebida.

Na implementação sendo desenvolvida, as informações sobre a localização dos módulos exportadores de interfaces poderão vir em forma de tabelas montadas pelo configurador estático e o carregador, ou poderão ser obtidas dinamicamente através de um servidor de nomes. Nesta implementação está sendo utilizado como subsistema de comunicação remota a rede local fabricada pela empresa Eden.

2. Configuração de programas distribuidos

Para alcançar o objetivo de transparência de locação, é preciso poder programar os módulos que comporão um programa distribuido sem saber em que estações estes serão carregados para execução. Esta informação é fornecida por um programa de configuração, escrito numa linguagem própria, que define a localização física dos módulos e as relações de importação e exportação de interfaces entre cles. Em [Segre 1985b], definimos uma linguagem de configuração estática, onde são conhecidos todos estes detalhes antes de iniciar a execução de qualquer componente do programa distribuido.

proposta, cujas declarações serão traduzidas em diretivas para carregar módulos em determinadas estações e estabelecer ligações entre exportadores e importadores. Para gerar estas diretivas o tradutor terá que reconhecer múltiplos usos do mesmo módulo, para evitar duplicação de módulos carregados, além das situações quando uma interface é importada remotamente. Neste último caso terão que ser carregados os "stubs" apropriados a esta interface, um de servidor junto ao exportador, e um de cliente para cada importador da interface.

3. Software de suporte

À implementação de CRP e de configuração de programas dependem da existência prévia de algum software de suporte. Os serviços básicos necesários incluem:

- . processos concorrentes e monitores:
- . comunicação remota em rede;
- ._carga e controle de execução de modulos.

Para prover estes serviços, é preciso construir um sistema operacional rudimentar que execute em cada estação da rede.

4. Conclusão

Espera-se ter em funcionamento durante o primeiro semestre de 1987 a primeira versão do software descrito acima, para podermos então investigar mais concretamente a construção de software distribuido para uma rede local de computadores pessoais.

O' trabalho descrito aqui contou com a apoio da Finep, do CNPq e da Embratel.

Bibliografia

- [Birrell 1984] Birrell, A.D., Nelson, B.J. "Implementing remote procedure calls". ACM Trans. Comp. Sys. 2, 1 (fev 1984).
- [Geissmann 1983] Geissmann, L.B. "Separate compilation in Modula-2 and the structure of the Modula-2 compiler on the personal computer Lilith". Dissertação no. 7286, Instituto Federal de Tecnologia (ETH), Zurique, Suiça, 1983.
- [Segre 1985a] Segre, L., Stanton, M. "Sobre o uso de Modula-2 para programação em ambientes distribuidos". Anais do 50. Simp. Des. Software Básico, Belo Horizonte (nov 1985), pág. 1-25.
- [Segre 1985b] Segre, L., Stanton, M. "Uma linguagem de configuração para o uso de Modula-2 para programação em ambientes distribuidos". Anais do 50. Simp. Des. Software Básico, Belo Horizonte (nov 1985), pág. 26-40.
- [Wirth 1982] Wirth, N. "Programming in Modula-2". 2a. ed. Springer. 1982.