RECENT DEVELOPMENTS IN PROTOCOL TEGTING

Behget Sarikaya
Concordia University
Electrical and Computer Engineering Department
1455 de Maisonneuve W.
Montréal, Québec, Canada H3G 1M8

(invited paper)
ABSTRACT

With wide-spread acceptance of 1SO-OSI| reference model and its
standardized protocols in the areas of computer communication and
information exchange, protocol testing has become an area of active
research and development. This paper attempts to survey recent
developments in this area. First, an overview of basic notions regarding
OSI model, formal specification, local/ conformance testing of
implementations and test sequence generation is given. This is followed by
a discussion on three important aspects of protocol testing: test
architectures, sequences and theory. Test architectures are defined,
observability and error detection limitations are addressed. Coverage of
test sequence generation is linked to formal specification techniques. Test
derivation from Estelle, Lotos, Prolog and finite-state machine models are
reviewed. Specifying resulting tests with TTCN, a recently defined
notation, is discussed with some examples. Theory part considers two
stream-lines of research activity, one which tries to relate the notions of
reduction, extension, refinement and tests to formal specification; the
other which sees the testing activity from the point of observable
behavior consisting of traces of interaction seguences.

1. INTRODUCTION

373

Open Systems Interconncction (OSI) micoel developed by Internationa!
Standards Organization (ISO) is best known with its layered archilcclure
which is a distributed replica of a design technique called onion skin.
Historically onion skin approach was used in designing centralized
systems as a way of simplifying system architecture by modelling inner
components (kernel, etc.) as abstract machines. Since OS! model is
intended to provide applications distributed over heterogenous systems, it
has a major ingredient, called the concept of protoco/ which does not exist
in the onion skin approach [Pouz 86].

A system willing to interwork (defined as an open system) has to
implement the 7-layers of the OS| model, forming one slice of the global
system. A complicated application at layer 7 is only possible by sharing
the communication and other tasks all over the 7 layers. Each layer
communicates with its peer layer, but physical communication takes place
only in layer 1, the physical layer. Rules governing information exchange
between peer layers at layer N define an (N)-protocol. Since open systems
can be developed by different people, protocols have to be standardized. An
(N)-protocol's task is to ease the task of layer (N+1) at some abstraction
level by providing (N)-service. Thus the entity at layer (N+1) will use this
(N)-service to communicate with the peer (N+1) entity using
(N+1)-protocol and will provide an (N+1)-service to the layer above and so
on as shown in Fig. 1. Since different layers in a given open system can be
developed by different people, services also have to be standardized. I1SO
has so far managed to produce natural language definitions of protocols of
all layers and services of most of the layers along with the standard
definition of the OSI model [ISO 84].

The rest of the paper is organized as follows:

Section 2 is on protocol specification and testing, Section 3 is on protocol

374
test architectures, Section 4 is on test sequences, Section 5 is on theory

and Section 6 contains author's conclusions.

- . a. .. - e S A WS o e S - ----1
::ubsys:eﬂ i level n + 1 f '
' L}
t 1 layer n + 1
t , - |
| interface interface |
T S P b —— -
| 1subsyst level n i1
' l ' ’
11 protoco] Lrotzedl o | pratocol 1 : layer n
1 | entity entity i
[1inurflce I_‘Interfacu]
l - e e e e e e R e e o —_— - l
:-‘ g subsystem levei n - 1 -: : 7
11 b o cm ot o oo e e - < 43
[T e 4 3
|

- R S S W e D R R R TS e e e SR D e e . -J

Figure 1. OS| Reference Model Layered Structure
2. PROTOCOL SPECIFICATION AND TESTING

Since natural language definitions of protocols/ services suffer from
various deficiencies such as ambiguity and difficulty with automated
treatment, formal description techniques (FDT) have been developed and
are being standardized. There are two FDTs developed by ISO: Estelle and
Lotos and one by CCITT: SDL. Since SDL is very similar to Estelle (except
its graphical part) and that it is expected to converge with Estelle, we
will not treat SDL in the rest of the paper. Both Estelle [Este 85] and Lotos
[Loto 86] can be seen as languages for defining transition systems, but
their underlying model and syntax are completely different. _

A protocol/ service specification has three components: interaction
primitives, control, and data. A service specification contains a definition
of the service primitives and their parameters (fields) while a protocol
specification contains definitions of (N+1)- and (N)-service primitives as
wel'l'-as the protocol data units, or (N)-PDUs.

Control component deals with sequencing service primitives and/ cr

brotocol data units. For connection-oriented protocols we have phases of

375
operation, i.e. connection establishment, data transfer and disconneclion.
Simplest transition systems known as finite-state machines (FSM) have
widely been used in modelling the control component of protocols/
services [Boch 78, Dant 80].

Data component is the processing of interaction primitive
parameters. Negotiation of various connection establishment options, data
transfer mechanisms such as error processing, acknowledgement schemes,
flow control, etc. are all dealt with by data component.

2.1 FDTs o

Lotos is an algebraic specification language based on a calculus of
communicating systems (CCS of Milner [Miin 80]) which is used to define
dynamic (observable) behavior of processes. For the specification of data
as well as interaction primitives, Lotos is complemented with a powerful
abstract data type language called ACT ONE [EhMa 85]. ACT ONE is used to
define interaction primitives and static data; control component is
basically expressed as a process algebra in terms of a set of operations
including (recursive) procedure calls. Data component is specified with the
use of abstract data type operations in processes and by process
functionalities, i.e., processes which accept/ pass data before/ after
execution. Lotos primitive interaction type is rendez-vous, i.e.,
syncronous. Rather than simple value passing, Lotos processes can agree
on a common value when rendez-vous is achieved.

Estelle is a procedural language based on an extended finite-state
machine model. Service primitives are declared as part of channel
definitions using a Pascal like syntax. PDUs need not be defined explicitly
since they are sent using (N-1) service primitives. The control component
is specified as an FSM: each module has a reserved major state variable

and dynamic part of the modules comprise of transitions with FROM and TO

clauses to spccify state changes. Data component is specified as global
types/ variables some of which can be abstrect data types. Estelle
primitive interaction type is queued communication which applies to
communication between layer entities as well as intermodule
communication.

2.2 Implementation

OS| protocols are presently implemented by a combination of
hardware/ software with hardware in layers 1 and 2 and hardware and
software in layer 3 and software in layers 4 and above. One advantage of
formal specifications of protocols is that protocol impiementations can be
semi-automatically obtained [SeCeBo 86]. There exists various translators
of Estelle which translate a given Estelle specification into some
conventional languages such as Pascal and C [Vula 87]. Implementing
protocol systems from Lotos is also desirable but has not yet been
accomplished.

Protoco! implementations can be tested by considering a single-layer
or multi-layer entity as a whole and stimulating the entity from the
layers above and below and observing the reactions of the implementation
under test (IUT). Stimulation/ observation is done by sending/ receiving
(N)-service primitives, also calied (N)-Abstract Service Primitives (ASP)
and (N-i)-ASPs for an i-layer entity by an entity called Tester. Service
access points (SAP) used by the tester for this purpose are called points
of control and observation (PC0O). When IUT and Tester reside on the same
machine, the testing is local, otherwise it is remote.

2.3 Conformance Testing
“In order to achieve the goals of OSI, it is necessary that (N)-protocol
imp.lementations in each open sysiem conform to the protoco! standard. By

protocol standard, natural language definitions produced by ISO/ CCITT are

377

usually understood; while the ultimate goal is to consider the formal
specifications in one of the standardized languages. The testing activity
done for the purpose of checking the capabilities and behavior of an IUT
against the conformance requirements given in the protocol standard is
defined as conformance testing. The aim is to increase the probability that
different implementations are able to interwork. A standard document is
being prepared to define a framework (in terms of architectures,
definitions and procedures to be followed during testing) to conformance
testing [ISO 86].

Testing an IUT involves applying one or more test cases (or
equivalently, test sequences), a complete set of actions required to
achieve a specific test purpose. Conformance testing is performed by
executing a test suite which is defined as a set of test groups together
with an ordering information. Test groups are a set of related test cases
such as connection establishment, normal data transfer, multiplexing/
splitting. A test case is made up of a number of test events, an indivisible
unit of test such as sending or receiving a single PDU [iSO 86].

3. TEST ARCHITECTURES

in thi.s section we discuss the local and remote test architectures and
their error detection limitations.

3.1 Error Detection '

in any testing activity, it is assumed that the tester is able to judge
correctly the results of observation of the |UT's behavior. The entity
capable of making this kind of judgement is called a test oracle be it a
program or‘-a human being. In protocol testing, the tester which applies the
test suite is{ the entity which decides on the conformance of IUT to the
protocol specification. If a given behavoir is not in conformance to the

specification, an error is detected. Error detection capability of protocol

378

testers depends on test architecture, test suite and the design of testers
[Dsso 86).
3.2 Local Test Architecture

In a local test architecture (L) IUT is stimulated directly by ASPs
from the layer above and below (see Fig. 3.1). The points of observation and
control (PCO) are (N)- and (N-1)-SAPs. Note that in this architecture, the
tester should have the capability of acting as a peer entity, at least in
some of the test cases. Due to the fact that the tester has full conirol and
observation of all the external access points of an IUT, the locai test
architecture has a complete error detection capability. The only
restriction in this architecture is the limitations of any testing, i.e., it is

:mpossnbie to make a complete test of all cases.

0 el o |
A
| (N)-ASPs
Tester (Ni.En;-;;;”
uader test
.-...|'| ------
A
| (N-1)-ASPs
A
’ ;.-.-;&.‘-.‘..‘

Figure 3.1. Local Test Archltecture
3.3 Remote Test Architectures

The need for remote test architecturt—;s arises due ic the fact that
conformance testing can be the responsibility of a nationzal/ internationa!
instifution that undertakes the activity from a centralized site. At the
implementation site, it is also possible that more than one machine is

involved in testing the IUT.
In remote “test architectures, stimulation and observation s

379
distributed to local and remote sites. The testing entity on the remote site
is called Lower Tester (LT). LT controls and observes (N-1)-ASP"s on the
remote system. Locally there is no PCO on the (N-1) service boundary but
direct or indirect control and observation of (N)-ASPs are assumed.

In the distributed (D) test architecture (see Fig. 3.2) direct control
and observation of (N)-ASPs are done with a testing entity called Upper
Tester (UT). Since realization of service primitives is implementation
dependent, upper tester should be designed in such a way that it should be
easily portable [SaBoMaSe 86). In architecture D a given test case is
applied by both LT and UT.

It has been shown that some test cases may result in
synchronization problems between LT and UT [SaBo 84]. The
synchronization problem arises when, in a given test case, LT (UT) should
send an ASP/ PDU while in previous step LT (UT) had not received/ sent
any ASP/ PDU.

There is a need to coordinate the actions of the two testing entities
in order to achieve the test's aims. The means to achive it is called the
test coordination procedures There seems to be various ways of
designing the test coordination: defining a protocol (test management
protocol) between LT and UT (see the achitecture C below) [Rayn 82];
integrating the coordination in individual tests which are executed by _UT
and LT [BoCeMaSa 83]; astride responder architecture where UT design is
simplified by creating an extra connection and implementing the LT
functions on the LT site [Rafi 85].

Error detection power of the architecture D is reduced compared with
the “local architecture since (N-1)-ASPs are controlled and observed from
a distance over (N-1)-service of the network. Certain inputs (Network

reset) are impossible to apply. Compared with other remote architectures,

280
this architecture has improved error detection due to the existerce of UT,

The coordinated (C) test architecture (ser Fig. 3.2) is ncthing but
the architecture D in which test coordination procedures are implemented
as a test management protocol.

The remote (R) test architecture assumes that it is not possible to
observe and contro! (N)-ASPs of the IUT which happens when the IUT is
located in a file server with limited capabilities, etc.. Test cases are
defined in terms of (N-1)-ASP"s and (N)-PDUs. Since there is a need to
have a limited upper tester functionality on the IUT site, they have to be
provided by the system under test, possibly by a human operator.
Architecture R offers the most limited error detection power because of
the fact that upper boundary of the IUT is not cbserved/ controlied. On the
other hand, it is considerably easier tc do the tests by an entity called
arbiter. The arbiter passively observes the interacticns between the LT
and the IUT. In a broadcast environment (a local area network) the arbiter
reads the PDUs exchanged [MoDiAy 85], otherwise arbiter creates
(N)-connections with both LT and IUT and then it becomes transparent to

these two entities [Zhao 86].

]

1

|
T = T 1l 1T - .UT LT e ;o

|}

ket o :

]

W!A-Ps . -

e - =

i e | LOPT IN-2DL>

ol-.er- T pl-n,»'-.ur. e T {N-ul-h-ﬂ"- ' “'-‘
' M:M- Provider (- 1Servien Frovider - (Pl pService Provider !
- _-—q‘
= __#—‘—'-—"-—_'_'_,____.____._—_ - -——

-

Figure 3.2. Remote Test Architectures

381
4. TEST SUITE DESIGN

Designing test cascs (suites) can be considered to be the most active
research area of protocol testing. Research in this area is inspired from
the rich results obtained previously in hardware/ software testing,
nevertheless, it is evolving towards its own set of techniques, tools and
disciplines, possibly due to the distinct characteristics of protocols and
their test architectures.

We will discuss the protocol test design in four categories: FSM,
Estelle and Lotos based technigues and hybrid techniques. Finally in this
section we discuss formal specification of the resulting tests.

4.1 FSM Based Test Design

Early work on checking experiments on sequential machines [Koha 78]
and FSM models of protocols give rise naturally to combining the two
techniques together in order to derive tests for protocols [SaBo 82, SaBo
84]. The best results are obtained when the FSM modelling the protocol is
modified such that all the transitions have an input and a corresponding
output as labeis. Test sequence derivation technigues come in two classes: |
transition tour which simply includes all the transitions defined at ieast
once; methods which require that FSM possess a special sequence/ set of
interactions such as characterization sets [Chow 78], distinguishing
sequences [Koha 78], unique input/ output sequences [SaDa 85]. Since
protocol FSMs are usually incompletely specified, it becomes more
difficult to find these special sequences or sets.

It is possible to make an automated tool to obtain test sequences
using one or more of the FSM techniques. Such a tool containing two
methods of transition tour (random transition selection and depth-first
search) and the characterization sequence techniques is presented in [Wan

87]. The too! also contains modifications of these techniques so as to

382
generate synchronizable sequences. An example use of this tool is shown
in Figure 4.1 where FSM model of the simplest protocol, the alternating bit
protocol (a) is fed as input and a transition tour (b) is obtained as a result.

There is some renaming of the states such as state 31 becomes 4, efc.

4.2. Test Design from Estelle

Since FSMs model only the control component of the protocols/
services, there is a need to extend the FSM based techniques to cover other
aspects too. Since Estelle formal specification language can compietely
model all aspects of protocols/ services, it is desirable to be able to base

the test design on an Estelle specification of the protocol/ service.

1 new 3 Time out 3 Err 3 Al 3 AD 4 new
Do DO DO DO nill D1

6 Time_out 6 Err 6 A0 6 Al 1
D1 D1 D1 nill

Sender

Figure 4.1. A Transition Tour for the Alternating Bit Protocc!

A methodoiogy that is inspired from software testing [Howd 86], FSM
techniques and fault tolerant computing has been developed and
successiully applied to various protocols [SaBoCe 86, Sari 84]. An Estelle
specification is first simplified in order to obtain its normalized form,
i.e., control paths from the transitions are removed, procedure/ function
calls are replaced by symbolic evaluation [CIRi 81] and finally modules are
combined. The normalized specification can easily be represénted
graphicaily. Two different graphs are obtained: control graph for rﬁajor
sta'fe changes and data flow graph to show the flow of data from input
service primitive/ PDU parameters to the context variables and from. the

context variables_ to output service primitive/ PDU parameters.

383

Control graph is an FSM, thus the techniques described in Section 4.1
arc applicable. The concept of subtours are introduced: a subtour is a test
sequence that starts and ends in the initial state of the FSM. A transition
tour is made up of one of more subtours. A subtour can be used in
determining the execution sequence of a test case.

Data flow graph shows global flow of data over context variables, i.e.
all the operations on the variables of each module. It is possible to
partition a data flow graph into blocs each bloc containing the flow over
only one variable, ideally these blocs are independent but in most cases a
given protoco! contains some blocs which contain dependencies on other
blocs. Bringing together two or more blocs which are related is called
merging. "Related" blocs can sometimes be automatically detected while in
some cases interaction with an expert user is assumed. The result is &
partitioned data flow graphs in which partitions correspond to functions
of the protocol. The number of partitions obtained is directly proportional
to the complexity of the protocol.

Test design with this methodology is based on obtaining the control
sequence for a test case from the subtours and parameter enumerations of
the interaction primitives. Each partition is tested with one or more
subtours until all the arcs in the partition data flow graph are covered.

The methodology is partly automated on a Sun workstation. The
normalization and generation of the flow graphs are automated. The data
flow graphs are partitioned into blocs but the merging is left to the user
[BaSa 87].

4.3 Test Design from Lotos _
< Lotos formai description' technique can also be taken as a basi for *
test desi'gn. The method developed is based on behavior tree

representations of Lotos process abstractions [Stee 86].

34

Prolocol_:;pccilica!ion in Lotos is converted to a trec specification in
which each branch represents a possible event and the nodes at the end
represent the state of the protocol after the event has occurred. The
branches leaving the node represent the possible choices of events at that
node. Two different choice criteria are distinguished: a choice as a result
of external action (offers from the environment) and internal decisions
(refusing a connection, etc.). External choice nodes are represented as e
and internal choice rnicdes are represented as i-nodes in the tree. This tree
which represents a protocol entity is used to derive tests with the
observation that the tests describe the behavior of the environment. The
tree that represents the tests is obtained from the protocol tree with e
and i-nodes inverted. -

The test tree gives the interaction sequences to test a protocol
Individual test cases can be obtained by taking one of the branches at the i
nodes and pruning the others. A test case is deterministic since there are
no internal decisions left.

Since complex protocols have an unbounced number of possible
interaction sequences, the behavior trees used have tc be extended to
recursive trees. The general case is covered in [Stee 86] by giving the
inversion rules for all possible choice expressions. These rules can be used
to obtain interaction sequences of test cases from Lotos speciiications.
The data part is addressed in terms of structured events of Lotes. Rules
from software testing are suggested for parameter enumerations, as in
the methodology discussed in Section 4.2. It should be noted that the Lotos
test design methodology is aiso zppicable to asynchronous communication
since it is always possible to obtain a Lotos description of the protccol

entity composed with buffer processes at the upper and lower boundaries.

4.4 Hybrid Methods

345

A combination of 'SMs and knowledge from the informal specification
can be uscd to design test cases. A protocol is specified as an FSIA
extended with context information such as firing predicates for the
transitions, local and global variables. Local variables are assumed to te
of discrete domain. This specification is usually obtained from the
informal specification by inspection. Next is the transformation of the
context automata: local variables are enumerated and predicates are
removed if they are satisfied. The transformed automaton is used in test
design. The remaining predicates are classified as settable and
uncontrolled. Settable predicates are handled by parameter enumeraticre.
Unsettable predicates represent nondetermisism and handling them can be
done by expert testers with some knowledge of protocol functions [CaSi
86].

Prolog can be used in test suite design. Since Prolog interpreters nave
a built-in backtracking, it is possible tc obtain enumerations easily from
Prolog. A FSM can be specified in Prolog and the resulting program, when
interpreted gives all possible sequences (transition tours) from the
machine. It is also possible to obtain a Prolog equivalent of an Estelle
specification, except for the dynamic process structure [Boch 85]. The
resulting protocol specification in Prolog can be used for test case
derivation. Due to the invertability of Prolog programs, the Prolog
specifications can be used in two ways: to feed a sequence and see if it is
acceptable and to generate test sequences. The disadvantage of this
method is that the translation to Prolog is manual and for complex
protocols methods should be developed to cope with infinite number of
test. sequences.

A tool is developed toc interactively let the user specify the proteco

in Prolog and guide the test derivation in terms of assigning default values

38C
to interaction primitive parameters or doing parameter enumcration, etc.
as described in [UrSh 86].
4.5. Specification of Test Suites

Test cases (suites) can be specified using either Estelle or Lotos. The
advantage of specifying them in Estelle is that a large part of the
executable code can be obtained [SaBoMaSe 86).

ISO conformance test subgroup has defined a notation for abstractly
specifying test cases. This notation called Tree and Tabular Combined
Notation (TTCN) specifies the test case as a tree of events input(?)/
output(!) from the service access points accesible to the upper/ lower.
testers. These access points, interaction primitives, etc. are defined in"
tables. Dynamic behavior table contains behavior description, label, PDU/
ASP reference, comments and result columns [ISO 86b). It is possible to
define the timers, start, cancel, suspend and resume the defined timers -
making it easy to define tests which involve”timer management. o

The aim of TTCN is to define a notatio_n‘for standardized test"suitégfﬁ ;
ISO committee is working towards sta_ndard test suites of individual"
protocols each specified in TTCN. | ‘

A tool with which user can interactively write and debug TTCN
specifications has been realized [Wile 86). Each test case specified can
also be executed in a local test architecture.

Test cases derived by the methods of Sections 4.1 - 4.4 can be
expressed in TTCN. As an example we give a TTCN description of a test of
the alternating bit protocol in Figure 4.2. This sequence is derived from

T

Figure 4.1.

387

ErL Lt S R EE SRR R R R B A A-FF 2 Pt T R PRl Rl Yl R Pl R YT It st I T i S STTT
I Dynamic Behaviour

LR AR PR TS S T T YRR R L L E L LR R PR DR R e B el et T I P I e TSI I Y
Rererence: Alternating=bit=-protocol/Sinder/Case with no errors, no timeout
Icentifier: AO-Sender

Purpose: To test Sender Entity of alternating bit protocel in

no errors , no timeout case.
Defaulit Rererence. None

e
-

“_E:i:viour Description Label |[Constraints |Results] Comments ¥
TEST=ABLL. U] |
.l‘;ﬂc.p reg o L .I'uJ-uauf'ﬁa- kine |i

Sand AdufawX fwer T, Q-nfwu
Reswey gibu ﬁ-u L IR~

54 D&TArtq(DO),_
L7ACKresp (AQ)

UTSE k;gt-!rUiSt{rllult -'Faxlnd Mo oo | | Failed [etmad o fulure
ENDreg -
 LIDATAreqtDL) - .‘:fﬁ:'i:..jf'f.r::.’»
L:ACKI‘Q5D‘A1) oy = s emmeet S Pass 2ecuive gih] hee muer Tros |1
L?0therwise(resulti=’#ailed 5" Tl Failed [eaer o tais t otk
s "

R 2 PR RS P Py P E Y P P P P P T Ll Tl Il Tsrrsrr 1

Figure 4.2. A TTCN Test Case Specification for the Alternating Bit Protocol
5. THEORY

Investigation of issues such as formally expressing error detection
power of test architectures, deciding if a set of events that happens
during a test (called trace) satisfies the protocol specification, evaluating
fault coverage of the test suites and developing formal notions of
implementations and using this notion to obtain formal specification of
the conformance tests of implementations as well as the testers
constitute the theory of protocol testing.
5.1. Error Detection and Trace Checking

A trace is an totally ordered set of observable events. Each member in
the set is referred to as a sequence of events. There are two types of
traces in tne context of protocol testing: 'global trace is the trace
observed in all the observable interaction points of the test architecture,
local trace is the trace obtained from a subset of the observable
interaction points. The projection operation can be applied on the traces to
reduce the global trace to a partial trace observable from a subset of
interaction - points. Projection makes the events of the extracted
interaction points unobservable, thus it is equivalent {0 restriction
operator of Lotos In this sense. Arbitrary interlacing of two partial traces

t, and t, is the set of sequences obtained by placing the events of t, in
1 2 2

388

the events of t; in all possible ways while constrained interlacing

considers ordering constraints instead of all possible orderings. Ordering
constraints can be obtained from either control flow, i.e., the state order
or from the data flow, i.e., acknowledgement should contain sequence
number of the previously sent data [DsBo 85].

Error detection power of an observer can be defined to be the set of
traces E which contain errors that the observer can not detect because of
missing information. According to this definition, for the giobal observer
which observes all the interaction points the following holds:

E=0
since the global cbserver has no missing information.

Trace checking done by the local and global observers is based on
verifying local and global properties, respectively of a protocol on the
observed trace. It has been shown that these properties can be obtained
from formal specifications of the protocol in Estelle [Dsso 86] and Lotos
[AhSa 87]. Automatic implementation of observers from formai
specifications of the protocol under test is desirable and has been realized
in the case where observation in only PDU level is assumed [Zhao 86].
Finite-state machine based implementations are also easy to obtain but
the resulting observers are partial in the sense that they cannot verify
local (global) properties which contain nondeterminism (a prefix of a given
trace can be acceptable in several states of the observer) [Dsso 86, Jard
86].

Another dimension of the error detection power is the test suite
applied. Fault coverage of the test suite should be as complete as possibie.
Quantitative ways of determining test suites fault coverage are desirable,
but difficult to obtain in general. Again, for finite-state machine modeis,

it is possible to measure the fault coverage of a given test sequence or

389

thereby the method of determining the test sequence. [DaSa 86] contains a
study of fault coverage of the test sequences obtained from the technique
of unique input output sequences. The method used is 1o determine all
possible equivalent machines implementing a given protocol expressed as
a FSM and determining all correct ones among them. The computations
involved tend to grow exponentially when the number of states of the FSM
grows.
5.2. Canonical Testers

[BrScSt 86] shows that it is possible to obtain, from a Lotos
specification of the protocol, a Lotos description of conformance tests of
the protocols implementations and the associated testers. An
implementation can be considered to be a reduction, an extension or a
refinement of its specification. These notions can be formally defined and
interrelationships among them can be established in terms of sets of
observable actions and trace sets of transition systems. Based on these a
canonical tester T(S) of a specification S can be defined to accept all the
traces of S and deadlock in case only if the process is not an abstraci
implementation of S. Although in general, there exists no algorithms for
constructing T(S), it is possible to find it for simple S. This is possible
from the facts that no reduction of T may deadlock with any reduction of S
and that a reduction of T(S) exists that deadlocks with processes that are
not abstract implementations of S.
6. CONCLUSIONS

Protocol testing is undertaken either locally usually by the
implementers or from a distance usually for the purpose of assessing its
conformance to the protocol specification. Architectures developed for
both local and remote testing show that protocol testing has distict

characteristics compared with software and hardware testing, due to

390

distributed control and access involved in these architectures

Test casc generation for protocols is closely related to protocol
specification. Any method used cxposes the capabilities and limitations of
its wunderlying specification technique. For simple protocol!s the
methocdologies deveioped work well but for complex protocols there scems
to be yet no technique found to cope with the complexity. On the other hand
test case generation is very much related to expertise gained on tre
protocol. It seems easier for an expert designer to design tests manually
rather than using an automated tool for complex protocols. This point
needs further investigation.

Much remains to be done on issues such as fault coverage of test
cases, designing intelligent observers and obtaining test suites
automatically from the formal specification techniques as well as formal!
description of the testers.

7. REFERENCES

[AhSa 87) R. Ahooja, B. Sarikaya, "Unified Data Flow Models of Estelie and
Lotos Specifications”, Submitted for publication. Available from the
author. February 1987.

(Barb 87] M. Barbeau, "Prototype d'un Systéme d'Aide & la Conception de
Tests de Protocoles”, MSc thesis, Université de Montréal, February 1987.
[BaSa 87] M. Barbeau, B. Sarikaya, "CAD-PT: A Computer Aided Design Tcol
for Protocol Testing", Submitted for publication, available from the
author, February 1287.

[Boch 78] G.v. Bochmann, "Finite State Descriptions of Communication
Protocols", Computer Networks, Vol.2, pp361-372, October 1978.

[Boch 85] G.v. Bochmann, R. Dssouli, W. de Souza, B. Sarikaya, H. Ural,
"Prolog for Building Protocol Design Tools®, Proc. of 5th IFIP Workshop on
Protocols, June 1985, North-Holland 1986.

[BoCeMaSa 83] G.v. Becchmann, E. Cerny, M. Maksud, B. Sarikava, "Testing
Transport Protocol Impiementations”, Proc. of CIPS, May 1983, Ottawa,
Canada, pp.123-128.

[BrScSt 86] E. Brinksma. G. Scollo, C. Steenbergen, "Lotcs Specifications,
their Implementations anc their Tesis®, Proc. &th IFIP Wcrkshcp on
Protocols, June 1986, North-Holanc 1887, _
[CaSi 86] R. Castanet, R. Sijelmassi, "Methods and Semi-automatc Tools

391

for Preparing Distributed Testing”, Proc. 6th IFIP Workshop on Protocol
Testing, June 1986, North-Holland 1987.

[Chow 78] T.S. Chow, "Testing Software Design Modelled by Finite-State
Machines", IEEE Trans. on Software Eng., Vol. SE-4, No. 3, 1978.

[CIRi 81] L.A. Clarke, D.J. Richardson, "Symuoolic Evaluatien Metheds for
Program Analysis”, in Program Flow Analysis, Prentice Hai, 1981.

[Dant 80] A.S. Danthine, "Protocol Representation with Finite State
Models", IEEE Trans. on Comm., Vol. COM-28, No. 4, 1980.

[Dsso 86] R. Dssouli, "Etude des Methodes ce Test pour les Implantations de
Protocoles de Communication Basées sur Les Specifications Formelles”,
PhD Thesis, Université de Montréal, Dec. 13886.

[DsBo 85] R. Dssouli, G.v. Bochmann, "Error Detection with Multiple
Observers", Proc. of 5th IFiP Workshop on Protocols, June 1885,
North-Holland, 1986.

[EhMa 85] H. Ehrig, B. Mahr, "Fundamentals of Aigebraic Specification 17,
Springer-Verlag, Berlin, 1985.

[Este 85] ISO, "Estelle: A Formal Description Technique Based on an
Extended State Transition Model", DP 9074, May 1985.

[Howd 88] W.E. Howden, "A Functional Approach to Program Testing and
Analysis", |EEE Trans. on Software Eng., October 1986.

[ISO 84] ISO, "Open Systems Interconnection -Basic Reference Model", IS
7498, 1984.

[ISO 86] ISO, "OSI Conformance Testing Methodology and Framework Parti:
General Concepts", DP 11, Sept. 1986.

[1ISO86b] I1SO, "OS! Conformance Testing Methodology and Framework Part 2:
Abstract Test Suite Specification”, DP 12, Sept. 1886.

[Jard 86] C. Jard, Personal communication, December 1886.

[Koha 78] Z. Kohavi, "Switching and Finite Automata Theory", Mc Graw Hill,
1978.

[Loto 86] ISO, "Lotos- A Formal Description Technique Based on the
Temporal Ordering of Observational Behavior”, DP8807, 1986.

[Miln 80) R. Milner, "Calculus of Communicating Systems”, LNCS of Springer
Verlag, 1980.

[MoDiAy 85] A.R. Molva, M. Diaz, J.M. Ayache "Observer: A Run Time Checking
Too! for Local Area Networks", Proc. 5th IFIP Conf. on Protocols, Toulouse
1985, North-Holland 1986, pp. 495-506.

[Pouz 86] L. Pouzin, "OSI Progress and lIssues”, Proc. of 8th ICCC,
September 1986, Munich, pp. 154-158.

[Rafj 85] O. Rafig, R. Castanet, C. Chraibi, "Towards an Environment for
Testing OS! Protocols”, Proc. 5th IFIP Conf. on Protocois, Toulouse 1935,
North-Holland 1986, pp. 533-544.

[Rayn 82] D. Rayner, "A System for Testing Protocol Implementations”,

-

392
Computer Networks, Dec. 1982.
[Sari 84) B. Sarikaya, "Test Design for Computer Network Protocols”, PhD.
thesis, Mc Gill University, March 1984
[SaBo 82) B. Sarikaya, G.v. Bochmann, "Some Experience with Test Séquence
Generation for Protocols”, Proc. of 2nd Waorkshop on Protocols, May 1982.
[SaBo 84] B. Sarikaya, G.v. Bochmann, "Synchronization and Specification
Issues in Protocol Testing”, IEEE Trans. on Comm., Vol. COM-32, No. 4,
pp.389-395, April 1984.
[SaBoMaSe 86] B. Sarikaya, G.v. Bochmann, M. Maksud, J-M. Serre, "Formal
Specificaticn Based Conformance Testing”, Proc. SIGCOMM' 86, August
1686.
[SaBoCe 86] B. Sarikaya, G.v. Bochmann, E. Cerny, "A Test Design
Methedology for Protocol Testing”", t¢ appear in IEEE Trans. on Software
Engineering. Available as a research report from Concordia University.
SaDa 85] K. K. Sabnani, A. Dahbura, "A New Technique for Generating
Protocol Tests", Proc. of 9th Data Communications Symposium, ACM
SIGCOM Computer Communication Reviews, Vol. 15, No. 4.
{SeCeBo 86]J-M. Serre, E. Cerny, G.v. Bochmann, "A Methodeclogy for
Iimplementing High-Level Communication Protocols", Proc. of 19th HICSS
Vol. lIB, January 1886.
[Steen 86] C. Steenberger, "Conformance Testing of OSl Systems”, MsC.
Thesis, Twente University, August 1986.
[UrSh 86] H. Ural, R. Short, "An Interactive Test Sequence Generator”, Proc.
of SIGCOMM' 86, August 1986.
[VuLa 87] S.T. Vuong, A. Lau, "Semi-Automatic Implementation of
Protocols-The ISO Class 2 Transport Protocol as an Example”, Proc. IEEE
INFOCOM' 87, March 1987. i
[Wan 87] T. Wan, "CONTEST- Concordia Test Generation Package User's
Manual", Concordia University, Electrical Eng. Dept.,, Available from the
author.
[Wiles 86] A. Wiles, "ITEX-An Interactive TTCN Editor and Executer", Proc.
GLOBECOM' 86, December 1986, pp. 22.3.1-22.3.5.
[Zhao 86] J-R. Zhao, "Protocol Testing with Arbiters”, Research report,
Université de Montréal, October 1986.

